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Multiple Kernel Learning
for Dimensionality Reduction

Yen-Yu Lin, Tyng-Luh Liu, Member, IEEE, and Chiou-Shann Fuh, Member, IEEE

Abstract—In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a
feasible way for improving performance. The resulting data representations are typically high-dimensional and assume diverse forms.
Hence, finding a way of transforming them into a unified space of lower dimension generally facilitates the underlying tasks such as
object recognition or clustering. To this end, the proposed approach (termed MKL-DR) generalizes the framework of multiple kernel
learning for dimensionality reduction, and distinguishes itself with the following three main contributions: First, our method provides the
convenience of using diverse image descriptors to describe useful characteristics of various aspects about the underlying data.

Second, it extends a broad set of existing dimensionality reduction techniques to consider multiple kernel learning, and consequently
improves their effectiveness. Third, by focusing on the techniques pertaining to dimensionality reduction, the formulation introduces a
new class of applications with the multiple kernel learning framework to address not only the supervised learning problems but also the

unsupervised and semi-supervised ones.

Index Terms—Dimensionality reduction, multiple kernel learning, object categorization, image clustering, face recognition.

1 INTRODUCTION

HE fact that most visual learning problems deal with

high-dimensional data has made dimensionality reduc-
tion an inherent part of the current research. Besides having
the potential for a more efficient approach, working with a
new space of lower dimension can often gain the advantage
of better analyzing the intrinsic structures in the data for
various applications. For example, dimensionality reduc-
tion can be performed to compress data for a compact
representation [25], [56], to visualize high-dimensional data
[40], [47], to exclude unfavorable data variations [8], or to
improve the classification power of the nearest neighbor
rule [9], [54].

Despite the great applicability, existing dimensionality
reduction methods often suffer from two main restrictions.
First, many of them, especially the linear ones, require data
to be represented in the form of feature vectors. The
limitation may eventually reduce the effectiveness of the
overall algorithms when the data of interest could be more
precisely characterized in other forms, e.g., bag-of-features
[2], [33], matrices, or high-order tensors [54], [57]. Second,
there seems to be a lack of a systematic way of integrating
multiple image features for dimensionality reduction. When
addressing applications where no single descriptor can
appropriately depict the whole data set, this shortcoming
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becomes even more evident. Alas, it is usually the case for
addressing today’s vision applications, such as the recogni-
tion task in the Caltech-101 data set [14] or the classification
and detection tasks in the Pascal VOC challenge [13]. On the
other hand, the advantage of using multiple features has
indeed been consistently pointed out in a number of recent
research efforts, e.g., [7], [18], [31], [50], [51].

Aiming to overcome the above-mentioned restrictions,
we introduce a framework called MKL-DR that incorpo-
rates multiple kernel learning (MKL) into the training process
of dimensionality reduction (DR) methods. It works with
multiple base kernels, each of which is created based on a
specific kind of data descriptor, and fuses the descriptors in
the domain of kernel matrices. We will illustrate the
formulation of MKL-DR with graph embedding [54], which
provides a unified view for a large family of DR methods.
Any DR technique expressible by graph embedding can
therefore be generalized by MKL-DR to boost their power
by simultaneously taking account of data characteristics
captured in different descriptors. It follows that the
proposed approach can extend the MKL framework to
address, as the corresponding DR methods would do, not
only the supervised learning problems but also the unsuper-
vised and semi-supervised ones.

2 RELATED WORK

Since the relevant literature is quite extensive, our survey
instead emphasizes the key concepts crucial to the establish-
ment of the proposed framework.

2.1 Dimensionality Reduction

Techniques to perform dimensionality reduction for high-
dimensional data can vary considerably from each other
due to, e.g., different assumptions about the data distribu-
tion or the availability of the data labeling. We categorize
them as follows:

Published by the IEEE Computer Society
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2.1.1 Unsupervised DR

Principal component analysis (PCA) [25] is the most well-
known one that finds a linear mapping by maximizing the
projected variances. For nonlinear DR techniques, isometric
feature mapping (Isomap) [47] and locally linear embedding
(LLE) [40] both exploit the manifold assumption to yield the
embeddings. And, to resolve the out-of-sample problem in
Isomap and LLE, locality preserving projections (LPP) [23] are
proposed to uncover the data manifold by a linear relaxation.

2.1.2 Supervised DR

Linear discriminant analysis (LDA) assumes that the data of
each class have a Gaussian distribution, and derives a
projection from simultaneously maximizing the between-
class scatter and minimizing the within-class scatter.
Alternatively, marginal Fisher analysis (MFA) [54] and local
discriminant embedding (LDE) [9] adopt the assumption that
the data of each class spread as a submanifold, and seek a
discriminant embedding over these submanifolds.

2.1.3 Semi-Supervised DR

If the observed data are partially labeled, dimensionality
reduction can be performed by carrying out discriminant
analysis over the labeled ones while preserving the intrinsic
geometric structures of the remaining. Such techniques are
useful, say, for vision applications where user interactions are
involved, e.g., semi-supervised discriminant analysis (SDA) [6]
for content-based image retrieval with relevance feedback.

2.1.4 Kernelization

It is possible to kernelize a certain type of linear DR
techniques into nonlinear ones. As shown in [6], [9], [23],
[34], [41], [54], the kernelized versions generally can achieve
significant improvements. In addition, kernelization pro-
vides a convenient way for DR methods to handle data not
in vector form by specifying an associated kernel, e.g., the
pyramid matching kernel [21] for data in the form of bag-of-
features or the dissimilarity kernel [38] based on the pairwise
distances.

2.2 Graph Embedding

A number of dimensionality reduction methods focus on
modeling the pairwise relationships among data and utilize
graph-based structures. In particular, the framework of
graph embedding [54] provides a unified formulation for a
broad set of such DR algorithms. Let Q = {x; € R}’ be
the data set. A DR scheme accounted for by graph
embedding involves a complete graph G whose vertices
are over (). A corresponding affinity matrix W = [w;;] €
IR is used to record the edge weights that characterize
the similarity relationships between pairs of training
samples. Then, the optimal linear embedding v* € IR can
be obtained by solving

vi=  argmin v'XLX'v, (1)

vIXDXTv=1, or

vIXLIXTv=1
where X = [x; x3 --- xy] is the data matrix and L=
diag(W - 1) — W is the graph Laplacian of G. Depending

on the property of a problem, one of the two constraints in
(1) will be used in the optimization. If the first constraint is

chosen, a diagonal matrix D = [d;;] € RYY is included for
scale normalization. Otherwise, another complete graph G’
over () is required for the second constraint, where L' and
W’ = [u];] € R"Y are, respectively, the graph Laplacian
and affinity matrix of G’. The optimization problem (1) has
an intuitive interpretation: v' X = [v'x; - v xy] repre-
sents the projected data; graph Laplacian L (or L') is to
explore the pairwise distances of the projected data, while
diagonal matrix D is to weightedly combine their distances
to the origin. More precisely, the meaning of (1) can be better

understood with the following equivalent problem:

N
> IvTx = v x| P (2)
ig=1
]\T
subject to Z HVTXZ;sz,”; =1, or (3)
=1
N

1. (4)

S v v

i,j=1

The constrained optimization problem (2) implies that only
distances to the origin or pairwise distances of projected
data (in the form of v'x) are modeled by the framework. By
specifying W and D (or W and W’), Yan et al. [54] show that
a set of dimensionality reduction methods, such as PCA
[25], LPP [23], LDA, and MFA [54] can be expressed by (1).
Clearly, LDE [9] and SDA [6] are also in the class of graph
embedding.

