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Abstract. Representation of belief states is an important issue for knowl-
edge based systems. In this paper, we develop a matrix representation
for ordered belief states and show that belief reasoning, revision and fu-
sion can all be interpreted as operations of matrix algebra. Thus, the
matrix representation can serve as the basis of algebraic semantics for
belief logic.
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1 Introduction

Knowledge representation is crucially important to knowledge-based applica-
tions. While we expect proper knowledge to be true, the term “knowledge” used
in knowledge-based systems usually refers to information and belief in a broad
sense. Therefore, knowledge can be fallible information in such applications. Con-
sequently, the representation of belief states plays a key role in knowledge-based
systems.

In many domains, such as epistemic reasoning[10, 11], belief revision[1, 14, 15]
and belief fusion[2, 6, 16, 18–21, 23, 27], a knowledge base or a belief base consists
of a set of sentences in a logical language. Since a belief base can be identified
with the set of models satisfying it, an agent’s belief state is usually represented
as a subset of possible worlds.

However, some more finely tuned representations have been proposed, such
as total pre-orders over the set of possible worlds [4, 7, 17, 24], ordinal condi-
tional functions [5, 26, 28], possibility distributions[3, 8, 9], belief functions[25],
and pedigreed belief states[12, 13]. One of the most popular representation for-
malisms is an ordering over the set of possible worlds.

A natural representation of an ordering can be achieved by using a Boolean
matrix, if the set of possible worlds is finite. In this paper, we adopt such a
representation and show that belief reasoning, revision and fusion can be inter-
preted in matrix algebra. Thus, the matrix representation can serve as the basis
of algebraic semantics for belief logic.



2 Matrix Representation of Belief States

In this paper, A,B andM (possibly with subscripts) denote real-valued matrices.
If M is a n×m matrix, then for 0 ≤ i ≤ n−1 and 0 ≤ j ≤ m−1, M(i, j),M(i, ·)
and M(·, j) denote the element in the (i, j) entry, the i-th row vector and the
j-th column vector of the matrix respectively. Usually, we also write M(i) and
M(j) for the row vector and the column vector if they are clear from the context.
A Boolean matrix is a real-valued matrix whose elements all belong to the set
{0, 1}. Also, let I, 1 and 0 denote the unit square matrix, complete matrix
and zero matrix respectively. In other words,I, 1 and 0 are Boolean matrices
such that I(i, j) = 1 iff i = j, 1(i, j) = 1 and 0(i, j) = 0 for all i and j.
The dimensions (i.e., numbers of rows and columns) of I, 1 and 0 depend on
the context. If necessary, we will write In×m, 1n×m, or 0n×m to indicate their
dimensions. Furthermore, we will identify a 1× 1 matrix with its element.

The following operations of matrix algebra are extensively used in this paper.

Definition 1 Let A and B be two matrices and r is a real number. The following
binary operations can be defined when A and B have the same dimensions:

1. Max: (A ∨B)(i, j) = max(A(i, j), B(i, j)),
2. Min: (A ∧B)(i, j) = min(A(i, j), B(i, j)),
3. Sum: (A+B)(i, j) = A(i, j) +B(i, j),
4. Difference: (A−B)(i, j) = A(i, j)−B(i, j),
5. Scalar product: (r ·A)(i, j) = r ·A(i, j).

When the column number of A is equal to the row number of B, another binary
operation, the (Boolean) product, can be defined as:

(A ·B)(i, j) = max
0≤k≤n−1

min(A(i, k), B(k, j))

where n is the column number of A. Let m ≥ 0, then Am is inductively defined
as Am−1 ·A where A0 = I. Furthermore, there are also several unary operations:

1. Transposition: At(i, j) = A(j, i),
2. Transitive closure: A+ =

∨
m≥1A

m

3. Indicator: Ad(i, j) =
{

1, if A(i, j) > 0 and A(i, j) ≥ A(j, i),
0, otherwise.

