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Abstract 
This paper is aimed at introducing a faster collision detection algorithm for convex polyhedral in 

a three-dimensional workspace. The problem of collision detection has been researched in the 

literature of computer graphics, robotics, computational geometry, computer animation, and 

physically-based modeling. It has been regarded as a computationally demanding task and is often 

treated as an advanced feature. In this paper, we present a faster way to solve the collision detection 

problem by using the enclosed ellipsoid method. Enclosed ellipsoid method gets fewer collision error 

report than the standard bounding volume method, such as boxes or spheres.  We split ellipsoids into 

facial areas and ignore the areas which are always the heavier computational load but impossible to be 

collided with. There are some computer simulations showing how the facial split method increases the 

efficiency of the detection in comparison with the original enclosed ellipsoid method. 



 2 

1. Introduction 
Computing distance between two objects is an important problem in various field s, including 

computer graphics, animation and simulation. Using mathematical models of objects, we find that 

there is a certain point on each object that makes the distance between them minimum. If the point of 

one object is at the face of the other object, they are regarded as collided with each other. Bounding 

volume is one of the most important methods in the collision detection area. It can enclose the 

complex structure of an object by covering it with a simple geometric object such as a sphere. The 

sphere is a good bounding volume to reduce the computational work because it only requires checking 

the distance between the centers of spheres. But the tradeoff of sphere bounding volume method is that 

it contains too much redundant spaces, which fails to make collision detection precise.  So there are a 

lot of bounding volume methods presented to make the detection more precise and less computational 

works, such as OBB[10], Enclosing Ellipsoid[3] and Enclosed Ellipsoid[7,8]. An ellipsoid is capable 

of representing a convex polyhedron, such as robot’s links, in the direction of its axis. Besides, the 

main advantage of ellipsoid model is that it is very simple in mathematical representation; therefore it 

can reduce the complexity of computations to be required. An ellipsoid is represented as ),( Yynε  in 

this paper, where n is the dimension, y is the center, and Y is the characteristic matrix.  Enclosing 

Ellipsoid is a better bounding volume compared with sphere or box because it can fit the original 

object tighter. But there are still unnecessary space bounded by enclosing ellipsoid, especially for the 

rectangle object which is the most common part in robots. Then enclosd ellipsoid method presented by 

[7,8] makes a new ellipsoid which is inside the original object from enclosing ellipsoid. By comparing 

the nearest points between the two enclosed ellipsoids, we can determine whether the objects are 

collided with each other or not. Although enclosed ellipsoid already reduces much computational work 

in collision detection, there are still some cases in which to perform full faces checking is needed, and 
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it costs about 70% of the full collision detection time.(section [5.1] ) So we focus on the full faces 

checking cases and make it a more efficient detection. 

 

2 Previous work 
Since collision detection is needed in a wide variety of situations many different methods have 

been proposed. To decrease the computation complexity and increase the performance of collision 

detection, objects are generally modeled as a simpler primitive or as a union of simpler primitives[15]. 

However, the selection of primitives should reflect a good balance between the efficiency of 

primitive-primitive intersection detections and the number of primitives required to adequately 

represent the world model. In the proposed algorithm, ellipsoids are selected to represent objects.  

 

2.1 Oriented bounding boxes 

Oriented bounding boxes (OBB) perform better than axis-aligned boxes or spheres because they 

fit the enclosed objects closer. OBB can recursively partition the bounded polygons and bound the 

resulting groups to build the OBB trees.[10] 

 

2.2 Enclosing Ellipsoid 

Löwner-John (L-J) ellipsoid, the minimum-volume enclosing ellipsoid of a convex object, is an 

intuitively appealing means to lump the detailed geometry into a single quadratic surface. The 

computation of the L-J ellipsoid is a convex optimization problem [3] whose solution can be derived 

by applying the ellipsoid algorithm [16].  