2.3 Multiple Kernel Learning

MKL refers to the process of learning a kernel machine with
multiple kernel functions or kernel matrices. Recent
research efforts on MKL, e.g., [1], [20], [29], [39], [45], have
shown that learning SVMs with multiple kernels not only
increases the accuracy but also enhances the interpretability
of the resulting classifiers. Our MKL formulation is to find
an optimal way to linearly combine the given kernels.
Suppose we have a set of base kernel functions {km}ftfr:1 (or
base kernel matrices {K,,}"_,). An ensemble kernel function k
(or an ensemble kernel matrix K) is then defined by

Z Bmkm(xu X;)

m=1

K= Zmumﬁgo (6)

m=

By >0, (5)

k(x;,x;)

Consequently, an often-used MKL model from binary-class
data {(x;,y; € £1)} 1, is

N
x) = Zaiyik(xmx) +b (7)

N M
Z (X, %) + b (8)

Optimizing over both the coefficients {o,;}, and {8, }2_,
is one particular form of the MKL problems. Our approach
utilizes such an MKL optimization to yield more flexible
dimensionality reduction schemes for data in different
feature representations.

—_
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2.4 Dimensionality Reduction with Multiple Kernels
Our approach is related to the work of Kim et al. [27], where
learning an optimal kernel over a given convex set of
kernels is coupled with kernel Fisher discriminant analysis
(KFDA) for binary-class data. Motivated by their idea of
learning an optimal kernel for improving the KFDA
performance, we instead consider establishing a general
framework of dimensionality reduction for data in various
feature representations via multiple kernel learning [32]. As
we will show later, MKL-DR can be used to conveniently
deal with image data depicted by different descriptors, and
effectively tackle not only supervised but also semi-
supervised and unsupervised learning tasks. To the best
of our knowledge, such a generalization of multiple kernel
learning is novel.

3 THE MKL-DR FRAMEWORK

We first discuss the construction of base kernels from
multiple descriptors, and then explain how to integrate
them for dimensionality reduction. Finally, we present an
optimization procedure to complete the framework.

3.1 Kernel as a Unified Feature Representation

Consider again a data set Q2 of N samples, and M kinds of
descriptors to characterize each sample. Let Q = {x;},
X; = {Xim € Xm}m L oand dy, : Xy X Xy — OURRY be the
distance function for data representation under the
mth descriptor. In general, the domains resulting from
distinct descriptors, e.g., feature vectors, histograms, or
bags of features, are different. To eliminate such variances
in representation, we express data under each descriptor as
a kernel matrix. There are several ways to accomplish this
goal, such as using the RBF kernel for data in the form of
vector or the pyramid match kernel [21] for data in the form
of bag-of-features. We may also convert pairwise distances
between data samples to a kernel matrix [50], [58]. By
coupling each representation with its corresponding dis-
tance function, we obtam a set of M dissimilarity-based
kernel matrices {K,,}_, where

m=1/

—d?(xxf)) ©

2
Om

Kon(i,7) = ko (xi,%5) = exp(

and o, is a positive constant. Our use of dissimilarity-based
kernels is convenient and advantageous in solving visual
learning tasks, especially due to the fact thatanumber of well-
designed descriptors and their associated distance functions
have been introduced over the years. However, K, in (9) is
not always guaranteed to be positive semidefinite. Following
[58], we resolve this issue by first computing the smallest
eigenvalue of K,,. Then, if it is negative, we add its absolute
value to the diagonal of K,,,. With (5), (6), and (9), determining
a set of optimal ensemble coefficients {5, 3s,...,0m} can
now be interpreted as finding appropriate weights for best
fusing the M feature representations.

Note that in our formulation, accessing the data is
restricted to referencing the resulting A kernels defined in
(9). The main advantage of doing so is that it enables our
approach to work with different descriptors and distance
functions, without the need to explicitly handle the
variations among the representations.

3.2 The MKL-DR Algorithm

Instead of designing a specific dimensionality reduction
algorithm, we choose to describe MKL-DR upon graph
embedding. This way we can emphasize the flexibility of
the proposed approach: If a dimensionality reduction
scheme is explained by graph embedding, then it will
also be extendible by MKL-DR to handle data in multiple
feature representations. Recall that there are two possible
types of constraints in graph embedding. For ease of
presentation, we discuss how to develop MKL-DR subject
to constraint (4). However, the derivation can be analo-
gously applied when using constraint (3).

Kernelization in MKL-DR is accomplished in a similar way
to thatin kernel PCA [41] but with the key difference in using
multiple kernels { K,,}*_ . Suppose the ensemble kernel K in
MKL-DR is generated by linearly combining the base kernels
(K.} asin (6). Let ¢ : X — F denote the feature mapping
induced by K. Via ¢, the training data can be implicitly
mapped to a high-dimensional Hilbert space, i.e.,

X = ¢(Xi)7

Since optimizing (1) or (2) can be reduced to solving the
eigenvalue problem XLX v = AXL'X "v, it implies that an
optimal v lies in the span of training data, i.e.,

fori=1,2,...,N. (10)

N

Z IL¢(X’IL

n=1

(11)

To show that the underlying algorithm can be reformulated
in the form of inner product and accomplished in the new
feature space F, we observe that by plugging each mapped
sample ¢(x;) into (2), projection v would appear exclusively
in the form of v'¢(x;). Hence, it suffices to show that in
MKL-DR, v’ ¢(x;) can be evaluated via the kernel trick

N M
VT(]S(X ) = Z Z anﬂmkm(xmxi) = aTH{<t>ﬂ7 (12)
n=1 m=1
where
a=[a - ay]'e RY, (13)
B=[p - Bu) € RY, (14)
Kl(l,i) KJ\I(]-J)
]K(i) _ : : c RJVX]W. (15)
Ki(N,i) Ky (N, i)

With (2) and (12), we define the constrained optimization
problem for 1D MKL-DR as follows:

N
i TIKOB — o TTKD BI1240:
min a K a' K w 16
2y 3 1K —a KB, (10
N . .

subject to Z o' KO3 — aT]K<~’)ﬂ||2w§j =1, (17)
ij=1

B >0,m=1,2,..., M. (18)

The additional constraints in (18) arise from the use of the
ensemble kernel in (5) or (6), and are to ensure that the
resulting kernel K in MKL-DR is a nonnegative combina-
tion of base kernels.
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Fig. 1. Four kinds of spaces in MKL-DR: (a) the input space of each feature representation, (b) the RKHS induced by each base kernel, (c) the RKHS

by the ensemble kernel, and (d) the projected euclidean space.

