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Abstract

This paper investigates the problem of automatically grouping unknown speech utterances based

on their associated speakers. In attempts to determine which utterances should be grouped to-

gether, it is necessary to measure the voice similarities between utterances. Since most existing

methods measure the inter-utterance similarities based directly on the spectrum-based features,

the resulting clusters may not be well-related to speakers, but to various acoustic classes instead.

This study remedies this shortcoming by projecting utterances onto a reference space trained to

cover the generic voice characteristics underlying the whole utterance collection. The resultant

projection vectors naturally reflect the relationships of voice similarities among all the utterances,

and hence are more robust against interference from non-speaker factors. Then, a clustering

method based on maximum purity estimation is proposed, with the aim of maximizing the sim-

ilarities between utterances within all the clusters. This method employs a genetic algorithm to

determine the cluster to which each utterance should be assigned, which overcomes the limitation

of conventional hierarchical clustering that the final result can only reach the local optimum. The

proposed clustering method also incorporates a Bayesian information criterion to determine how

many clusters should be created.

Index Terms: speaker clustering, maximum purity estimation, genetic algorithm

EDICS: SPE-SPKR Speaker Characterization and Recognition
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I. INTRODUCTION

Speaker clustering refers to the task of grouping together unknown speech utterances based on

a speaker’s voice characteristics. For more than a decade, the interests and needs of the speech-

recognition community have provided a major motivation for the work on speaker clustering [1]-[3],

in which the major purpose is to group together speech data produced by the same speaker or

speakers with similar voices such that the adaptation of acoustic models can be carried out more

effectively. However, since speaker clustering simply serves as a supplementary process in speech

recognition, there is still a dearth of studies devoted to this problem. More recently, speaker-

clustering research has enjoyed a renaissance [4]-[19], spurred by research into spoken document

indexing for managing burgeoning collections of available speech data. The main purpose of such

an emerging research topic is that, by grouping speech data from the same speakers, the human

effort required for documentation can be dramatically reduced, or even replaced.

Speaker clustering can be viewed as an unsupervised speaker-recognition problem, in which the

process of speaker recognition [20] is concerned with determining the identity of a speaker (speaker

identification) or determining if a speaker is who he/she claims to be (speaker verification). How-

ever, in contrast to the conventional speaker-recognition approach, which assumes that some prior

information or speech data is available and can be modeled from the speakers concerned, speaker

clustering must work without any knowledge of who the possible speakers are and how many

are involved in the utterances to be clustered. Consequently, solutions to the speaker-clustering

problem should be capable of extracting and comparing the voice characteristics underlying the

utterance collections in an unsupervised manner.

A related task is speaker segmentation [5] [10] [11], which aims to locate the boundaries when

there is a change of speaker in an audio stream containing multiple persons’ speech utterances.

In tandem with speaker clustering, speaker segmentation breaks up the continuous input into

discrete utterances that are easy to process in speech/speaker recognition, and is, therefore, an

essential step in spoken document indexing. Viewed from another angle, speaker segmentation

may be accomplished with the aid of speaker clustering [14]. This is done by first segmenting an

audio stream uniformly into a sequence of short regions that can be considered homogeneous in

terms of their associated speaker, and then clustering the short regions and assigning each of them
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a cluster index representing a speaker attribute. A change of speakers may occur between two

adjacent short regions that have different cluster indices.

Currently, most speaker-clustering methods follow a hierarchical clustering framework [4]-[11],

comprised of three major components: computation of inter-utterance similarities, generation of a

cluster tree, and determination of the number of clusters. The similarity computation is designed

to produce larger values for similarities between utterances of the same speaker and smaller values

for similarities between utterances of different speakers. Several similarity measures, such as

the Kullback Leibler (KL) distance [5], the cross likelihood ratio (CLR) [8], and the generalized

likelihood ratio (GLR) [2][6][17], have been examined and compared in much of the literature. The

generation of a cluster tree is done in either a bottom-up (agglomerative) or a top-down (divisive)

fashion, according to some criteria derived from the similarity measure. The bottom-up approach

starts with each utterance as a single cluster, and then successively merges the clusters in a pairwise

manner until one cluster contains all the utterances. In the top-down approach, however, all the

utterances start in a single cluster, and the clusters are successively split until each cluster contains

exactly one utterance. The resulting cluster tree is then cut via an estimation of the number of

clusters to retain the best partition. Representative methods for estimating the optimal number

of clusters are based on the BBN Metric [6] and the Bayesian Information Criterion [7].

Among the three components in the above clustering framework, the computation of inter-

utterance similarities is of particular importance, which determines whether the generated clusters

are related to various speakers, rather than other acoustic classes. However, existing similarity

measures, based on KL distance, CLR, or GLR, are performed entirely on the spectrum-based

features, which are known to carry various types of information besides a speaker’s voice character-

istics, for example, phonetic and environmental information. As a consequence, speaker-clustering

systems based on these similarity measures are usually vulnerable when the utterances to be clus-

tered are short and noisy. To alleviate the problem, this study proposes a novel inter-utterance

similarity measurement, which is carried out by projecting the utterances to be clustered onto

a voice characteristic reference space, and then examining the degree of coincidence between the

projection results of the utterances. As will be illustrated in the following sections, the reference

space is trained to cover the generic voice characteristics inherent in all the utterances to be clus-
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tered; hence, the resulting similarity measurement will be more robust against interference from

non-speaker factors.

In addition to developing a more reliable inter-utterance similarity measurement, we also in-

vestigate how to optimally generate the clusters such that all the within-cluster utterances are

from the same speaker. Conventional approaches based on either top-down or bottom-up hierar-

chical clustering use a nearest neighborhood selection rule to determine which utterances should

be assigned to the same cluster. However, during the procedure of splitting one cluster or merging

two clusters, the nearest neighborhood selection rule is applied in a cluster-by-cluster manner,

rather than in a global manner that considers all the clusters. As a result, hierarchical clustering

can only make each individual cluster as homogeneous as possible, but cannot attain the ultimate

goal of maximizing the overall homogeneity. To solve this problem, we propose a new clustering

method that explicitly aims to maximize the total number of within-cluster utterances from the

same speakers. This is done by estimating the so-called cluster purity [6], in conjunction with an

optimization process based on a genetic algorithm [21], to find the best partitioning of utterances

that achieves maximal cluster purity.