 

2.3 Enclosed Ellipsoid 
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It is a very difficult to generate an enclosed ellipsoid with maximum volume for a convex 

polyhedron since the procedure depends on the geometrical shape and the selection of the center 

coordinate of the enclosed ellipsoid.[7] Therefore, the proposed method focuses on applying 

geometrical deformation operations on the L-J ellipsoid to generate an enclosed ellipsoid which is as 

large as possible to fit the polyhedron tightly. For our implementation, a 3-phase approach, which 

shrinks, stretches, and then scales an L-J ellipsoid, is proposed.[8]  

Phase.1: Isotropically shrinking all principal axes 

An initial enclosed ellipsoid is given by shrinking the L-J ellipsoid along its principal axes 

isotropically to be contained in the polyhedron in phase 1. To guarantee that the polyhedron contains 

the initial ellipsoid, the ellipsoid )16,(3 Yyε  is selected to be the initial guess for enclosed ellipsoid 

computation in 3-dimensional case [9]. The regulation of the shrinking factor is based on the bisection 

method. The phase terminates with a user-defined error while the ellipsoid cannot extend further 

without intersecting with the facets of a polyhedron.  

Phase.2: Stretching the enclosed ellipsoid 

The phase 1 terminated while the enclosed ellipsoid is very close to one of the polyhedron’s facets; 

however, it still has some free space to enlarge the enclosed ellipsoid. Stretching operation [8] is 

applied to expanding the enclosed ellipsoid along a given direction in phase 2. Let s be the point to 

adapt to and ),(3 Mcε  be the enclosed ellipsoid generated in phase 1. The idea is to move the 

ellipsoid’s center towards to the point, i.e. s, and then stretch the ellipsoid along the  movement 

direction such that the old border point in the opposite direction remains a border point. Therefore the 

new center is represented as 

)( cscc −+=′ β , 

where β  determines how far to move the ellipsoid’s center. With the normalized distance vector 
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)(/)( 2/12/1 csMcsMa −−=
, 

the new transformation matrix is given as 
1/22/1 ))1(( MaaIM T−+=′ α , 

where ))(1/(1 csM1/2 −+= βα
. 

It is worth to notice that enlarging an ellipsoid means that its transformation matrix makes the 

vectors shorter, therefore α  is always smaller than 1. In the stretching operation, s is given as 

cscs −−⋅ mml /)( , where l is the distance from the farthest facet of the polyhedron to c, the center of 

enclosed ellipsoid, and ms  is the mass center of vetices of the farthest facet. In our implementation, 

β  is initialized as 1 and inside the range from 0 to 1. The selection of β  is also based on the 

bisection method. The algorithm terminates while the variation of β  is smaller than a user-defined 

threshold.  

Phase.3: One by one enlarging each radius 

Let ),(3 Mc ′′ε  be the enclosed ellipsoid generated by means of stretching. Since the matrix  M ′  is 

symmetric and positive-definite, it can be diagonalized through a rotational matrix V. The relation is 

expressed as VMVD ′= −1 . 

In fact, matrix V is the matrix of eigenvectors of matrix M′  and matrix D is a diagonal matrix with 

M′ ’s eigenvalues on the main diagonal. Since the inverse square roots of matrix M′ ’s eigenvalues are 

equivalent to the length of principal axes of the enclosing ellipsoid, the change of ellipsoid’s each 

radius can be performed individually by means of multiplying matrix D with a scaling matrix S , which 

is also diagonal. Therefore, each new radius of the enclosed ellipsoid can be written as SDD =′ , and the 

enlarged enclosed ellipsoid can be represented as -1VDVM ′=′′ . 
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Figure. 0. The distance estimates based on enclosed ellipsoids 

Phase.4: Nearest points computing 

After the three phases computing, we have both enclosing ellipsoids and enclosed ellipsoids at the 

same time.( Figure.0) X* and Y* are the nearest points between both enclosed ellipsoids.the line 

passes through X* and Y* will although intersects original objects as points Q1 and Q2, intersects 

enclosing ellipsoids as points P1 and P2.With the criterion ),,min( 221121 threshold    qpqpqq > , collision 

detection can be fast computed by the upper bound and lower bound limitations. 
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3 Facial Area Splitting 