Observe from (12) that the one-dimensional projection v
of MKL-DR is specified by a sample coefficient vector o and a
kernel weight vector . The two vectors, respectively,
account for the relative importance among the samples
and the base kernels in the construction of the projection.
To generalize the formulation to uncover a multidimen-
sional projection, we consider a set of P sample coefficient
vectors, denoted by

A= [(11 Qo - C!p}. (19)

With A and B, each 1D projection v; is determined by a
specific sample coefficient vector a; and the (shared) kernel
weight vector §. The resulting projection V = [vy vy -+ vp]
will map samples to a P-dimensional euclidean space.
Analogously to the 1D case, a projected sample x; can be
written as

Vig(x;) = ATKYB e RP,

The optimization problem (16) can now be extended to
accommodate the multidimensional projection

(20)

min ATIK® ATK 2wy 21

niy ; I B~ ATKY B w; (21)

subject to Z |ATIKY B — AT]I{(j)ﬂ||2w;j =1, (22
ig=1

B >0, m=1,2,... M. (23)

Before specifying the details of how to solve the
constrained optimization problem (21) in the next section,
we give an illustration of the four kinds of spaces related to
MKL-DR and the connections among them in Fig. 1. The
four spaces, in order, are the input space of each feature
representation, the reproducing kernel Hilbert space
(RKHS) induced by each base kernel and the ensemble
kernel, and the projected euclidean space.

3.3 Optimization

Since direct optimization to (21) is difficult, we instead
adopt an iterative, two-step strategy to alternately optimize
A and B. At each iteration, one of A and f is optimized
while the other is fixed, and then the roles of A and 8 are

switched. Iterations are repeated until convergence or a
maximum number of iterations is reached.

On optimizing A. By fixing § and using the property
lu||* = trace(uu’) for a column vector u, the optimization
problem (21) is reduced to

mjn trace(A' S5 A)

o (24)
subject to trace(A Sy, A) =1,
where
N .
Sy = > wy(KY —KV)BBT (KW —KU)™,  (25)
ig=1
]\“v . -
Sh =" w (KD - KD)BAT (KO — K" (26)
ig=1

The optimization problem (24) is a frace ratio problem, i.e.,
mingtrace(A' S8, A) /trace(A" S8, A). Following [9] and [52],
one can obtain a closed-form solution by transforming
(24) into the corresponding ratio trace problem, i.e.,
minAtrace[(ATSﬁ',,A)*l(ATS{?,A)}. Consequently, the col-
umns of the optimal A* = [a; ay - - - ap] are the eigenvectors

corresponding to the first P smallest eigenvalues in
SPa=2S8,a. (27)

On optimizing 8. By fixing A and [u]? =uTu, the
optimization problem (21) becomes

mﬂin ﬂTSLAVﬂ

subject to ,BTS{%,,ﬂ =1 and B2>0, 2%)
where
N
Sy = w(KY — KD TAAT(KY - KD), (29
1,42:1
Sipr =Y w(KY —TKD)TAAT(IKY —KY).  (30)

i,j=1

The additional constraints 8 > 0 cause the optimization to
(28) no longer be formulatable as a generalized eigenvalue
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Algorithm 1: The Training Procedure of MKL-DR

Input : A DR method specified by two affinity matrices W and W’ (cf. (2));
Data described by various visual features in form of base kernels {K,,}_, (cf. (9));

Output: Sample coefficient vectors A = [a1 as - - - ap);

Kernel weight vector 3;
Make an initial guess for A or 3;
fort«—1,2,...,7 do
1. Compute Sﬁ, in (25) and Sﬁ/, in (26);

2. A is optimized by solving the generalized eigenvalue problem (27);

3. Compute Sj}- in (29) and S3 in (30);

4. B is optimized by solving optimization problem (31) via semidefinite programming;

return A and S3;

Fig. 2. Algorithm 1.

problem. Indeed, it now becomes a nonconvex quadrati-
cally constrained quadratic programming (QCQP) problem,
and is known to be hard to solve. We instead consider
solving its convex relaxation by adding an auxiliary
variable B of size M x M:

; A
IEIEI;I trace(Sy, B) (31)
subject to  trace(Si,B) = 1, (32)
e, B>0, m=12,..., M, (33)
T
=0 (30
B B

where e,, in (33) is a column vector whose elements are 0
except that its mth element is 1, and the constraint in (34)
means that the square matrix is a positive semidefinite. The
optimization problem (31) is a semidefinite programming
(SDP) relaxation of the nonconvex QCQP problem (28), and
can be efficiently solved by SDP. One can verify the
equivalence between the two optimization problems (28)
and (31) by replacing the constraint (34) with B = 88". In
view of that the constraint B= 88" is nonconvex, it is
relaxed to B> BB'. Applying the Schur complement
lemma, B> BB' can be equivalently expressed by the
constraint in (34). (Refer to [49] for the details.) Concerning
the computational complexity, we note that the numbers of
constraints and variables in (31) are, respectively, linear
and quadratic to M, the number of the adopted descrip-
tors. In practice, the value of M is often small. (M =4 ~ 10
in our experiments.) Thus, like most of the other DR
methods, the computational bottleneck of MKL-DR is still
in solving the generalized eigenvalue problems, whose
complexity is O(N?).

Listed in Algorithm 1 (Fig. 2), the procedure of MKL-DR
requires an initial guess to either A or § in the alternating
optimization. We have tried two possibilities: 1) g is
initialized by setting all of its elements as 1 to equally
weight base kernels; 2) A is initialized by assuming
AA" = I. In our empirical testing, the second initialization
strategy gives more stable performances and is thus
adopted in the experiments. Pertaining to the convergence
of the optimization procedure, since SDP relaxation has

been used, the values of the objective function are not
guaranteed to monotonically decrease throughout the
iterations. Still, the optimization procedures rapidly con-
verge after only a few iterations in all of our experiments.

3.4 Novel Sample Embedding

After accomplishing the training procedure of MKL-DR, we
are ready to project a testing sample, say z, into the learned
space of lower dimension by

Z — AT]K(Z)ﬂ7
K® ¢ RV*M  and IK® (n,m) = ki (Xn,2).

where (35)

(36)

Depending on the applications, some postprocessing, such
as the nearest neighbor rule for classification or k-means
clustering for data grouping, is then applied to the projected
sample(s) to complete the task. In the remainder of this
paper, we specifically discuss three sets of experimental
results to demonstrate the effectiveness of MKL-DR,
including supervised learning for object categorization,
unsupervised learning for image clustering, and semi-
supervised learning for face recognition.

4 EXPERIMENTAL RESULTS: SUPERVISED
LEARNING FOR OBJECT CATEGORIZATION

Applying MKL-DR to object categorization is appropriate
as the complexity of the task often requires the use of
multiple feature descriptors. And in our experiments, the
effectiveness of MKL-DR will be investigated through a
supervised learning formulation.