The rest of this paper is organized as follows. Section II describes the specific problem we

address, an overview of the clustering framework we propose, and the performance assessment

method we use in this study. Section III introduces several methods for creating a reference

voice space that represents an utterance as a projection vector, thereby measuring the similarities

between utterances. In Section IV, we describe how to generate clusters in accordance with the

criteria derived from the inter-utterance similarities. Section V discusses the problem of how to

automatically determine the appropriate number of clusters. Section VI presents our experimental

results. Finally, in Section VII, we present our conclusions, and discuss the direction of future

works.

II. TASK DEFINITION AND METHOD OVERVIEW

Let {X1,X2, . . . ,XN} denote N unlabeled speech utterances in a certain spectrum-based feature

representation, each of which is produced by one of the P speakers s1, s2, . . . , sP , where N ≥ P ,
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and P is unknown. The aim of speaker clustering is to partition the N utterances into M clusters

c1, c2, . . . , cM , such that M = P and each cluster consists exclusively of utterances from only

one speaker. For those utterances that contain multiple speakers, the partitioning is preferably

performed after the utterances are pre-segmented into speaker-homogeneous regions 1. However, in

order to focus on the fundamental techniques for speaker clustering, this study does not investigate

the speaker-segmentation problem and only deals with utterances containing a single speaker.

The performance 2 of speaker clustering is evaluated on the basis of cluster purity [6], which

indicates the level of agreement in a cluster. For a cluster cm, the purity ρm is computed by

ρm =
P∑

p=1

n2
mp

n2
m

, (1)

where nm is the total number of utterances in cluster cm, and nmp is the number of utterances

in cluster cm that are produced by speaker sp. From Eq. (1), it follows that n−1
m ≤ ρm ≤ 1,

in which the upper bound and lower bound reflect that all the within-cluster utterances were

produced by the same speaker or completely different speakers, respectively. To evaluate the

overall performance of M -clustering, we compute an average purity:

ρ̄ =
1

N

M∑

m=1

nmρm. (2)

Fig. 1 shows the proposed speaker-clustering framework. Prior to the inter-utterance similarity

computation, a reference space, which represents some generic characteristics of speakers’ voices,

is constructed. The reference space is composed of K bases, where the basis is a general term

referring to a representative of the voice characteristics encoded in the spectrum-based features.

The reference space can be created using either the set of utterances to be clustered or an extra

speech database. The use of the latter might allow a greater variety of voice characteristics to be

covered and make it easier to perform on-line or incremental clustering; however, there might be a

risk of environmental or channel mismatch between the reference space and the set of utterances

to be clustered. In this study, we do not use an extra speech database to train the reference space,

1Interested readers are referred to [9] for the study of clustering multi-speaker utterances.
2Depending on the application, there are a number of other ways to evaluate the speaker-clustering performance,

such as the misclassification rate [17], clustering efficiency [8], and the Rand Index [22]. This study chooses cluster

purity, because its computation is more application-independent and its scale is more easily perceivable.
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for the sake of comparing the performance of our method with that of other speaker clustering

methods under a consistent evaluation condition.

After a reference space is constructed, each of the N utterances, say Xi, is converted into a

K-dimensional projection vector Vi = [v(Xi, φ1), v(Xi, φ2), . . . , v(Xi, φK)]′ on the space, where

prime (′) denotes vector transpose, and v(Xi, φk), 1 ≤ k ≤ K, is a projection value that reflects

the extent of how the utterance Xi can be characterized by the basis φk. It is hoped that, if two

utterances, Xi and Xj, are from the same speaker, say sp, a majority of the projection values in

Vi and Vj would be relatively similar in some sense, resulting in Vi being closer to Vj, instead

of Vl for any utterance Xl not from sp.

By associating each utterance with a projection vector, the similarities between any two ut-

terances, Xi and Xj, are computed straightforwardly using the cosine measure between Xi and

Xj:

Su(Xi,Xj) =
Vi ·Vj

‖Vi‖‖Vj‖ . (3)

Accordingly, utterances deemed similar enough to each other can be grouped into a cluster. Since

no information about the speaker population size P is available beforehand, we first produce a set

of possible partitionings with the numbers of clusters ranging from 2 to N , and then choose the

best partitioning using a method for estimating the optimal number of clusters.

Comparing with most existing speaker-clustering methods, the proposed system tries to im-

prove clustering performance from two perspectives. One is to exploit “out-of-pair” spectral

information to help measure the similarity between each pair of utterances. In contrast to most

existing methods, which compute the inter-utterance similarities by considering only the spectral

information from a pair of utterances at a time, the proposed system measures the similarity be-

tween each pair of utterances by referring to all the utterances to be clustered. Since the reference

space in our system is built to capture the generic characteristics of speakers’ voices, the resulting

inter-utterance similarity measurement can be less text- and environment- dependent. From an

alternate perspective, we attempt to enhance clustering performance by generating clusters in

a global fashion, rather than in a piecemeal manner used in most existing systems. As will be

illustrated in Sec. IV, the cluster generation is done with the aim of maximizing the total number

of with-cluster utterances from the same speakers.
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III. REFERENCE SPACE CREATION

The effectiveness of the above speaker-clustering framework crucially depends on whether a refer-

ence space is capable of summarizing the most relevant aspects of speakers’ voice characteristics

inherent in the observed speech data. This section presents four possibilities for reference space

construction, namely, utterance-dependent Gaussian mixture modeling, utterance-independent

vector clustering, utterance-independent Gaussian mixture modeling followed by MAP adapta-

tion [23], and eigenvoice-motivated reference space [24].

