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A Necessary and Sufficient Condition
for Generalized Demixing
Chun-Yen Kuo, Gang-Xuan Lin, and Chun-Shien Lu

Abstract—Demixing is the problem of identifying multiple
structured signals from a superimposed observation. This work
analyzes a general framework, based on convex optimization, for
solving demixing problems. We present a new solution to deter-
mine whether or not a specific convex optimization problem built
for generalized demixing is successful. This solution also creates
a way to estimate the probability of success by the approximate
kinematic formula.
Index Terms—Compressive sensing, conic geometry, convex op-

timization, -minimization, sparse signal recovery.

I. INTRODUCTION

A CCORDING to the theory of convex analysis, convex
cones have been exploited to express the optimal con-

ditions for a convex optimization problem [6]. In particular,
Amelunxen et al. [1] presented the necessary and sufficient con-
ditions for the problems of basis pursuit (BP) and demixing to
be successful.
Let be an unknown -sparse vector with nonzero

entries in a certain domain, let be an random matrix
whose entries are independent standard normal variables, and
let be the measurement vector obtained via
random transformation by . In regard to the basis pursuit (BP)
problem, which is defined as

subject to (I.1)

a convex optimization method was proposed in Chen et al. [4]
to solve the sparse signal recovery problem in the context of
compressive sensing [5] when .
To explore whether BP has a unique optimal solution,

Amelunxen et al. [1] started from the concept of the conic
integral.
Definition 1.1. (descent cone): [1] The descent cone

of a proper convex function at the point
is the conical hull of the perturbations that do not increase
near .

(I.2)
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Fig. 1. The optimality condition for the BP problem. [Left] BP succeeds.
[Right] BP fails. .

We say that problem BP, defined in Eq. (I.1), succeeds when it
has a unique minimizer that coincides with the true unknown,
that is, . To characterize when the BP problem succeeds,
Amelunxen et al. presented the primal optimality condition as:

(I.3)

in terms of the descent cone [1] (cf., [3] and [7]), where
denotes null space of . The optimality condition for the BP
problem is also illustrated in Fig. 1.
Amelunxen et al. [1] also explored the demixing problem

(sparse sparse) characterized as

(I.4)

where is a known orthogonal matrix, is itself
sparse, and is sparse with respect to . The optimization
problem of recovering signals and is formally defined as
follows, which we call the demixing problem (DP) in short:

subject to (I.5)

They propose the primal optimality condition (also illustrated
in Fig. 2) as

(I.6)

to characterize whether is the unique minimizer to
problem (DP).
The authors in [1] also estimated the probabilities of success

of problem (BP) and problem (DP) with Gaussian random
sensing matrices by the approximate kinematic formula. They
derived the probability1 using convex (descent) cones. Note

1Nevertheless, the authors still fail to calculate the actual probabilities. In
fact, they only derive the bounds of probabilities that involve the calculation
of statistical dimension. Unfortunately, up to now, the statistical dimension still
cannot be calculated accurately.
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Fig. 2. The optimality condition for (DP) problem. [Left] problem (DP) suc-
ceeds. [Right] problem (DP) fails.

that, as shown in Fig. 1 and Fig. 2, the affine balls are
defined as . Also note that

, where is a conical hull
of .
In Sections II and III, we generalize the demixing problem

specified in Eq. (I.4), set the corresponding optimization
problem to recover the signals of such generalized demixing
model, and explore its necessary and sufficient condition for
successful demixing.

II. MOTIVATION AND PROBLEM DEFINITION

The demixing problem we discuss in this paper refers to the
extraction of two informative signals from a single observation.
We consider a more general model for a mixed observation

, which takes the form

(II.1)

where and are the unknown informative
signals that we wish to find and where the matrices
and are arbitrary linear operators (not necessarily

or ). We assume that all elements appearing in Eq.
(II.1) are known, except for and . The broad applications
of the general model in Eq. (II.1) can be found in [8] (and the
references therein).
It should be noted that: (1) if in Eq. (II.1) is set to zero, then

the generalized demixing model is degenerated to BP; (2) the
demixing model in [1] is a special case of Eq. (II.1) if is set to
an identity matrix and is enforced to be an orthogonal matrix;
(3) our generalized demixing model has more freedom in the
sense of dimension than that in [2] because and can be
arbitrarily selected. Moreover, the two components and in
our generalized model are permitted to have different lengths.