3.1 Original computational time 

Enclosed ellipsoid method consists of  (a)make a LJEllipsoid for the object (b)isotropically shrink 

the LJEllipsoid to enclosed ellipsoid (c)streteching the enclosed ellipsoid (d)enlarging each radius of 

ellipsoid (e)computing X*, Y* (f) lower bound and (g) upper bound. Chart.1 shows the time spending 

in each step . but (a) (b) (c) (d) are the processes which are computed only a single time. They need 

not to be computed again until objects become deformed or divided. So during most of the time, 

collision detection only uses the (e) (f) (g) steps.  Chart.2 shows that (f) step is the largest  

proportion of time consuming. That the (f) step takes the largest proportion is due to the full faces 

checking. It’s used to search the point on each object intersected by the nearest points of both enclosed 

ellipsoids. this paper focuses on this drawback and provides an improvement on it. 

 

Figure.1 (a)left picture: It’s hard to determine the nearest point between 2 ellipsoids. (b)right picture: 

it’s much easier to determine if the collision occurs between a sphere and a ellipsoid. 

 

3.2 Transform ellipsoid into sphere 

There are two reasons why we need to transform the ellipsoid into the sphere. First, it’s not easy 

to compute the nearest point between ellipsoids. Second, spheres are simpler for the latter facial area 

splitting. The general equation of the ellipsoid is  
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so we can present an ellipsoid as 00
2/1

0 ),( xBMMxn += −ε  , where 0B  represents a unit ball centered 

at the origin and 2/1M  is the square root matrix M . Suppose x is a position vector in world 

coordinate, while the ellipsoid is transformed into a ball centered at the origin of a coordinate, the 

position vector x  with respect to the new coordinate is presented as )( 0
2/1 xxMx −=′ . With this 

equation, we can transform ellipsoid into spheres. So the distance between two ellipsoids becomes the 

distance between sphere and ellipsoid which is equal to the distance between a point and ellipsoid but 

the result needs subtracting the radius of sphere. 

 

Figure.2 The left picture shows the major portion of surface is unnecessary to check if collided. 

Right picture shows an facial area splitting example that only part I need to be checked. 

3.3 Splitting the Sphere Surface  
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During the (e) (f) (g) steps of enclosed ellipsoid method, full faces checking is necessary to 

determine the nearest point at each object . Actually, only a minor portion of surface needs checking, 

so superfluous work was done but it is just a waste of time. The dash line in figure.2 left picture means 

unnecessary checking surfaces of sphere. So we can split the sphere surfaces like figure.2 right picture, 

and use certain way to ignore part II, III and IV because only part I needs to be considered in collision 

detection.  We could split the sphere surface into 8 parts. There is a unique vector in every part which 

could be used to check if this part could be ignored or not. We assume that 1P  is the center of the 

ellipsoid, 2P  is the center of the sphere. 21PP   means the vector from 1P  to 2P . The collision is 

impossible  to happen if the dot value is smaller than 2/2−  ( this value will be proved in Section 4 ). 

So we could just do 8 times vector checking and then ignore all the parts which the dot value is smaller 

than 2/2− .  All the faces on the ignored part of surface won’t be computed during the collision 

detection, so we could determine the nearest point on each object faster. 
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4 Facial Area Splitting at the Sphere 

4.1 Proposition.1 :  

There is at least half of surface of sphere which is unnecessary to be checked if 

collided with a ellipsoid in enclosed ellipsoid method. 

 

Figure.3  the projection of the Sphere, the Ellipsoid and the box. 