4.1 Data Set

The Caltech-101 data set [14], collected by Fei-Fei et al., is
used in our experiments for object categorization. It consists
of 101 object categories and one additional class of
background images. The total number of categories is 102,
and each category contains roughly 40 to 800 images.
Although each target object often appears in the central
region of an image, the large class number and the
substantial intraclass variations still make the data set very
challenging. Indeed, the data set provides a good test bed to
demonstrate the advantage of using multiple image
descriptors for complex recognition tasks. Note that as the
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Fig. 3. The Caltech-101 data set. One example comes from each of the 102 categories. All of the 102 categories are used in the experiments of
supervised object recognition, while the 20 categories marked by the red bounding boxes are used in the following experiments of unsupervised

image clustering.

images in Caltech-101 are not of the same size, we resize
them to around 60,000 pixels, without changing their aspect
ratio. Fig. 3 shows an image example from each category of

the data set.
To implement Algorithm 1 for object recognition, we need

to decide a set of descriptors for depicting the diverse objects
and the underlying graph-based DR method to be general-
ized. Based on them, we can then derive a set of base kernels
and a pair of affinity matrices, respectively. The details are
described as follows.

4.2 Image Descriptors and Base Kernels

Ten different image descriptors are considered and they,
respectively, yield the following base kernels (denoted
below in bold and in abbreviation):

e GB-Dist: For a given image, we randomly sample
400 edge pixels, and apply geometric blur descriptor
[3] to them. With these image features, we adopt the
distance function, as is suggested in (2) of the work
by Zhang et al. [58], to obtain the dissimilarity-
based kernel.

e  GB: The base kernel is constructed in the same way
to that of GB-Dist, except that the geometric distor-
tion term is excluded in evaluating the distance.

e SIFT-Dist: The base kernel is analogously con-
structed as in GB-Dist, except that now the SIFT
descriptor [33] is used to extract features.

e SIFT-SPM: We apply the SIFT descriptor with three
different scales to an evenly sampled grid of each
image, and use k-means clustering to generate visual
words from the resulting local features of all images.
Then, the base kernel is built by matching spatial
pyramids, which is proposed in [30].

e S55-Dist/SS-SPM: The two base kernels are, respec-
tively, constructed as in SIFT-Dist and SIFT-SPM,
except that the SIFT descriptor is replaced with the
self-similarity descriptor [43]. Note that for the latter
descriptor, we set the size of each patch to 5 x 5, and
the radius of the window to 40.

e (C2-SWP/C2-ML: Biologically inspired features are
also adopted. Specifically, both the C2 features
derived by Serre et al. [42] and by Mutch and Lowe

[35] have been considered. For each of the two kinds
of C2 features, an RBF kernel is obtained.

e PHOG: We also adopt the PHOG descriptor [5] to
capture image features, and limit the pyramid level
up to 2. Together with the x? distance, it yields the
resulting base kernel.

e GIST: The images are resized to 128 x 128 pixels
prior to applying the gist descriptor [37]. Then, an
RBF kernel is established.

The parameters in the above descriptors and distance
functions are tuned independently. Namely, for each
descriptor, we sample a set of parameter values and try to
find a good way to linearly combine the corresponding
pairwise distance matrices. To that end, we begin with an
initial weight distribution focusing solely on the one
yielding the best performance. We then separately and
sequentially adjust each individual weight, and repeat the
process until no further improvement can be attained. Such
a scheme is to ensure that the resulting base kernels
individually achieve their best performances.

4.3 Dimensionality Reduction Methods

We investigate two supervised DR techniques, namely, LDA
and LDE [9], and show how MKL-DR can generalize them.
Both LDA and LDE perform discriminant learning on a fully
labeled dataset Q = {(x;,v:)} fi 1, but make different assump-
tions about the data distribution: While, in LDA, data of each
class are supposed to form a Gaussian, in LDE, they are
assumed to spread as a submanifold. Nevertheless, both
techniques can be specified by a pair of affinity matrices to fit
the formulation of graph embedding (2). For convenience,
the resulting MKL dimensionality reduction schemes are,
respectively, termed as MKL-LDA and MKL-LDE.

4.3.1 Affinity Matrices for LDA

The two affinity matrices W = [w;;] and W' = [w};] are

defined as
Wij = {0, otherwise, (37)
1
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TABLE 1

Recognition Rates of LDA-Based Classifiers on the Caltech-101 Data Set

method kesenel(s] = | num}ooer of tr|a1mng data per |class (];fémm) s
GB-Dist | 440+11% | 552+£09% | 606+£11% | 65.1£1.1% | 69.7£1.6 %
GB 40.7+£12% | 51.1£08 % | 56.2+0.6 % | 620+1.4 % | 66.0+1.1 %
SIFT-Dist | 36.6+1.1% | 46.7+05 % | 53.8+09% | 578 £1.1% | 63.1+1.9 %
SIFT-SPM | 349406 % | 443+1.0% | 50.3+0.6 % | 551 +£1.2% | 60.0+2.4 %
Kernel LDA SS-Dist 353+1.0% | 449+08% | 51.14+1.0% | 56.0+1.6 % | 61.5+23 %
(KFD) SS-SPM 37.0+£0.7% | 47.8£0.6 % | 55.0£09 % | 59.1+£09 % | 64.0+£2.0%
C2-SWP 183+09 % | 249+06 % | 29607 % | 343+£1.1% | 37.7+£08 %
C2-ML 304+09% | 392+£06% | 456.1+0.6 % | 481+0.7% | 52.8+2.0 %
PHOG 276+08 % | 344+0.8% | 40.7+0.6 % | 425+08 % | 465+1.5 %
GIST 332+08 % | 421 +£09% | 47.0+£07% | 51.5+£1.0% | 55.6+1.6 %
KFD-Voting - 54.4+0.7% | 65.7£0.8 % | 69.8+07% | 739+1.1% | 76.8+t1.6 %
KFD-Concatenate - 55.4+12% [ 656 £09% | 7T1.7£08 % | 75.3+£08 % | 82+1.3 %
KFD-AvgKernel = 55.9+1.0% | 66.1£0.6 % | 720+1.0% | 75.6 £0.7% | 782+1.5 %
KFD-SAMME = 56.4+1.1% | 674£09% | 723+06% | 75.7+£1.0% | 77.7+21 %
MKL-LDA All 58.4 + 1.0 % | 688 £09 % | 745 £ 1.0 % | 775 £ 1.0 % | 79.8 + 1.7 %

[Mean =+ std] percent.

where n,, is the number of data points that belong to
class y;. See [54] for the derivation.

4.3.2 Affinity Matrices for LDE

In LDE, not only the data labels but also the neighborhood
relationships are simultaneously considered, namely,

if yi = y; N[ € Ni(j) Vi € Ni(i)],

{s (39)
wyj =
“ 0, otherwise,
1, ify; iAN[E e Np() Ve Np(i)],
wﬁ-x={ iy £y A ENK() VI €Nk ()] (40)
7 0, otherwise,

where i € N (j) means that sample x; is one of the k nearest
neighbors of sample x;. The definitions of the affinity
matrices are faithful to those in LDE [9]. However, there are
now multiple image descriptors and each of them would
yield an affinity matrix. Since we typically do not know/
assume in advance which would be more important to a
given task, we simply average the resulting affinity matrices
to derive a unified one.