III. MAIN RESULT

The ground truths, and , in Eq. (II.1) are approximated
by solving the convex optimization problem, which we call the
generalized demixing problem (GDP):

subject to
(III.1)

We say problem (GDP) succeeds provided is the unique
optimal solution to GDP. Our goal in this paper is to characterize
when the problem (GDP) succeeds.

Theorem III.1: The problem (GDP) has a unique minimizer
to coincide with if and only if

(III.2)

Proof: First, we assume that the problem (GDP) succeeds
in having a unique minimizer to coincide with .
1) Claim: .

Given , we have . By letting
, it follows that

and , which means that the point
is a feasible point of problem (GDP). On the other hand,
since , we have .
By the fact that the problem (GDP) is assumed to have a
unique minimizer , we conclude that .

2) Claim: .
Given , we have and

. By letting ,
it follows that and . Thus,

, otherwise will be another
minimizer to problem (GDP).

3) Claim: .
Given , there exist
and to satisfy ,

, and . By letting
, it follows that and
, which mean that the point

is a feasible point of problem (GDP). On the other hand,
since , is also an optimal so-
lution. By the fact that the problem (GDP) is assumed
to have a unique minimizer , we conclude that

; therefore, , , and
.

Conversely, we suppose the point satisfies Eq. (III.2).
Letting be a feasible point of problem (GDP), we show
that either or .
Let and . Since is fea-

sible in problem (GDP),
, which implies

. If , then we are done. So, we may as-
sume , which means . Moreover,

implies . Then, we see that
, namely, and

. Thus, we have and
, which means

and we complete the proof.
We know that and are the affine -balls of the

points and , respectively. Nevertheless, Eq. (III.2) is the
formula, consisting of null spaces of sensing matrices and affine
-balls. Indeed, we can relax the affine -ball to be its conical

hull, such as and
, and attain the following result.

Corollary III.1: The problem (GDP) has a unique minimizer
that coincides with if and only if

(III.3)

We emphasize again that, if and have the same length,
as in Eq. (I.4), then and will reside
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in the same linear space and their intersection can be geomet-
rically visible, as shown in Fig. 2. Nevertheless, since matrices
and have arbitrary dimensions in our model, their geomet-

rical interaction cannot be observed simply. Thus, we argue that
the derivation of a necessary and sufficient condition via com-
bination of all of the cones is significantly different from the
standard problems [1], [2].

IV. SIMULATIONS AND VERIFICATIONS

We conduct simulations to verify the consistency between
Theorem III.1 and GDP.

A. Verification Procedures

The verification steps for practical sparse signal recovery
based on Eq. (III.1) are described as follows.
1) Construct the vectors and with

and nonzero entries, respectively. The locations of the
nonzero entries are selected at random; such a nonzero
entry equals with equal probability.

2) Draw two standard normal matrices and
before capturing the sample .

3) Solve problem (GDP) to obtain an optimal solution
( ).

4) Declare successful demixing if .
In addition, the verification steps for theoretical recovery
based on Theorem III.1 are described as follows.

5) Solve subject to to obtain an op-
timal point .

6) Solve subject to to obtain an op-
timal point .

7) Solve subject to and
to obtain a pair of optimal points .

8) Declare success in Theorem III.1 if -norms of , , ,
and are all smaller than or equal to .

B. Simulation Setting and Results

In our simulations, and were the signal dimensions
for signals and , respectively. Their sparsities, and ,
ranged from 1 to and 1 to , respectively.
First, we let and . Under this circum-

stance, the simulation results for both the demixing problems in
Eq. (III.1) and Theorem III.1 are illustrated in Fig. 3, where the
-axis denotes the sparsity and the -axis denotes the number
of measurements. We can see that the performance of these

two seem to be identical, and we notice that the smaller is, the
easier it is for sparse signal recovery to succeed.
Second, we considered , where and

. Again, and ranged from 1 to and 1 to
, respectively. By additionally considering a varying number

of measurements, the visualization of recovery results, unlike
Fig. 3, will be multidimensional. So, we chose different num-
bers of measurements with in the simulations to
ease observations. The recovery result at each pair of and
for each measurement rate was obtained by averaging from
100 trials. In sum, the simulation results reveal that, if each op-
timal solution in Steps (5) (7) is zero, then the point, and ,
satisfies Eq. (III.2), and vice versa. That is to say, we can check
if and satisfy Eq. (III.2) by solving these three optimiza-
tion problems in Steps (5)–(7).