A. Utterance-dependent Gaussian mixture modeling

For the conventional speaker-recognition problem, Gaussian mixture modeling is the predominant

method for characterizing speaker-specific voice patterns [26]. The main attraction of the Gaus-

sian mixture model (GMM) is its ability to provide smooth approximations of arbitrarily-shaped

densities of a long-term spectrum that are considered to be related to the characteristics of the

speaker’s voice, rather than the specific linguistic message. Such a modeling technique can be

applied in an unsupervised manner for the construction of a speaker-related reference space. To

be specific, a GMM is created for each of the N utterances to be clustered, and the resulting N

GMMs λ1, λ2, . . . , λN form a reference space with N bases φk = λk, 1 ≤ k ≤ N . For each utterance

Xi, the projection value on basis φk, 1 ≤ k ≤ N , is then computed using

v(Xi, φk) = log Pr(Xi|λk)− log Pr(Xi|λi). (4)

Eq. (4) is the normalized likelihood probability that utterance Xi comes from the speaker

characterized by GMM φk. Ideally, the value of v(Xi, φk) would be large if utterances Xi and Xk

are from the same speaker, and would be small otherwise. In practice, however, this cannot be

guaranteed, since the GMMs may not always be capable of characterizing the speakers’ voices well,

especially when the utterances are of very limited duration and subject to diverse environmental

conditions. In view of such imperfections, we hope that by using a whole projection vector, the

impact of some abnormal projection values can be diluted by other normal ones, and a more

reliable similarity measure can be derived. Fig. 2 shows an example of projection carried out

on a collection of nine utterances from three speakers. Dark regions in the resulting likelihood
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pattern represent large likelihood values, while light regions represent small values. We can see

from the likelihood pattern that the whole projection vectors pertaining to the same speakers are

more similar than those pertaining to different speakers.

The concept of the above projection method is adapted from a prior study reported in [27].

A similar idea has also been presented recently from the viewpoint of so-called triangulation [16],

in which each utterance is modeled as a single Gaussian distribution. It is clear from speaker-

recognition research that a better speaker clustering performance may be obtained by using a

proper number of Gaussian components in a mixture, rather than a single Gaussian density.

However, determining the proper number of Gaussian components in GMMs is a difficult problem,

especially when the duration of the utterances might be rather diverse. Specifically, choosing a

larger number of Gaussian components is advantageous for modeling the voice characteristics

of long utterances more accurately, but it is disadvantageous for the short utterances that lack

data for GMM parameter estimation. Meanwhile, choosing too few Gaussian components may

make it difficult to distinguish between different-speaker utterances. We therefore develop several

alternative methods in the following subsections to sidestep this problem.

B. Utterance-independent vector clustering

Instead of using utterance-dependent GMMs, we can create a single, utterance-independent code-

book with R codewords as a reference space using all the feature vectors of the utterances to

be clustered. The codebook can be considered as a universal model trained to cover the speaker-

independent distribution of feature vectors. In our implementation, each codeword wk, 1 ≤ k ≤ R,

consists of a mean vector µk and a diagonal covariance matrix Σk. Training of the codebook is

performed via k-means clustering algorithm, in which the distance between feature vectors is

computed on the basis of Mahalanobis distance.

The use of such a codebook-based reference space is motivated by the observation that al-

though the codebook as a whole is a speaker-independent representation, a significant proportion

of the individual codewords tend to be speaker-dependent. Specifically, we found that after vector

clustering, the feature vectors pertaining to a particular speaker do not spread uniformly over

all the clusters, but distribute primarily in certain clusters. In other words, each of the speakers

reflects his/her own set of favorable codewords. This might be because in unsupervised training
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of the codebook, there is usually more than one codeword to represent a certain type of phonetic

realization. Many codewords that correspond to identical phonetic fragments are generated to

cover the variations of different speakers or environmental conditions. This results in codewords

that are phonetically-related, as well as speaker-related.

Viewing each codeword as a basis of the reference space, the similarity between utterances

can be measured by comparing the distribution for the feature vectors of each utterance in the

codebook. To do this, each feature vector is assigned an index of the closest codeword in terms of

the Mahalanobis distance. The projection value v(Xi, φk) for each utterance Xi with respect to

basis φk, 1 ≤ k ≤ R, can then be computed by using

v(Xi, φk) =
Number of the feature vectors in Xi assigned as wk

Number of total feature vectors in Xi

. (5)

C. Utterance-independent Gaussian mixture modeling followed by MAP adaptation

Alternatively, the problem concerning diverse utterance duration mentioned in Sec. III-A might

be handled better by using some model-adaptation techniques developed in speech or speaker

recognition research. Our basic strategy is to create an utterance-independent GMM using all the

utterances to be clustered, followed by an adaptation of the utterance-independent GMM for each

of the utterances using maximum a posteriori (MAP) estimation.

Let λ = {ωj, µj,Σj, 1 ≤ j ≤ J} denote the parameter set of an utterance-independent GMM

having J Gaussian components, where ωj is the mixture weight, µj the mean vector, and Σj the

covariance matrix. For each utterance Xi, with Ti feature vectors {xi,1,xi,2, . . . ,xi,Ti
}, we compute

the a posteriori probability of each feature vector xi,t, in the Gaussian component j of GMM λ:

Pr(j|xi,t) =
ωjN (xi,t, µj,Σj)∑J
l=1 ωlN (xi,t,µl,Σl)

, (6)

where N (·) is a Gaussian density function. Then, an adapted GMM, λi = {ωi,j,µi,j,Σi,j, 1 ≤ j ≤
J}, for each utterance Xi is obtained from

µi,j = τi,jEj(Xi) + (1− τi,j)µj, (7)

Σi,j = τi,jEj(XiX
′
i) + (1− τi,j)(µjµ

′
j + Σj)− µi,jµ

′
i,j, (8)

ωi,j = [τi,jζi,j/Ti + (1− τi,j)ωj]ϑ, (9)
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where ϑ is a scale factor that ensures all the mixture weights sum to unity, and τi,j, ζi,j, Ej(Xi),

and Ej(XiX
′
i) are computed using

τi,j =
ζi,j

ζi,j + ε
, (10)

ζi,j =
Ti∑

t=1

Pr(j|xi,t), (11)

Ej(Xi) =
1

ζi,j

Ti∑

t=1

Pr(j|xi,t)xi,t, (12)

Ej(XiX
′
i) =

1

ζi,j

Ti∑

t=1

Pr(j|xi,t)xi,tx
′
i,t, (13)

where ε is a relevance factor.