4.4 Quantitative Results

Like in [2], [50], [58], we randomly pick 30 images from each
of the 102 categories, and split them into two disjoint
subsets: One contains Ny.q, images per category, and the
other consists of the rest. The two subsets are, respectively,
used as the training and testing data. Via MKL-DR, the data
are projected to the learned space, and the recognition task
is accomplished there by enforcing the nearest-neighbor rule.
To relieve the effect of sampling, the whole process of
performance evaluation is redone 20 times by using
different random splits between the training and testing
subsets. The recognition rates are measured in the cases
where the value of Ny, is, respectively, set as 5, 10, 15, 20,
and 25.

Coupling the 10 base kernels with the affinity matrices of
LDA and LDE, we can, respectively, derive MKL-LDA and
MKL-LDE using Algorithm 1. Their effectiveness is
investigated by comparing with KFD (kernel Fisher dis-
criminant) [34] and KLDE (kernel LDE) [9]. Since KFD

considers only one base kernel at a time, we implement four
strategies to take account of the information from the
10 resulting KFD classifiers, including

1. KFD-Voting: It is constructed based on the voting
result of the 10 KFD classifiers. If there is any
ambiguity in the voting result, the next nearest
neighbor in each KFD classifier will be considered,
and the process is continued until a decision on the
class label can be made.

2. KFD-Concatenate: For each sample, we concatenate its
separately learned feature vectors, each of which is
normalized by dividing the standard deviation of the
pairwise distances among the projected training data.

3. KFD-AvgKernel: KFD is reapplied to the average
kernel of the 10 base ones.

4. KFD-SAMME: By viewing each KFD classifier as a
multiclass weak learner, we boost them by SAMME
[59], which is a multiclass generalization of AdaBoost.

Analogously, the four strategies are also adopted for the
KLDE classifiers.

The values of parameters {o,,} in (9) are critical to the
performance of MKL-DR. However, it is almost infeasible to
find their optimal values exhaustively. We instead adopt
the following procedure that would give satisfactory
results. Observe that the larger the o,,, the more evenly
the entries in K, would distribute. Fixing some values of,
say, s and ¢, we adjust the value of o, by binary search such
that the largest s entries in K, will take up ¢ percent of the
sum of all entries. Given s and ¢, the values of {c,,} can thus
be determined. We set s as a constant and exhaustively seek
the optimal ¢. The resulting {o,,} will then serve as the
initialization to the procedure described in the end of
Section 4.2.

Table 1 summarizes the mean recognition rates and the
standard deviations of KFD classifiers and MKL-LDA
classifiers when different amounts of training data are
available. By focusing on Ny, = 15, we observe that
MKL-LDA achieves a significant performance gain of
13.9 percent (=74.5% — 60.6%) over the best recognition rate
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TABLE 2

Recognition Rates of LDE-Based Classifiers on the Caltech-101 Data Set

Hiathod kernel(s) . num}igr of tra|1mng c;e;ta per |class (]\2]6’””1’) | =
GB-Dist 445+11% | 5484+07% | 60.7E£1.1% | 662+14% | 69.7+1.3 %
GB 41.0£13% | 51.3+1.1% | 55.9+£05 % | 622+1.2% | 66.3+1.3 %
SIFT-Dist | 37.0+1.1% | 46,6 0.7% | 53.44+0.7% | 580+£1.4 % | 63.7+2.1 %
SIFT-SPM | 35.3£0.8 % | 44.4+09 % | 50.2+£0.7% | 55.0+1.0% | 61.3+24 %
Kernel LDE SS-Dist 351+1.0% | 441+£08 % | 506 £1.0% | 55.2+1.1 % | 61.2+£1.9 %
(KLDE) SS-SPM 3714+07% | 471+04 % | 55.4+13% | 59.2+1.0% | 64.1+1.9 %
C2-SWP 187409 % | 249+05% | 29.74+0.7% | 34.3+1.1% | 382+1.1 %
C2-ML 307209 % | 395408 % | 45.9+0.8% | 483+0.6 % | 54.2+22 %
PHOG 28.0£1.0% | 348409 % | 395+08 % | 423+1.0% | 46.1+1.0 %
GIST 334+£08% | 41.84+0.7% | 47.0£0.6 % | 51.5+09 % | 56.7+1.5 %
KLDE-Voting - 539+12% | 643+08% | 70.3+£1.0% | 74.3+0.7% | 76.6 1.6 %
KLDE-Concatenate - 5544+09% | 656.7+£0.7% | T1.4+09% | 75.5+09 % | 7185+1.4 %
KLDE-AvgKernel - 55.8 £0.7% | 66.3+0.7% | 71.8 09 % | 75.7+£08 % | 7184+ 15 %
KLDE-SAMME - 56.1+13% | 66.8£07% | 726E£10% | 75.7£09 % | 77.8 £1.3 %
MKL-LDE All 59.2 £ 15 % | 689 = 0.8 % | 749 + 1.1% 77.2 £+ 0.9% 79.2 £+ 1.6%

[Mean =+ std] percent.

by the 10 KFD classifiers. It suggests that the 10 base kernels
tend to complement each other, and our approach can
effectively fuse them to result in a more powerful classifier.
On the other hand, while KFD-Voting, KFD-Concatenate, and
KFD-SAMME try to combine the separately trained KFD
classifiers, MKL-LDA jointly integrates the 10 kernels into
the learning process. The quantitative results show that
MKL-LDA can make the most of fusing various feature
descriptors, and improve the recognition rates from 69.8,
71.7, and 72.3 percent to 74.5 percent. Besides, MKL-LDA
outperforms KFD-AvgKernel. That is, the ensemble kernel
based on the learned kernel weight vector g by MKL-DR is
more effective than the average kernel. Similar improve-
ments can be observed in cases where different numbers of
training data per class are used.

The quantitative results of KLDE and MKL-LDE are
reported in Table 2. Like MKL-LDA, MKL-LDE achieves
similar degrees of improvements over the KLDE classifiers
and their combinations. In addition, we explore the effect of
the dimensions of the unified feature space by MKL-DR.
Illustrated with MKL-LDE and KLDE, we evaluate their
recognition rates over a range of embedding dimensions,
i.e.,, P in (20). The results are plotted in Fig. 4. We see that
the recognition rates by MKL-LDE and KLDE all converge
around the dimensions of 90 ~ 110. Compared with KLDE,

0.8

0.7}
° : : - |—~—MKL-LDE + Al
5 o6} Do Lpee s trntesoee o L KLDE + GB-Dist

N -
< os} Lot s T 00888 | oo KLDE + SIFT-Dist
o : : & 0 90-0-0-0 ® %00
£ GPPESILIE o ? 222 |~ KLDE + SS-SPM
04 proee oo o hmeeeeee| « KLDE + C2-ML
é 0.3 ...] -- KLDE + PHOG
-+-KLDE + GIST
0.2}
0.1 . . . . . . . o
0 20 40 60 80 100 120 140 160 180

Dimension of Projected Data

Fig. 4. Recognition rates versus different dimensions of the projected
data when Ny, = 15.