If Φ0 = {p, q, · · ·} is a finite set of atomic propositions and L is the propo-
sitional language based on Φ0, then a possible world is a truth assignment
w : Φ0 → {0, 1}. As usual, the domain of w can be extended to the set of
all well-formed formulas (wffs) in L. If W = {w0, w1, · · · , wn−1} denotes the set
of all possible worlds, then a belief state is defined as an n × n Boolean matrix
B. Intuitively, a belief state B defines an associated ordering relation ≺B over



W such that B(i, j) = 1 iff wj ≺B wi. For each wff ϕ, the characteristic matrix
of ϕ is the n× n Boolean matrix Mϕ defined by

Mϕ(i, j) =
{

1, if i = j and wi(ϕ) = 1,
0, otherwise.

Note that by this definition, we have the equations:

Mϕ∨ψ = Mϕ ∨Mψ

Mϕ∧ψ = Mϕ ∧Mψ

M¬ϕ = I −Mϕ

where I is the n× n unit matrix.

3 Belief Reasoning, Revision and Fusion

Given the matrix representation of belief states and wffs, we can implement the
tasks of belief reasoning, revision and fusion using matrix algebra.

3.1 Belief reasoning

Definition 2 Given a belief state B and two wffs ϕ and ψ, we say that ϕ pref-
erentially implies ψ under B, denoted by ϕ |=B ψ, iff

(11×n − 11×n ·Mψ) · [1n×1 − (Mϕ ·B ·Mϕ ∨M¬ϕ) · 1n×1] = 0,

where we assume · has precedence over other binary operations.

The intuition of the above definition can be seen by interpreting a belief
state as an ordering over possible worlds. Let ≺ be a binary relation over W and
X ⊆ W, then the choice set [12] of X with respect to ≺ is

C(X,≺) = {w ∈ X :6 ∃w′ ∈ X,w′ ≺ w}.

Let the truth set of a wff ϕ be defined as |ϕ| = {w ∈ W : w(ϕ) = 1}, then
the set of minimal models of ϕ with respect to ≺, denoted by Min(ϕ,≺), is
equal to C(|ϕ|,≺). The following proposition states the relationship between
the preferential implication and minimal model belief reasoning.

Proposition 1 Let B be a belief state and ≺B be its associated ordering, then
for any wffs ϕ and ψ

ϕ |=B ψ iff Min(ϕ,≺B) ⊆ |ψ|.

Proof: Let
A1 = Mϕ ·B ·Mϕ ∨M¬ϕ,

A2 = 1n×1 −A1 · 1n×1,

A3 = 11×n − 11×n ·Mψ

then A1(i, j) = 1 iff one of the following two conditions holds:



(i) wi |= ϕ, wj |= ϕ and wj ≺B wi, or
(ii)i = j and wi 6|= ϕ.

Thus, max0≤j≤n−1A(i, j) = 1 iff wi 6∈ Min(ϕ,≺B). This results in A2(i, 0) = 1
iff wi ∈Min(ϕ,≺B). On the other hand , A3(0, i) = 1 iff wi 6|= ψ. Therefore,

Min(ϕ,≺B) ⊆ |ψ|
⇔ 6 ∃0 ≤ i ≤ n− 1, wi ∈Min(ϕ,≺B) and wi 6|= ψ

⇔ A3 ·A2 = max
0≤i≤n−1

min(A3(1, i), A2(i, 1)) = 0

⇔ ϕ |=B ψ.

Note that we do not impose any restriction on the matrix representation of
belief states, so minimal models of a wff ϕ may not exist. Some reasonable re-
strictions have been proposed, such as transitivity and modularity[12]. However,
our definition can still be used in the more restricted form of belief states.

3.2 Belief revision

Definition 3 Let B be a belief state and ϕ be a wff, then the revised state of B
by ϕ is defined as

B◦ϕ = [B ∨ (M¬ϕ · 1 ∧ 1 ·Mϕ)] ∧ (M¬ϕ · 1 ∨ 1 ·Mϕ),

where the dimension of 1 is n× n.