This strategy stems from the GMM-UBM method [28] for speaker recognition, in which the

required speaker-specific models are created by tuning the parameters of a universal speaker model

pre-trained by using speech data from many speakers. The GMM-UBM method has proven very

effective, especially when only limited enrollment data is available, and could be advantageous in

speaker clustering.

D. Eigenvoice-motivated Reference Space

We have explored three possibilities for constructing a reference space, with the aim of better

covering the voice characteristics of the utterances to be clustered. However, one potential problem

with the three methods is that the bases of the reference spaces are not statistically-independent

of each other. The characteristic overlapping between bases may lead to a twisted reference space,

which limits the ability to discriminate between utterances from the same and different speakers.

To deal with this problem, we now describe a reference space creation method that applies the

technique of eigenvoice [29] to minimize the characteristic overlapping between bases.

Eigenvoices are derived from a number of reference speakers’ voices, to represent an a priori

voice characteristic. In its original form, a speaker-independent voice space consisting of several

eigenvoices is constructed by applying a dimensionality reduction technique, such as principal

component analysis (PCA), on a set of speaker-dependent models. When a new speaker is present,

a speaker-specific model is generated for him/her from a linear combination of the eigenvoices

10



according to the coordinate on which the new speaker’s voice is located. Since the voice data of new

speakers is only used for computing coordinates, the eigenvoice technique has proven particularly

effective for speaker adaptation in terms of computational efficiency and the requirements of

adaptation data. The technique has also been applied to cluster speakers to improve speech-

recognition performance [13]. In contrast to the work in [13], which relies on a set of extra speech

data to construct the eigenvoice space, the proposed method fully utilizes the data from the

utterances to be clustered.

The procedure for reference space creation begins with MAP adaptation, described in Sec.

III-C, to generate N utterance-dependent GMMs. All the mean vectors of each GMM are con-

catenated in the order of the Gaussian component index to form a super-vector with the dimension

of D. Then, PCA is applied on the set of N super-vectors, U1,U2, . . . ,UN , obtained from the N

GMMs. This yields D eigenvectors, e1, e2, . . . , eD, ordered by the degree of their contribution to

the between-utterance covariance matrix:

B =
1

N

N∑

i=1

(Ui − Ū)(Ui − Ū)′, (14)

where Ū is the mean vector of all Ui for 1 ≤ i ≤ N . To capture the most representative voice

characteristics, we only retain low-order K (K < D) eigenvectors with larger eigenvalues that

reflect more variation between utterances. The K eigenvectors, e1, e2, . . . , eK , serve as the bases

of an eigenvoice-motivated reference space; hence, the projection value v(Xi, φk) for utterance Xi

with respect to basis φk, 1 ≤ k ≤ K, can be computed using the inner product of the zero-meaned

super-vector (Ui − Ū) and the eigenvector ek, i.e.,

v(Xi, φk) =< Ui − Ū, ek > . (15)

IV. CLUSTER GENERATION

After converting each utterance into a projection vector, the similarity between utterances can be

computed using Eq. (3). The next step is to group similar utterances into clusters. This section

discusses two methods for generating clusters, namely, hierarchical clustering and the proposed

maximum purity clustering [25].
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A. Hierarchical Clustering

Hierarchical clustering [30] is a common approach to determining which utterances should be

grouped together. In our implementation, clusters are generated in an agglomerative manner,

starting with each utterance in its own cluster and successively merging the most similar pairs of

clusters. The similarity between two clusters, say cm and cl, can be measured in several ways:

1) Complete-linkage

Sc(cm, cl) = min
Xi∈cm,Xj∈cl

Su(Xi,Xj), (16)

2) Single-linkage

Sc(cm, cl) = max
Xi∈cm,Xj∈cl

Su(Xi,Xj), or (17)

3) Average-linkage

Sc(cm, cl) =
1

n(m,l)

∑

Xi∈cm,Xj∈cl

Su(Xi,Xj), (18)

where n(m,l) is the number of utterance pairs involved in the summation. The outcome of the

aggregation procedure above is a tree of clusters. The final partition of the utterances is then

determined by pruning the tree that only has M leaves left.

B. Maximum Purity Clustering

The principle behind hierarchical clustering is to make the agreement within a newly generated

cluster as large as possible. However, when each agglomeration is performed, the hierarchical

clustering can not guarantee that the overall within-cluster agreement will be maximized, since

its decision does not consider the interaction between the new cluster to be generated and the

existing clusters. Therefore, this clustering method is not optimal. In particular, some mis-

clustering errors, arising from grouping different-speaker utterances together, can propagate down

the whole process, and limit the clustering performance. To overcome this limitation, we propose

a new clustering method, which considers how to assign utterances to clusters in a global fashion

such that the overall within-cluster agreement can be maximized.

Let hi denote the index of the cluster where an utterance Xi is located, and oi denote the

true speaker index of utterance Xi. Note, hi is an integer between 1 and M when the number
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of clusters M is specified a priori, and oi is an integer between 1 and P if there are P speakers

involved. Our aim is to find a set of cluster indices H = {h1, h2, . . . , hN} assigned for N utterances

to be clustered that maximizes the average cluster purity defined by Eq. (2), i.e.,

H∗ = arg max
H

1

N

M∑

m=1

nm




P∑

p=1

n2
mp

n2
m




= arg max
H

1

N

M∑

m=1

∑P
p=1

[∑N
i=1 δ(hi,m)δ(oi, p)

]2

∑N
i=1 δ(hi,m)

, (19)

where δ() is a Kronecker Delta function.