MKL-LDE can achieve similar degrees of accuracy with
fewer dimensions.

When the number of training data per class from Caltech-
101 is set as 15, the recognition rate of 74.5 percent by MKL-
LDA and 74.9 percent by MKL-LDE are favorably compar-
able to those by most existing approaches. In [2], Berg et al.
report a recognition rate of 48 percent based on deformable
shape matching. Using the pyramid matching kernel over
data in the bag-of-features representation, the recognition
rate by Grauman and Darrell [21] is 50 percent. Subse-
quently, Lazebnik et al. [30] improve it to 56.4 percent by
considering the spatial pyramid matching kernel. In [58],
Zhang et al. combine the geometric blur descriptor and
spatial information to achieve 59.05 percent. Our related
work [31] that performs adaptive feature fusing via locally
combining kernel matrices has a recognition rate of
59.8 percent, while merging 12 kernel matrices from the
support kernel machines (SKMs) [1] by Kumar and Sminchi-
sescu [28] yields 57.3 percent. Frome et al. [16] propose to
learn a local distance for each training sample, and derive
60.3 percent. To tackle the weakly labeled attribute of
Caltech-101, Bosch et al. [5] suggest finding the ROIs of
images before performing recognition, and report an
accuracy rate of 70.4 percent. By exploring the features from
subcategories, Todorovic and Ahuja [48] report a recognition
rate around 73 percent. Similar results are obtained by
Christoudias et al. [10] using localized Gaussian processes
with multiple kernels. Gehler and Nowozin [19] carry out
multiple kernel learning in a boosting manner, and achieve
74.6 percent. In Fig. 5, we summarize the recognition rates of
our approach and several published techniques, including
(2], [4], [3], [14], [17], [19], [21], [24], [26], [30], [35], [42], [55],
[58], under different sizes of training data.

We complete the section by discussing the convergence
property of our algorithm. Take, for example, learning
MKL-LDA with different sizes of training data per class.
The values of the objective function (21) through the
iterative optimization are, respectively, shown in Figs. 6a,
6b, 6¢, 6d, and 6e. In each iteration, two such values are
plotted to account for updating either A or 8. It can be



LIN ET AL.: MULTIPLE KERNEL LEARNING FOR DIMENSIONALITY REDUCTION 9

» | == Our results: MKL-LDE
.8 |~4-Our results: MKL-LDA
. Kapoor et al. 2010
.....] > Gehler and Nowozin 2009
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Fig. 5. Recognition rates of several published systems on Caltech-101
versus different amounts of training data.

observed that all of the optimization procedures rapidly
converge after a few iterations. Also, increasing the size of
training data tends to speed up the convergence, which is
reasonable since sufficient information generally facilitates
solving an optimization task.

5 EXPERIMENTAL RESULTS: UNSUPERVISED
LEARNING FOR IMAGE CLUSTERING

To explain the link between MKL-DR and unsupervised
learning, we investigate the problem of image clustering. In
this case, MKL-DR can be viewed as a preprocessing tool to
enrich the capacity of an existing clustering technique.
There are two main advantages for so doing. First, since
MKL-DR can learn a unified space for image data in
multiple representations, it enables the underlying cluster-
ing algorithm to simultaneously consider characteristics
captured by distinct descriptors. Second, a majority of
clustering algorithms, e.g., k-means, are designed to work
only in the euclidean space. With MKL-DR, no matter what
the original spaces the data reside in, they all can be
projected to the learned euclidean space, and consequently
our formulation can extend the applicability of such a
clustering method.

5.1 Data Set

We follow the setting in [12], where affinity propagation [15]
is used for unsupervised image categorization, and select
the same 20 categories from Caltech-101 for the image
clustering experiments. Examples from the 20 image
categories are shown in Fig. 3, and each is marked with a
bold red bounding box. Due to the category-wise differ-
ences in the number of images, we randomly select 30
images from each category to form a data set of 600 images.

5.2 Image Descriptors and Base Kernels
Since the data set is now a subset of Caltech-101, it is
convenient to use the same 10 descriptors and distance

functions that are discussed in Section 4.2 to establish the
base kernels for MKL-DR.

5.3 Dimensionality Reduction Method

For image clustering, we consider implementing MKL-DR
with LPP [23], and denote it as MKL-LPP. The LPP
technique is known to be an unsupervised DR scheme that
can uncover a low-dimensional subspace by preserving the
neighborhood structures. The property is particularly
useful since respecting the locality information often plays
a key factor in the clustering outcomes. To carry out MKL-
LPP, we need to reduce LPP to the formulation of graph
embedding (2). This is accomplished by defining W = [w;;]
and D = [d;;] as

1, ifi e Ni(j) v j € Ni(9),
Wij = . (41)
’ 0, otherwise,
N e
di] = anl Win, if i = Js (42)
0, otherwise.

Note that LPP is specified by an affinity matrix W and a
diagonal matrix D, instead of a pair of affinity matrices W
and W’. In Section 3.3, although we only discuss how to
derive MKL-DR with DR methods that can be expressed by
a pair of W and W', the derivation for those by a pair of W
and D is indeed analogous, and the details are omitted here
for the sake of space.

5.4 Quantitative Results

Coupling LPP with the base kernels, MKL-LPP would
project the given image data to a learned space, where
clustering algorithms will be performed. In the experi-
ments, we restrict the number of clusters to the number of
classes in the data set, i.e., 20, for all of the tested clustering
algorithms, and evaluate their performances with the
following two criteria: normalized mutual information (NMI)
[46], and clustering accuracy (ACC). (Refer to [53] for their
definitions.)