This definition corresponds to a natural approach to revise an ordering over
possible worlds with a wff. Let ≺ be an ordering relation over W, then revising
≺ with a wff ϕ results in a new ordering ≺′= Rev(≺, ϕ) defined by

w ≺′ w′ ⇔ w(ϕ) = 1 and w′(ϕ) = 0, or
w(ϕ) = w′(ϕ) and w ≺ w′.

According to this definition, after the revision, all possible worlds satisfying ϕ
are preferred over those that do not, whereas the ordering between other worlds
is kept intact. The following proposition shows the equivalence between these
two definitions.

Proposition 2 Let B be a belief state and ϕ be a wff, then

Rev(≺B , ϕ) =≺B◦ϕ

where ≺B and ≺B◦ϕ are, respectively, the associated ordering of B and B◦ϕ.

Proof: First, we note that for all 0 ≤ i ≤ n− 1, (M¬ϕ ·1)(i, j) = 1 iff wj(ϕ) = 0
and for all 0 ≤ j ≤ n− 1, (1 ·M¬ϕ)(i, j) = 1 iff wi(ϕ) = 1. Let A1 = B ∨ (M¬ϕ ·
1 ∧ 1 ·Mϕ) and A2 = M¬ϕ · 1 ∨ 1 ·Mϕ, then

A1(i, j) = 1 ⇔ B(i, j) = 1 ∨ (wi(ϕ) = 0 ∧ wj(ϕ) = 1)



and

A2(i, j) = 1 ⇔ wi(ϕ) = 0 ∨ wj(ϕ) = 1
⇔ wi(ϕ) = wj(ϕ) ∨ (wi(ϕ) = 0 ∧ wj(ϕ) = 1).

Therefore,

B◦ϕ(i, j) = 1 ⇔ A1(i, j) = 1 ∧A2(i, j) = 1
⇔ (wi(ϕ) = 0 ∧ wj(ϕ) = 1) ∨ (wi(ϕ) = wj(ϕ) ∧B(i, j) = 1).

This is equivalent to

wj ≺B◦ϕ wi ⇔ (wi(ϕ) = 0 ∧ wj(ϕ) = 1) ∨ (wi(ϕ) = wj(ϕ) ∧ wj ≺B wi),

so we have ≺B◦ϕ= Rev(≺B , ϕ).

An alternative revision strategy, called natural revision, has been proposed
in [4]. In that operator, only minimal possible worlds satisfying ϕ in the original
belief state are preferred over others. Consequently, more possible worlds remain
intact in natural revision. Formally, a natural revision of ≺ with a wff ϕ results
in a new ordering ≺′= NRev(≺, ϕ) defined by1

1. if w ∈Min(ϕ,≺), then w ≺′ v for any v 6∈Min(ϕ,≺) and
2. if v, w 6∈Min(ϕ,≺), then w ≺′ v iff w ≺ v.

The natural revision operator can be modelled in the matrix representation
by the following definition.

Definition 4 Let B be a belief state and ϕ be a wff. Define the column vector
(i.e. n× 1 matrices) a and the row vector(i.e. 1× n matrices) b as follows:

a = (Mϕ ·B ·Mϕ ∨M¬ϕ) · 1n×1

b = (1n×1 − a)t.

Then, the naturally revised state of B by ϕ is defined as

B∗ϕ = [B ∨ (1n×1 · b)] ∧ (a · 11×n).

Proposition 3 Let B be a belief state and ϕ be a wff, then

NRev(≺B , ϕ) =≺B∗ϕ

where ≺B and ≺B∗◦ϕ are respectively the associated ordering of B and B∗ϕ.

1 In [4], natural revision operator is only applied to belief states represented by total
pre-orders, so the definition here is a slight generalization of that given in [4].