However, as the computation of cluster purity requires that the true speaker of each utterance

is known in advance, it is impossible to find H∗ from Eq. (19) directly. To make this equation

solvable, we need to estimate the term
∑P

p=1

[∑N
i=1 δ(hi,m)δ(oi, p)

]2
in the absence of the ground

truth. Since

P∑

p=1

[
N∑

i=1

δ(hi,m)δ(oi, p)

]2

=
P∑

p=1

[
N∑

i=1

δ(hi,m)δ(oi, p)

] 


N∑

j=1

δ(hj,m)δ(oj, p)




=
N∑

i=1

N∑

j=1

P∑

p=1

δ(hi,m)δ(oi, p)δ(hj,m)δ(oj, p)

=
N∑

i=1

N∑

j=1

δ(hi,m)δ(hj,m)




P∑

p=1

δ(oi, p)δ(oj, p)




=
N∑

i=1

N∑

j=1

δ(hi,m)δ(hj,m)δ(oi, oj), (20)

the estimation of
∑P

p=1

[∑N
i=1 δ(hi,m)δ(oi, p)

]2
hinges on how to determine the term δ(oi, oj) when

utterances Xi and Xj are located in the cluster cm. Motivated by Solomonoff et al.’s work [6], we

determine δ(oi, oj) by using the following approximation:

δ̂(oi, oj) =





1, if i = j

Su(Xi,Xj)

Su(Xi,Xξi
)
, if i 6= j, and R [Su(Xi,Xj)] ≤ nm

0, otherwise

, (21)

where R [Su(Xi,Xj)] denotes the rank of inter-utterance similarity Su(Xi,Xj) among Su(Xi,X1),

Su(Xi,X2), · · ·, Su(Xi,XN) in descending order, and Xξi
is the utterance most similar to Xi, i.e.,

R [Su(Xi,Xξi
)] = 2. Implicit in Eq. (21) is the idea that two utterances, Xi and Xj, can only be

considered as being from the same speaker if the similarity Su(Xi,Xj) is high enough to satisfy

R [Su(Xi,Xj)] ≤ nm. In addition, to avoid a possible misjudgement arising from an over-sized
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nm, we approximate δ(oi, oj) as the probability that utterances Xi and Xj belong to the same

speaker. This possibility is measured by comparing the similarity Su(Xi,Xj) with that of the two

utterances that most likely belong to the same speaker, i.e., Su(Xi,Xξi
). With this approximation,

an optimal H∗ may be found according to

H∗ = arg max
H

1

N

M∑

m=1

∑N
i=1

∑N
j=1 δ(hi,m)δ(hj,m)δ̂(oi, oj)∑N

i=1 δ(hi,m)
. (22)

We note that the solution to Eq. (22) remains non-trivial, since a gradient-based optimization

cannot be used in this scenario. Moreover, it is infeasible to perform an exhaustive search that

would examine all possible solutions to determine the best one, because there are MN possible

combinations of cluster indices. To overcome these difficulties, we apply the genetic algorithm

(GA) [21] to find H∗ by using its global scope and parallel searching power.

The basic operation of the GA is to explore a given search space in parallel by means of

iterative modifications of a population of chromosomes. Each chromosome, encoded as a string

of alphabets or real numbers called genes, represents a potential solution to a given problem.

In our task, a chromosome is exactly a legitimate H, and a gene corresponds to a cluster index

associated with an utterance. However, since the index of one cluster can be interchanged with

that of another cluster, multiple chromosomes may lead to an identical clustering result. For

example, the chromosomes {1, 1, 1, 2, 2, 3, 3}, {1, 1, 1, 3, 3, 2, 2}, {2, 2, 2, 1, 1, 3, 3}, {2, 2, 2, 3, 3, 1, 1},
{3, 3, 3, 2, 2, 1, 1}, and {3, 3, 3, 1, 1, 2, 2} represent the same clustering result of grouping seven

utterances into three clusters. Such a non-unique representation of the solution would significantly

increase the GA search space, and could lead to an inferior clustering result. To avoid this problem,

we limit the inventory of chromosomes to conform to a baseform representation defined as follows.

Let I(cm) be the lowest index of the utterance in the m-th cluster, cm = {Xi|hi = m, 1 ≤ i ≤ N}.
A chromosome is a baseform iff

∀ cm and cl, if m < l, then I(cm) < I(cl). (23)

As the above example shows, chromosome {1, 1, 1, 2, 2, 3, 3} is a baseform, since the lowest in-

dices of the utterances in the first, second, and third clusters are 1, 4, and 6, respectively, which

satisfies Eq. (23). In contrast, chromosome {1, 1, 1, 3, 3, 2, 2} is not a baseform, since the lowest

indices of the utterances in the first, second, and third clusters are 1, 6, and 4, respectively, which
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does not satisfy Eq. (23). Likewise, the other chromosomes, {2, 2, 2, 1, 1, 3, 3}, {2, 2, 2, 3, 3, 1, 1},
{3, 3, 3, 2, 2, 1, 1}, and {3, 3, 3, 1, 1, 2, 2} are not baseforms. Even so, it is conceivable that all the

non-baseform chromosomes could be converted into a unique baseform representation by inter-

changing the clusters’ indices.

Fig. 3 shows a block diagram of GA-based optimization. It starts with a random generation

of baseform chromosomes according to a certain population size. The fitness of all chromosomes

is then evaluated and ranked on the basis of the estimated average purity, i.e.,

ρ̄(H) =
1

N

M∑

m=1

∑N
i=1

∑N
j=1 δ(hi,m)δ(hj,m)δ̂(oi, oj)∑N

i=1 δ(hi, m)
. (24)

As a result of this evaluation, a particular group of chromosomes is selected from the population to

generate offspring by subsequent recombination. The selection reflects the fact that chromosomes

with superior fitness have a higher chance of being included in the next generation than those

with inferior fitness. To prevent premature convergence of the population, this study employs the

linear ranking selection scheme [31], which sorts chromosomes in increasing order of fitness, and

then assigns the expected number of offspring according to their relative ranking.