For the purpose of comparison, we first consider affinity
propagation [15] for clustering (without any data prepro-
cessing). The clustering technique is devised to detect
representative exemplars (clusters) by taking the simila-
rities between data pairs as input. When image data are
represented by each of the 10 feature representations, the
pairwise similarities are set to the negative distances
measured by the corresponding distance function. The
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Fig. 6. The values of the objective function of MKL-LDA through the iterative optimization procedure when N,..;, is set as (a) 5, (b) 10, (c) 15, (d) 20,

and (e) 25, respectively.
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TABLE 3
Clustering Performances on the 20-Class Image Data Set
. affinity propagation k-means clustering
kernel(s) preproiescslmg without data with data without data with data
metho preprocessing preprocessing preprocessing preprocessing
GB-Dist 0.580 / 50.7% | 0.617 / 54.5% - 0.634 / 56.3%
GB 0.531 / 46.2% | 0.598 / 55.2% - 0.612 / 54.7%
SIFT-Dist 0.638 / 59.8% | 0.621 / 57.0% - 0.630 / 54.0%
SIFT-SPM 0.590 / 55.8% | 0.612 / 59.2% - 0.630 / 54.7%
SS-Dist Kernel LPP 0.527 / 45.3% | 0.557 / 49.5% - 0.565 / 50.2%
SS-SPM (KLPP) 0.573 / 55.5% | 0.586 / 56.8% - 0.603 / 57.7%
C2-SWP 0.400 / 32.8% | 0.374 / 32.0% | 0.383 / 31.5% | 0.380 / 31.8%
C2-ML 0.494 / 44.2% | 0.490 / 44.0% | 0.525 / 47.0% | 0.509 / 44.7%
PHOG 0.455 / 42.7% | 0.490 / 46.3% - 0.504 / 47.2%
GIST 0515 / 49.2% | 0.491 / 48.8% | 0.494 / 44.7% | 0.502 / 42.8%
- KLPP-Concatenate - 0.626 / 68.8% - 0.667 / 62.3%
- KLPP-AvgKernel - 0.702 / T77.1% - 0.708 / 62.5%
All MKL-LPP - 0737 / 78.3% - 0.759 / 71.2%
[NMI/ACC] percent.

clustering results evaluated based on NMI and ACC are
reported in the third column of Table 3.

We then, respectively, adopt kernel LPP and MKL-LPP
to preprocess the data. The main difference between the two
is that kernel LPP learns a projection by taking one base
kernel into account at a time, while MKL-LPP considers the
10 base kernels simultaneously. In the fourth column of
Table 3, we show the clustering results of applying affinity
propagation to the projected data by both schemes. It can be
observed that with the advantage of exploring data
characteristics from various aspects, MKL-LPP can achieve
significant improvements in the clustering outcomes: NMI
is increased from 0.621 to 0.737 and ACC is improved from
59.2 to 78.3 percent. Furthermore, owing to its better use of
complementary image descriptors, MKL-LPP also outper-
forms KLPP-Concatenate and KLPP-AvgKernel.

The same experiments are repeated by replacing affinity
propagation with k-means, and the results are given in the
last two columns of Table 3. Note that if no additional
preprocessing is performed, k-means is only applicable to

data under the representations of C2-SWP, C2-ML, and
GIST in that the others lead to non-euclidean spaces. Again,
considerable performance gains with MKL-LPP can be
concluded from the clustering results.

Besides demonstrating the usefulness of MKL-LPP with
the quantitative results, it would be insightful if the
projected data can be visually compared. However, for
kernel LPP and MKL-LPP, directly embedding the data into
a 2D space for visualization is not practical since both
would not yield good clustering results in such a low-
dimensional space. Instead, we first use kernel LPP and
MKL-LPP to embed the data to low-dimensional spaces in
which they, respectively, achieve their best clustering
performance. Then, we apply multidimensional scaling
(MDS) [11] to find the 2D projections. In Fig. 7, we show
2D visualizations of the projected data, respectively,
obtained by kernel LPP with the base kernels GB-Dist and
GIST, and by MKL-LPP with all the 10 base kernels. Each
point in the figures represents a data sample, and its color
indicates its class label. For the purpose of better illustra-
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Fig. 7. The 2D visualizations of the projected data. Each point represents a data sample, and its color indicates its class label. The projections are
learned by (a) kernel LPP with base kernel GB-Dist (KLPP + GB-Dist), (b) kernel LPP with base kernel GIST (KLPP + GIST), and (c) MKL-LPP with

all the 10 base kernels (MKL-LPP + All kernel).
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Fig. 8. Four kinds of intraclass variations caused by (a) different lighting
conditions, (b) in-plane rotations, (c) partial occlusions, and (d) out-of-
plane rotations.

tion, only data from 10 of the 20 classes (i.e., even-numbered
classes) are plotted. Fig. 7 reveals that MKL-LPP can
effectively utilize the data characteristics extracted by
different descriptors and results in a more meaningful
projection. That is, data of the same class tend to gather
together, while data from different classes are kept apart.
This property facilitates a clustering algorithm to identify
representative clusters and achieve better performances.

6 EXPERIMENTAL RESULTS: SEMI-SUPERVISED
LEARNING FOR FACE RECOGNITION

Our last set of experiments focuses on evaluating the
performance gains of applying MKL-DR to semi-supervised
learning tasks. In solving such problems, the given data set
is often partially labeled, and one is required to make use of
both the class information of the labeled data and the
intrinsic relationships of the unlabeled ones to accomplish
the learning tasks. Specifically, we consider the face
recognition problem to demonstrate the advantages of our
approach, and exploit the property that the face images of
an identity spread as a submanifold if they are sufficiently
sampled to guide and regularize the optimization process in
learning a more effective face recognition system.

6.1 Data Set

The CMU PIE database [44] is used in our experiments of
face recognition. It is comprised of face images of 68
subjects. For a practical setting, we divide the 68 people into
four equal-size disjoint groups, each of which contains face
images from 17 subjects characterized by a certain kind of
variations. (See Fig. 8 for an overview.) Specifically, for each
subject in the first group, we consider only the images of the
frontal pose (C27) taken in varying lighting conditions
(those under the directory “1ights”). For subjects in the
second and third groups, the images with near frontal poses
(C05, C07, C09, C27, and C29) under the directory
“expression” are used. While each image from the
second group is rotated by a randomly sampled angle
within [-45°,45°], each from the third group is instead
occluded by a nonface patch whose area is about 10 percent

Fig. 9. Images obtained by applying the delighting algorithm [22] to the
five images in Fig. 8a. Clearly, variations caused by different lighting
conditions are alleviated.

of the face region. Finally, for subjects in the fourth group,
the images with out-of-plane rotations are selected under
the directory “expression” and with the poses (C05, C11,
C27, C29, and C37). All images are cropped and resized to
51 x 51 pixels.

Performing face recognition over the resulting data set is
challenging because the distances among data of the same
class (identity) could be even larger than those among data
of distinct classes if improper descriptors are used. On the
other hand, adding the aforementioned variations to the
data set is useful for emulating the practical situations,
which are often caused, say, by imperfect face detectors or
in uncontrolled environments.