Proof: Let A = Mϕ ·B ·Mϕ ∨M¬ϕ, then

A(i, j) = 1 ⇔ wi(ϕ) = wj(ϕ) = 1 and wj ≺B wi, or
i = j and wi(ϕ) = 0.

Thus, a(i, 0) = max0≤j≤n−1A(i, j) = 1 iff wi 6∈ Min(ϕ,≺B) and b(0, j) = 1 iff
wj ∈ Min(ϕ,≺B). Therefore, B∗ϕ(i, j) = 1 iff the following two conditions are
simultaneously satisfied:

1. wj ≺B wi or wj ∈Min(ϕ,≺B);
2. wi 6∈Min(ϕ,≺B).

Consequently, we have

wj ≺B∗ϕ wi ⇔ wj ∈Min(ϕ,≺B) and wi 6∈Min(ϕ,≺B) or
wj ≺B wi and wi, wj 6∈Min(ϕ,≺B),

so NRev(≺B , ϕ) =≺B∗ϕ by the definition.

3.3 Belief fusion

In belief fusion, the notion of pedigreed belief states proposed in [12, 13] is a
very general one. The advantage of the pedigreed belief state representation is
that it can keep track of information about the credibility of sources. By the
matrix notation, we can easily represent a pedigreed belief state and the belief
state induced from it. Let Ω be a set of information sources, then it is assumed
that for each source s ∈ Ω, there is a belief state Bs associated with it. It is also
assumed that the credibility of information sources is determined by a ranking
function rank : Ω → N , where N is the set of positive integers.

Definition 5 Let Ω be a set of information sources and rank : Ω → N be its
ranking function, then

1. the pedigreed belief state of qualitatively fusing Ω is

PBq(Ω) =
∨
s∈Ω

rank(s) ·Bs,

2. the pedigreed belief state of arithmetically fusing Ω is

PBa(Ω) =
∑
s∈Ω

rank(s) ·Bs,

3. the pedigreed belief state of exponentially fusing Ω is

PBe(Ω) =
∑
s∈Ω

αrank(s)−1 ·Bs,

where α ≥ |Ω| is a real number,



4. the belief state of fusing Ω(qualitatively, arithmetically, or exponentially) is

⊕x(Ω) = (PBx(Ω))d

where x = q, a, or e.

The definition of qualitative fusion is taken from [12]. In that work, a gen-
eralized belief state is defined as a modular and transitive relation over W. A
relation ≺ over W is transitive if w1 ≺ w2 and w2 ≺ w3 imply w1 ≺ w3 and
modular if w1 ≺ w2 implies that for any w ∈ W, w ≺ w2 or w1 ≺ w. Therefore,
each information source s is associated with a generalized belief state ≺s and an
aggregation operator AGRRf is defined for a set of information sources S as

AGRRf(S) = {(w, v) | ∃s ∈ S. w ≺s v ∧ (∀s′ = s ∈ S. w ≈s
′
v)}

where s′ = s means that rank(s′) > rank(s) and w ≈s′ v means that ¬(w ≺s′

v) ∧ ¬(v ≺s′ w). The pedigreed belief state for a set of information sources S is
then defined as a pair (≺, l), where ≺= AGRRf(S) and l :≺ → N such that

l((w, v)) = max{rank(s) | w ≺s v, s ∈ S}.

Note that in our definition, each information source is associated with a
belief state in matrix form, whereas in [12], it is associated with a generalized
belief state in the form of a modular and transitive relation. Let Ω denote a
set of information sources in our definition such that each ≺Bs

is transitive and
modular. Then, we can define SΩ as the corresponding set of information sources
in the sense of [12], so that each s ∈ SΩ is associated with the ordering ≺Bs

.

Proposition 4 Let Ω be a set of information sources in our definition, then

AGRRf(SΩ) =≺⊕q(Ω)

and for each 0 ≤ i, j ≤ n− 1 such that ⊕q(Ω)(i, j) = 1,

l((wj , wi)) = PBq(Ω)(i, j).