Next, crossover among the selected chromosomes proceeds by exchanging the substrings of two

chromosomes between two randomly selected crossover points. A crossover probability is assigned

to control the ratio of the number of offspring produced in each generation to the population

size. After crossover, a mutation operator is used to introduce random variations into the genetic

structure of the chromosomes. This is done by generating a random number and then replacing

one gene of an existing chromosome with a mutation probability. The resulting chromosomes

that do not conform the baseform representations are converted into their baseform counterparts.

The procedure of fitness evaluation, selection, crossover, and mutation is repeated continuously,

which follows the principle of survival of the fittest, to produce better approximations of the

optimal solution. Accordingly, it is hoped that the average purity of the clustering will increase

from generation to generation. When the maximum number of generations is reached, the best

chromosome in the final population is taken as the solution of H∗.
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V. ESTIMATION OF THE SPEAKER POPULATION SIZE

In general, the more clusters we generate, the larger the value of purity we can obtain. However, if

we generate too many clusters, a single speaker’s utterances would be split across multiple clusters,

so the speaker clustering would be incomplete. Clearly, the optimal number of clusters is equal to

the speaker population size, which is unknown and needs to be estimated.

Our basic strategy for estimating the speaker population size is to define a score for assessing a

partitioning of the utterances based on how a large average purity can be achieved at the expense

of increasing the number of clusters. This problem may be tackled from the standpoint of model

selection. Specifically, if each of the possible partitionings with different numbers of clusters is

considered as a model for characterizing the speaker information of the utterances, we choose

the model that can produce the largest average purity and has the smallest number of clusters.

Viewed in this manner, the Bayesian information criterion (BIC) [32], which is popular for solving

model-selection problems, could be used to assess the clustering.

The BIC assigns a value to a parametric model based on how well the model fits a data set,

and how simple the model is:

BIC(Λ) = log Pr(O|Λ)− 1

2
γ#(Λ) log |O|, (25)

where γ is a penalty factor generally set to one, #(Λ) denotes the number of free parameters in

model Λ, and |O| is the size of the data set O. The larger the value of BIC(Λ), the better model

Λ will perform. In another work on speaker clustering [7], BIC is applied to score a partitioning

of an utterance collection, in which a cluster is represented by a uni-Gaussian density estimated

from the feature vectors of the utterances, and the model Λ is a set of Gaussian densities. Since

we convert each utterance from the feature vectors into a projection vector, our work differs from

[7] by the way clusters are modeled, which is directly related to the clustering performance.

Consider a model Λ, consisting of M parameters for classifying a set of N utterances from

P unknown speakers. Each of the parameters represents an integer index to tag each of the

utterances. The model is designed with such an aim that, by having all the utterances tagged, the

utterances belonging to the same speakers are tagged with the same index. Thus, the likelihood

Pr(O|Λ), which measures how well the model fits the data, is concerned with the probability that,
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given N indices h1, h2, . . . , hN for the N utterances, X1,X2, . . . ,XN , the utterances tagged with

the same indices come from the same speakers. Suppose that the true speakers of N utterances,

o1, o2, . . . , oN , are statistically independent of each other. We compute the likelihood Pr(O|Λ) by

Pr(O|Λ) =
N∏

i=1

Pr (oi = O(X)|hi = C(X))

∼=
[
Pr

(
O(X̀) = O(X)|C(X̀) = C(X)

)]N
, (26)

where O(X) denotes the true speaker of an arbitrary utterance X tagged with index C(X), and

Pr (oi = O(X)|hi = C(X)) represents the probability that, given an arbitrary utterance X tagged

with the same index as utterance Xi, the true speakers of utterances Xi and X are the same. For

computational efficiency, all the probabilities Pr (oi = O(X)|hi = C(X)), 1 ≤ i ≤ N , are approxi-

mated by Pr
(
O(X̀) = O(X)|C(X̀) = C(X)

)
, which is the probability that any two utterances X

and X̀ tagged with the same index come from the same speaker.

Assume that there are nm utterances tagged with m, and among these nm utterances there

are nmp utterances produced by speaker sp. If we pick one of the nm utterances twice at random,

with replacement, the probability that both of the picked utterances come from sp is (nmp/nm)×
(nmp/nm). Thus, the probability that two utterances tagged with m come from the same speaker is

∑P
p=1(nmp/nm)2, which is also the cluster purity ρm defined in Eq. (1). Since the probability that

one utterance tagged with m is nm/N , we can estimate the probability that any two utterances

X and X̀ tagged with the same index come from the same speaker by

Pr
(
O(X̀) = O(X)|C(X̀) = C(X)

)
=

M∑

m=1

nm

N




P∑

p=1

(nmp/nm)2


 = ρ̄. (27)

Approximating ρ̄ as ρ̄(H) in Eq. (24), the likelihood Pr(O|Λ) can be obtained with ρ̄(H)N .

Accordingly, we can score a partitioning of N utterances having M clusters via

BIC(M -clustering) = N log ρ̄(H)− 1

2
γM log N. (28)

The BIC-based score should increase with the increase of the M value in the beginning, but will

decline significantly after an excess of clusters is created. A reasonable number of clusters can

thus be determined by

M∗ = arg max
2≤M≤N

BIC(M -clustering). (29)

17



VI. EXPERIMENTS

A. Speech Data

Our speech database comprised two subsets, respectively, extracted from two corpora released by

the Linguistic Data Consortium [33]: the 1998 HUB-4 Broadcast News Evaluation English Test

Material (Hub4-98), which consists of broadcast news speech recorded at a 16 kHz sampling rate,

and the 2001 NIST Speaker Recognition Evaluation Corpus (SRE-01), which consists of cellular

telephone speech recorded at an 8 kHz sampling rate. The first subset contained 428 speaker-

homogeneous utterances obtained by segmenting the episode “h4e-98-2” of Hub4-98, according to

the annotation file. This subset involved 89 speakers, in which the number of utterances spoken

by each speaker ranged from 1 to 27. The second subset, which stems from the test set of SRE-01,

contained 197 speaker-homogeneous utterances spoken by 15 randomly-selected male speakers 3.