 

Prove : We assume that 1O  is the center of the sphere, 2O  is the center of the ellipsoid. We can find 

a box which has the same center as the ellipsoid and could just cover the ellipsoid . Project all the three 

objects to a certain plane , and the box could be projected as a rectangle. 21OO is the line between 

sphere and ellipsoid centers.  FBand
21OO  are perpendicular to each other. So Angle °=∠ 9012 BOO  . 

If the point A of the rectangle is possible to move to point B, then AC  will be the line tangent to 

point B. It will make °=∠ 901ACO , but ACOAOO 121 ∠〉∠ . So that °〉∠ 9021AOO .Combining the 

angle °=∠ 9012 BOO and  °〉∠ 9021AOO  will find out that triangle BOO 12∆ is impossible to exist 

because of the overflow sum of angles. So A is impossible to move to point B and C is impossible to 

move to point F for the same reason. Finally, the left half part FB
))

 of surfaceof the sphere is 
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impossible  to be touched by rectangle AEDC  , and so does the ellipsoid covered by the rectangle. So 

Proposition.1 is proved. 

 

4.2 Proposition.2:  

Suppose 1P  is the center of the ellipsoid and 2P  is the center of the sphere. The 

collision is impossible to happen if the dot value between 21PP  and the vector of a 

facial area is smaller than 2/2− . 

.  

Figure.4  The 8 vectors are the dash lines as well as facial spltting vectors for the Sphere. 

A Object  X Y Z 

Vec.1 +1 +1 +1 

Vec.2 +1 +1 -1 

Vec.3 +1 -1 +1 

Vec.4 +1 -1 -1 

Vec.5 -1 +1 +1 

Vec.6 -1 +1 -1 

Vec.7 -1 -1 +1 

Vec.8 -1 -1 -1 

 

1 5

2 

6 

3 

7 

8 
4 
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Prove: In figure.4, there are 8 vectors of facial areas and the ellipsoid at the right side of the sphere. 

According to  the Proposition.1, we know that at least half of the surface is not necessary to be 

checked if colliding with the ellipsoid. But if we have already split the surface of sphere into facial 

areas, then we need to consider again about the dot between centers vector and facial areas vectors 

because that center vectors are not always the same as one of the facial vectors. Figure.5 is the easier 

version to explain by projecting figure.4 objects into a plane. Ellipsoid E is at the right side of Sphere 

S ant the center vector is the same as one of the facial vectors, so Ellipsoid E only needs to take part I 

and part II into consideration to check if any collision occurs according to Proposition.1. But 

considering another Ellipsoid F,  there is no facial area vectors the same as center vector FS .  So 

Ellopsoid F needs to consider both the facial vectors near himself and 2 answers are obtained— (1)part 

I and part IV need to check, (2)part III and part IV need to check.  So the conclusion from (1) and (2) 

can only discard the part II.  The best condition occurs at the moment when centers vector and facial 

areas vector are the same that the computational wok is only half of full. The worst condition occurs 

when the centers vector is at the middle position between 2 facial areas vectors and the included angle 

between center areas and  each nearest facial areas vector is °45 . So in the possible collision, the 

lower bound of  the dot value of centers vector and facial areas vector would be extended from 0 to 

2/2−  ( cos ( )°90  to cos ( )°+° 4590  ).That means if the dot value is smaller than  , the facial areas 

are impossible to collide with the ellipsoid. Proposition.2 is proved. 
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Figure.5 Projection of figure.4 with the additional ellipsoid F. 

 



 14 

5 Simulation and Discussion 

We use the Pentium3-1.1GHz CPU with 384 MB system rams to run the simulations by Visual 

C++ under Microsoft Windows Xp. Here are the models we use in the simulation. 