Fig. 3. Phase transitions for demixing problems: [Top] Practical recovery of
two sparse vectors based on Eq. (III.1) and [Bottom] theoretic recovery based on
Theorem (III.1). In each figure, the heat map indicates the empirical probability
of success ( ; ).

C. Proof of Feasibility of Our Verification
Now, we show why the above verification is feasible. We say

that , , , and obtained from Steps (5)–(7) are all zero
vectors if and only if Eq. (III.2) in Theorem III.1 holds. We will
validate this claim in the following.
Definition IV.1: Two cones and are said to touch if they

share a ray but are weakly separable by a hyperplane.
Fact 1 [9, pp. 258-260]
Let and be closed and convex cones such that both

and . Then,

where is a random rotation.
Lemma IV.1: Steps (5)–(8) constitute a complete verification

to (III.2) in Theorem III.1.
Proof: We want to prove that Steps (5)–(8) form a valid

verification for Eq. (III.2). First, we assume the point
satisfies Eq. (III.2).
A1 A1 Claim: in Step (5) is zero.

Since is an optimal solution to the problem in Step
(5), we have , which implies

, and we have , which is followed by
. That is ;

hence, .
A2 Claim: in Step (6) is zero.

The proof is similar to the one in A1.
A3 Claim: in Step (7) is zero.
Since is an optimal solution to the problem

in Step (7), we have , which means
; , which says that ;

and , which implies
. Thus, and

, then and
, and we come to the conclusion

that .
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Fig. 4. Adjacency boundary face of .

On the other hand, suppose that the optimal solutions ,
and corresponding to the minimization problems in
Steps (5), (6), and (7), respectively, are all zeros.
B1 Claim: .

Given , we have ,
meaning that . Furthermore, we also
have , which implies that is a feasible
point of the problem in Step (5). Due to the fact that

we have . Thus,
, which means belongs to the adjacency boundary

face of at , where the adjacency
boundary face is the intersection
of the boundary of itself and the boundary of its conical
hull (as shown in Fig. 4). Therefore, touches

or .
By Fact 1, we may assume that “ touches

” never happens. So, we conclude that “
”.

B2 Claim: . The proof is similar to the
one in B1.

B3 Claim: .
Given , there exist

and such that . Since
, we have , together with the fact

that , the point is a feasible point of the
problem is Step (7).
Since is an optimal solution to the problem

in Step (7), we have

Moreover, means .
Thus, , i.e., and

. Therefore,

which means touches or
. Due to Fact 1, we may assume

that “ touches ” never happens.
So, we conclude that “ ”.

V. FUTURE WORK

We plan to employ Corollary III.1 to estimate the probability
of success under some assumptions by the approximate kine-
matic formula from [1].

Theorem V.1 (Approximate kinematic formula): Fix a toler-
ance . Let and be convex cones in , and draw
a random orthogonal basis . Then,

where and means the statistical
dimension.
Definition V.1 (Statistical dimension): Let

be a closed convex cone. Define the Euclidean projection
onto by

The statistical dimension of is defined as:

where is a standard Gaussian vector.
For the generalized demixing model proposed in this paper,

we suppose and have independent
standard normal entries and we let . For the
compressive sensing demixing, we may assume ,
, and both and have full rank. Then, we can derive:

(V.1)
which implies

On the other hand, we also have

(V.2)
which implies

Apparently, if the number of measurements is large
enough, then successful sparse recovery can be achieved. On
the other hand, failed recovery is possible due to an insufficient
number of measurements. Nevertheless, if we want to realize
the above derived results, computation of the statistical dimen-
sions of and , as indicated in
Eqs. (V.1) and (V.2), will be an unavoidable difficulty.

VI. CONCLUSION
Our major contribution in this paper is to derive the necessary

and sufficient condition for a successful generalized demixing
problem. There is an issue worth mentioning, i.e., Amelunxen
et al. have evaluated an upper bound and a lower bound of the
probability of successful recovery for the demixing problem
(DP). The reasonwe did not do that is due to the known unavoid-
able difficulty raised by the generalized model (GDP problem),
that is, “How to compute the statistical dimension of a de-
scent cone operated by a linear operator?” We believe that,
if this open problem can be solved, we will complete the gener-
alized demixing problem with Gaussian random measurements.
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