6.2 Image Descriptors and Base Kernels

Again our objective is to select a set of visual features that
can well capture subjects’ characteristics as well as tolerate
the large intraclass variations. Totally, we consider using
four image descriptors and their respective distance
function. Via (9), they result in four dissimilarity-based
kernels described as follows:

e RsL2: Each sample is represented by its pixel
intensities in raster scan order. Also, the euclidean
(L?) distance is used to correlate two images. This is
a widely used representation for face images.

e RsLTS: The base kernel is similar to RsL2, except
that the distance function is now based on the least
trimmed squares (LTS) with 20 percent outliers
allowed. It is designed to take account of the partial
occlusions in a face image.

o DelLight: The underlying feature representation is
obtained from the delighting algorithm [22], and the
corresponding distance function is set as 1 — cosf,
where @ is the angle between a pair of samples under
the representation. Some delighting results are
shown in Fig. 9. It can be seen that variations caused
by different lighting conditions are significantly
alleviated under the representation.

e LBP: As is illustrated in Fig. 10, we divide each
image into 96 = 24 x 4 regions, and use a rotation-

Fig. 10. Each image is divided into 96 regions. The distance between the
two images is obtained when circularly shifting causes ¢/ to be the new
starting radial axis.
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TABLE 4

Recognition Rates of Several Classifiers on the CMU PIE Data Set

dataset (number of classes

mnefhid kehel(s) AT (68) | Lighting (17) | R(()tation an | Occh)lsion (17) [ Drofile (17)
RsL2 | 378%20% | 561 180% | 290L33% | 25526 % | 397164 %

Kernel SDA RsLTS | 54.54+2.0% | 46.8 50 % | 485+9.7% | 689+59% | 53.7+6.6 %
(KSDA) DeLight | 44.7+1.5% | 988423 % | 159+4.0% | 426+53% | 21.3+£3.7%
LBP | 620+21% | 88.0+63% | 522+78% | 581+83% | 49.8+86 %

KSDA-Voling - 657 E15% | 941X40% | 54052 % | 667 £37 % | 472263 %
KSDA-Concatenate = 681L21% | 044562% | 47.8L84 % | T3.0L57 % | 57.1L86 %
KSDA-AvgKernel - T08E24% | 936EX42% | 551567 % | 794E50% | 55.1£89%
KSDA-SAMME - 672FX12% | 961E33% | 520L59% | 686X50% | 51.1E53 %
MKL-LDA All 607 E15% | 075 £20% | 80L74% | 72369 % | 61.0L7.1%
MKL-LDE All 681X26% | 998 07 % | 45663 % | 713E73% | 556102 %
MKL-SDA All 788 £ 25% | 978 F24% | 654 £80% | 828 £33 % | 69.1 £ 5.8 %

[Mean =+ std] percent.

invariant local binary pattern (LBP) operator [36]
(with operator setting LBP;?) to detect 10 distinct
binary patterns. Thus, an image can be represented
by a 960-dimensional vector, where each dimension
records the number of occurrences that a specific
pattern is detected in the corresponding region. To
achieve rotation invariance, the distance between
two such vectors, say, x; and x;, is the minimal one
among the 24 values computed from the distance
function 1 — sum(min(x;,x;))/sum(max(x;,x;)) by
circularly shifting the starting radial axis for x;.
Clearly, the base kernel is constructed to deal with
variations resulting from rotations.

6.3 Dimensionality Reduction Method

We adopt SDA [6] as the semi-supervised DR technique to be
generalized by MKL-DR. SDA carries out discriminant
learning over labeled data while preserving the geometric
structure of unlabeled data. Analogously to LDA and LDE in
Section 4.3, SDA can be specified by two affinity matrices
W = [w;;] and W' = [w}.], when a partially labeled data set,
Q= {x,, yp}i\;l U {xq}q;}ﬁl, is available

1/n, +a-s;, ify =y,
wl] _ { / Yi J Y .yﬂ (43)
Q- s, otherwise,
, 1/N,, if both x; and x; are labeled,
Wi = . ' (44)
J 0, otherwise,
where
5 = { 0, otherwise, (45)

and « is a positive parameter to adjust the relative
importance between the label information and the neigh-
borhood relationships.

6.4 Quantitative Results

In the experiments, we randomly select 12 images from
each subject. Three of them serve as the labeled training
data, while the other nine as the unlabeled ones. In total, we
have 816 (i.e., 12 x 68) images for training (204 of them are
labeled), and the remainder for testing. Since the numbers
of images for subjects in different groups may not be the

same, an accuracy rate is first computed for each subject.
And the reported recognition rate is the average of them.
The overall procedure is repeated eight times to reduce the
effect of sampling.

We report the mean recognition rates and the standard
deviation in the third column of Table 4. It can be observed
that MKL-SDA achieves a significant performance gain of
16.8 percent (=78.8% — 62.0%) over the best recognition rate
by the four kernel SDA (or KSDA for short) classifiers. It
also outperforms KSDA-Voting, KSDA-Concatenate, KSDA-
AvgKernel, and KSDA-SAMME, and improves the recogni-
tion rates from 65.7 to 70.8 percent to 78.8 percent.

To evaluate the effect of using unlabeled training data in
SDA, we compare MKL-SDA with MKL-LDA and MKL-
LDE. The main difference among them is that MKL-SDA
considers both labeled and unlabeled training data, while
MKL-LDA and MKL-LDE use only the labeled ones. The
quantitative results in Table 4 show that MKL-SDA can
boost the recognition rate about 10 percent by making use of
the additional information from the unlabeled training data.

We also provide the recognition rates with respect to each
of the four groups in the last four columns of Table 4. (We
name each group according to the type of its intraclass
variation.) Note that each of such recognition rates is
computed by considering only the data in a particular
group. And no new classifiers are trained. As expected, the
four base kernels generally result in classifiers that produce
good performances in dealing with some specific kinds of
intraclass variations. For example, the base kernel DeLight
achieves a near perfect result for subjects in the Lighting
group, and RsLTS yields satisfactory results in the Occlusion
group. However, none of them is good enough for dealing
with the whole data set. On the other hand, MKL-DR can
effectively combine the four base kernels to complement
them, and leads to a remarkable increase in accuracy.

Finally, we discuss the learned combination weights over
the four base kernels, i.e., § in Algorithm 1. In Fig. 11, we
plot the averages and the standard deviations of the learned
B by MKL-SDA. Observe first that the weights are not
directly in proportion to the individual performances of the
base kernels. This is mostly due to that the scales of the four
base kernels are different. Further, the degrees of informa-
tion complement and redundancy among these base kernels
should also be taken into account since they are considered
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Fig. 11. The learned kernel weights by MKL-SDA.

jointly in learning the weights. The other useful property
readily inferred from Fig. 11 is that the standard deviations
in the combination weights are uniformly small, and it
highlights the desirable stability of MKL-DR.

7 CONCLUSIONS

The proposed MKL-DR introduces a new paradigm to
fortify a broad scope of existing dimensionality reduction
techniques. Its main advantage lies in the ability of learning
a unified space of low dimension for data in multiple feature
representations. Such a flexibility is important in tackling
complicated vision problems, and allows one to explore
more prior knowledge for effectively analyzing a given data
set, including choosing a proper set of visual features to
better characterize the data and adopting a graph-based DR
method to appropriately model the relationship among the
data points. Throughout this work, MKL-DR has been
comprehensively evaluated in three important computer
vision applications, including supervised object recognition,
unsupervised image clustering, and semi-supervised face
recognition. The promising experimental results further
consolidate the usefulness of our approach.

Also, as we have demonstrated, MKL-DR can extend the
multiple kernel learning framework to address not only the
supervised learning problems but also the unsupervised
and semi-supervised ones. This aspect of generalization
introduces a new frontier in applying MKL to solving vision
and learning applications.
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