Proof:

1. On the one hand , using the definition of indicator operation, for all 0 ≤ i, j ≤
n− 1, wj ≺⊕q(Ω) wj iff PBq(Ω)(i, j) > 0 and PBq(Ω)(i, j) ≥ PBq(Ω)(j, i).
Since PBq(Ω)(i, j) = maxs∈Ω rank(s) · Bs(i, j), PBq(Ω)(i, j) > 0 implies
∃s ∈ S, Bs(i, j) = 1, i.e. ∃s ∈ S,wj ≺Bs

wi. Let s0 denote such an in-
formation source such that rank(s0) = PBq(Ω)(i, j), then PBq(Ω)(i, j) ≥
PBq(Ω)(j, i) implies ∀s = s0, Bs(i, j) = Bs(j, i) = 0, i.e. ∀s = s0, wj ≈s wi.
Therefore, wj ≺⊕q(Ω) wj implies (wj , wi) ∈ AGRRf(SΩ). On the other hand
, if (wj , wi) ∈ AGRRf(SΩ), then there exists s ∈ Ω such that Bs(i, j) = 1
and for all s′ such that rank(s′) > rank(s), Bs′(j, i) = Bs′(i, j) = 0. There-
fore, PBq(Ω)(i, j) > 0 and PBq(Ω)(i, j) ≥ PBq(Ω)(j, i) hold. This in turn
implies wj ≺⊕q(Ω) wj .



2. PBq(Ω)(i, j) = maxs∈Ω rank(s) · Bs(i, j) = max{rank(s) | wj ≺Bs
wi, s ∈

Ω} = l((wj , wi))

While the operator AGRRf(S) preserves the modularity of the generalized
belief states associated with sources in S, it does not preserve the transitivity.
The resultant belief state for the fusion is, in fact, the transitive closure of
AGRRf(S). Therefore, the definition of qualitative fusion is for a very general
notion of belief states according to the matrix representation. If some additional
properties (such as modularity and transitivity) are imposed on the definition
of belief states, some further operations (such as transitive closure) are required
for implementation of the belief fusion operator.

In [12], it is suggested that aggregation of sources based on a general frame-
work of voting is also possible. While qualitative fusion accounts for the ranking
of sources supporting or disagreeing with an opinion, it does not count the per-
centage of sources in each camp. The definition of arithmetic fusion implements
the idea in a straightforward way by algebraic operations. When all sources are
equally credible, this corresponds to merging by majority in the spirit of [22].

However, if the credibility of the sources are highly variant, it is possible
that many sources of low credibility will outweigh one of high credibility. To
circumvent this problem, we can use the exponential fusion. Since the base of
the exponential terms is not less than the number of sources, it is guaranteed
that the opinion of higher ranks will dominate all opinions of lower ranks.

4 Conclusion

In this paper, we show that matrix algebra can be applied to belief reasoning,
revision and fusion in knowledge-based systems. By employing a Boolean matrix
representation of belief states, the main tasks for belief or knowledge manage-
ment in such systems can be reduced to algebraic operations in matrix algebra.
This enables a uniform treatment of these reasoning tasks.

To make our approach general, we do not impose any restrictions on the
matrix representation of belief states. However, in real applications, belief states
are usually assumed to have some special structures, such as modularity and
transitivity. In such cases, the closure of an algebraic operation with respect to
these additional properties will become very important. In the further work, we
will investigate how the closure property may influence the representation of
belief states and the choice of algebraic operations.

Furthermore, the dimensions of matrices used in the representation of belief
states are, in general, exponential with respect to the number of propositional
variables. Since the dimensions of these matrices may be very large, it is im-
practical to implement reasoning tasks of belief logic directly via the semantic
representation. Instead, a proof theory for belief logic should be developed and
the matrix representation proposed in this paper can serve as the basis of an
algebraic semantics for such logic.
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