The number of utterances spoken by each speaker ranged from 5 to 39. Speech features, each

consisting of 24 Mel-scale frequency cepstral coefficients (MFCCs), were extracted from these

utterances for every 20-ms Hamming-windowed frame with 10-ms frame shifts. Prior to MFCC

computation, voice active detection [34] was applied to remove salient non-speech regions that

may be included in an utterance.

B. Experimental Results

1) Comparison of different inter-utterance similarity measures

Our first experiment was conducted to assess the performance of various inter-utterance similarity

measures proposed in this study. Since a good similarity measure should consistently produce

larger values for similarities between utterances of the same speaker and smaller values for simi-

larities between utterances of different speakers, the assessment can be done by examining if the

produced values are well distinguished for these two conditions. To do this, we compute two types

of error probability for each inter-utterance similarity measure. One is the probability that two

same-speaker utterances are falsely judged as being from different speakers (Type-I error), and the

3Empirical evidence shows that male speakers usually can be well distinguished from female speakers. We

therefore focused on investigating the speech from single gender speakers.
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other is the probability that two different-speaker utterances are falsely judged as being from the

same speaker (Type-II error). These two types of error probability are subject to tradeoff, which

can be represented by the Detection Error Tradeoff (DET) curve [35]. This representation takes

as input the values of inter-utterance similarities, and produces as output the corresponding Gaus-

sian deviates of the error probability distribution. The resulting DET curves are approximately

straight lines, making it easier to visually compare the performance of different methods.

Figs. 4 and 5 show the DET curves obtained by testing subsets “SRE-01” and “h4e-98-

2”, respectively. In the figures, “UD-GMM”, “UI-VC”, “UI-GMM-ADA”, and “EV” denote

the methods used to create the reference spaces, respectively, by utterance-dependent Gaussian

mixture modeling (Sec. III-A), utterance-independent vector clustering (Sec. III-B), utterance-

independent Gaussian mixture modeling followed by MAP adaptation (Sec. III-C), and the

eigenvoice-motivated approach (Sec. III-D). In addition, “GLR” denotes the generalized like-

lihood ratio-based similarity measure, which served as a baseline for performance comparison.

Briefly, GLR between two utterances Xi and Xj is computed using

Su(Xi,Xj) =
Pr(Xij|λij)

Pr(Xi|λi) Pr(Xj|λj)
, (30)

where Xij is the concatenation of Xi and Xj, and λi, λj, and λij are parametric models trained

using Xi, Xj, and Xij, respectively. Each similarity measure was examined with varied config-

urations, i.e., varied numbers of Gaussian components, codewords, and eigenvectors. Although

different numbers of Gaussian components should be used for utterances of different durations,

we only examined each similarity measure in terms of the average performance by using the same

number of Gaussian components. In addition, except for the single-Gaussian models, which were

full-covariance structures, all the GMMs used in this study comprised diagonal covariance matri-

ces. The thick line in each figure indicates the best discriminating performance that a similarity

measure can achieve. The best performances for all the similarity measures were summarized in

Figs. 4(f) and 5(f).

We can see from Figs. 4(f) and 5(f) that the eigenvoice-motivated approach performed best,

while the GLR-based approach performed worst in distinguishing between same-speaker utterances

and different-speaker utterances. The other three approaches, “UD-GMM”, “UI-VC”, and “UI-

GMM-ADA” were between these two extremes. The results indicate that the proposed inter-
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utterance similarity measures are superior to the GLR-based approach. This is attributed to the

benefit of using a voice reference space to incorporate out-of-pair information into the similarity

computation for every pair of utterances. Figs. 4(f) and 5(f) also show that both “UI-VC”,

and “UI-GMM-ADA” performed better than “UD-GMM”. As pointed out in Sec. III-A, the

major weakness of “UD-GMM” is that each basis of the reference space is generated from one

utterance only, leading to the sensitivity of performance to the utterance duration or speech

quality. Although the performance of “UD-GMM” may be improved by using different numbers of

Gaussian components for utterances of different durations, automatically determining the optimal

number of Gaussian components according to the utterance duration remains an unsolved issue

and may be costly too expensive to fit the speaker-clustering task. By contrast, since each of the

bases in “UI-VC”, and “UI-GMM-ADA” is generated with the contribution of multiple utterances,

the resulting similarity measures are more robust than that using “UD-GMM”. In addition, we

can see that “UI-GMM-ADA” yielded a slightly better result than “UI-VC”. The performance of

“UI-GMM-ADA” can be further improved by converting the bases into a statistically-independent

set of eigenvectors through the use of the eigenvoice technique.

2) Comparison of different speaker-clustering methods

Experiments were then conducted to examine the performance of speaker clustering based on the

best configuration for each of the inter-utterance similarity measures. We employed the agglomer-

ative hierarchical clustering described in Sec. IV-A as a benchmark test. Figs. 6 and 7 show the

average purity of speaker clustering as a function of the number of clusters, in which (a), (b), and

(c) are the results obtained with complete linkage, average linkage, and single linkage, respectively.

We can see that, as expected, the average purity increases as the number of clusters increases.

Overall, the eigenvoice-motivated approach performed best, and “UI-GMM-ADA” and “UI-VC”

came second and third, respectively. This result is roughly consistent with the result shown in

Figs. 4 and 5. In addition to the choice of inter-utterance similarity measures, the performance

of agglomerative speaker clustering is heavily dependent on the way that the similarity between

clusters is represented. Comparing (a), (b), and (c) of Figs. 6 and 7, we can see that complete

linkage is the best choice in this task, whereas single linkage is unusable. Focusing on Figs. 6(a)

and 7(a), we can see that when the number of clusters is equal to the speaker population size, the
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best average cluster purity obtained with the eigenvoice-motivated approach was 0.72 and 0.76 for

“SRE-01” and “h4e-98-2”, respectively. This demonstrates a notable improvement, compared to

0.51 and 0.72 obtained with the GLR-based approach.