 

Obj.0: Box(simplest)  

 

…   

Obj.Type1: Cylinders [ C02 ] ( 10 models ) 
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…    

Obj.Type2: Cylinders( Complex ) [ C06 ] ( 10 models ) 

 …   

Obj.Type3: Spheres ( Complex ) [ S06 ] ( 10 models ) 

 

 Vertex Face 
Face 

(after Face splitting) 

Box 8 12 36 

Cylinder 14 ~ 62 24 ~ 120 59 ~ 212 

Sphere 22 ~ 102 40 ~ 200 123 ~ 630 

Cylinder(Complex) 30 ~ 142 56 ~ 280 91 ~ 308 

Chart 0.  Details of the Objects’ Models  
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The Obj.0(Box) is the moving object that the collision detection need to be performed in every 

time frame with other objects. The reason why we choose box be the moving object is that box is the 

simplest object. The facial areas splitting method can reduce more computational works if objects are 

more complex. So it’s better to transform complex object info sphere and splits its surfaces than simple 

object. 
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5.1 The computational time of each enclosed ellipsoid step. 

LJEllipsoid

Stage1Stage2Stage3

(a)

X*Y*
LowBound

UpBound
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1 2 3 4 5 6 7 8

 

Chart.1: the Unit of Y axis is millisecond 

There are 2 kinds of steps of enclosed ellipsoid method. One is offline steps, such as (a)make a 

LJEllipsoid for the object (b)isotropically shrink the LJEllipsoid to enclosed ellipsoid (c)streteching 

the enclosed ellipsoid (d)enlarging each radius of ellipsoid. The other kind is online steps, such as 

(e)computing X*, Y* (f) lower bound and (g) upper bound. This chart shows that the offline steps take 

much more time than online steps. But offline steps are always computed one time only. Online steps 

compute faster but the computing work won’t stop until the experiment is finished.  
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Chart.2(a) the percentages( y axis ) of 3 online steps of 2 types models. 

 

Chart.2(b) the averaged percentages of 3 online steps. 

Chart.2 shows that the major part of online steps is the stage of computing upper bound, which is 

also the only one stage requiring the full faces checking. This paper focuses on this stage and presents 

a new method to reduce the faces checking computation. 

 

5.2 Facial Areas Splitting vs Original Enclosed Ellipsoid method. 
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Chart.3(a) the individual time of FAS computing.   

the Unit of Y axis is millisecond 

 

Chart.3(b) the average time of FAS computing. 
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Chart.3(c) the Percentage( y axis ) of the faces reduced from the Model.  

 

X axis at chart.3 stands for the Original and 3 types of objects. This chart shows the face reduced 

by the facial area splitting( righter 3 objects ) and original enclosed ellipsoid method( leftest ) by all 

objects. The more face reducing stands for the faster computing ability for collision detection. There 

are 2 abnormal results that facial areas splitting is slower than original EEM in Chart.3(a). The 

abnormal results should be due to the simpler object models. This facial areas splitting method for this 

simutation is splitting surfaces into 8 areas. If the number of faces of original object is less than 8, FAS 

is impossibly faster than full faces checking because of the checking times is smaller than 8. 

Totally, the original EEM takes the average 0.788 seconds while FAS only spends 0.701 second. 

Consequently,  FAS is 14.29% faster than original EEM. 

 

5.3 Total Improvement in Online Steps  

We know that Upper bound is the major part of online steps such as (e)computing X*, Y* (f) 

lower bound and (g) upper bound. Chart.2 at 5.1 also tells us that upper bound take 48% load in online 

82.5% 65.7% 73.1% 
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steps. And section5.2 tells us that FAS could reduce 26.23% faces at online Upper Bound step. So we 

totally increase the 14.9% performance for online steps of enclosed ellipsoid method. 

6 Conclusion 
The Proposition.2 shows that the theoretical worst case of facial areas splitting occurs at the 

moment when dot value is lesser than 2/2− . Among all the surfaces of the sphere, there is always 

1/8 = 12.5% areas free of  collision. The simulation resulting from section 5.2 is about 26.23%. 

However, the result is worse than ideal average case. That means there is still much space left to 

improve the facial areas splitting.   One way is to split the spheres into more and smaller faces.  

More and smaller faces can get the porportion of collision free areas bigger as well as reduce more the 

redundant computational work.  
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