Next, we examined if the speaker-clustering performance can be further improved by using

the proposed maximum purity clustering method. In the GA optimization, the parameter values

used for the maximum number of generations, the chromosome population size, the crossover

probability, and the mutation probability were empirically determined to be 4000, 5000, 0.5, and

0.1, respectively. Fig. 8 shows the results obtained with agglomerative hierarchical clustering and

maximum purity clustering, in which the inter-utterance similarity was computed on the basis

of the eigenvoice-motivated approach. It is clear that maximum purity clustering outperforms

agglomerative hierarchical clustering. When the number of clusters was specified as equal to the

speaker population size, we can see that the average purity was improved from 0.72 (“SRE-01”)

and 0.76 (“h4e-98-2”), yielded by the agglomerative hierarchical clustering, to 0.81 (“SRE-01”)

and 0.82 (“h4e-98-2”), yielded by the maximum purity clustering.

3) Automatic determination of the speaker population size

Finally, the problem of automatically determining the speaker population size was investigated.

We computed the BIC-based scores with respect to different numbers of clusters using Eq. (28).

Fig. 9 shows the resulting scores obtained with the penalty factor γ set to be equal to, slightly

greater than, and slightly smaller than one, respectively. The arrowed peak of each curve in the

figures indicates the optimal number of clusters determined by the criterion of Eq. (29). We can

see from Fig. 9(a) that most of the peaks appeared near the actual speaker population size, and

the scores declined significantly after an excess of clusters was created. In general, the smaller

the value of penalty factor, the larger the estimated optimal number of clusters, and vice versa.

The results show that the speaker population size in subset “SRE-01” was estimated very well.

However, Fig. 9(b) shows that the speaker population size in subset “h4e-98-2” tends to be

underestimated. We speculate that this underestimation is mainly because, among the total 89

speakers in subset “h4e-98-2”, there were 30 speakers who spoke only one utterance, and many

of these speakers’ utterances were shorter than five seconds, which leads to the tendency that

these speakers are ignored. Despite this, we observe from the figure that we can mitigate such
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underestimation by setting the penalty factor to be slightly less than one. This result indicates

the feasibility of automatically determining the speaker population size.

VII. CONCLUSIONS

This study has investigated the methods of enhancing the inter-utterance similarity measurement

for speaker clustering. Through the use of a voice characteristic reference space, the relationships

of similarity among the utterances to be clustered can be exploited more effectively and reliably.

We have presented several implementations for reference space creation. In particular, to capture

the most representative characteristics of speakers’ voices, the reference space has been represented

as a set of eigenvectors obtained by applying the eigenvoice technique to the set of utterances to be

clustered. This achieved a notable improvement in the speaker-clustering performance, compared

to the common inter-utterance similarity measure based on the generalized likelihood ratio.

In addition, we have studied the method beyond the conventional hierarchical clustering for

generating clusters such that all the within-cluster utterances can be, as far as possible, from one

single speaker. This requirement has been formulated as a problem of estimating and maximizing

the overall cluster purity. By representing cluster purity as a function of inter-utterance similarity,

and applying the genetic algorithm to find the solution of this function, we have demonstrated

a further improvement in the speaker-clustering performance, compared to the conventional ag-

glomerative hierarchical clustering. Furthermore, the clustering method has been incorporated

with the Bayesian information criterion to determine how many clusters should be generated.

Experimental results show that the automatically-determined number of clusters can approximate

the actual speaker population size.

With regard to usability, our future work will extend the current speaker-clustering methods to

deal with speech data containing multiple non-simultaneous or simultaneous speakers. The clus-

tering of non-simultaneous-speaker utterances may be done by either assigning each utterance to

multiple related clusters [9] or pre-segmenting utterances into small speaker-homogeneous regions

and then clustering these small regions. For handling simultaneous-speaker utterances, specific

techniques for detecting and analyzing “overlapping speech” may be required.
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Fig. 1. The proposed speaker-clustering framework. 
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Fig. 2. An example of a projection using a reference space constructed by 
utterance-dependent Gaussian mixture modeling, in which the projection vectors 
computed from a collection of nine utterances are shown in gray scale representation. 
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Fig. 3. Flow diagram of the genetic algorithm. 
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(a) GLR (d) UI-GMM-ADA 

(b) UD-GMM (e) EV 

(c) UI-VC (f) A summarization of the best performances in (a) – (e)
Fig. 4. DET curves obtained with various inter-utterance similarity measures for subset “SRE-01”. 

29 



(a) GLR (d) UI-GMM-ADA 

(b) UD-GMM (e) EV 

(c) UI-VC (f) A summarization of the best performances in (a) – (e)
Fig. 5. DET curves obtained with various inter-utterance similarity measures for subset “h4e-98-2”. 
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Fig. 6. Performance of speaker 
clustering obtained with various 
inter-utterance similarity measures 
for subset “SRE-01”. 
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(a) Complete linkage agglomerative clustering 
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(b) Average linkage agglomerative clustering 
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(c) Single linkage agglomerative clustering 
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Fig. 7. Performance of speaker 
clustering obtained with various 
inter-utterance similarity measures 
for subset “h4e-98-2”. 
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(a) Complete linkage agglomerative clustering 
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(b) Average linkage agglomerative clustering 
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(c) Single linkage agglomerative clustering 
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Speaker Population Size = 15
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(a) Tests on subset “SRE-01” 

 

Speaker Population Size = 89
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(b) Tests on subset “h4e-98-2” 

 
Fig. 8. Performance of speaker clustering obtained by conventional hierarchical 
clustering; and the proposed maximum purity clustering, in which the inter-utterance 
similarities were computed on the basis of an eigenvoice-motivated reference space. 
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(a) Tests on subset “SRE-01” 
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(b) Tests on subset “h4e-98-2” 

 
Fig. 9. BIC values as a function of number of clusters. 
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