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ABSTRACT
We show that an XML DTD (Document Type Definition)
can be viewed as the fixed point of a parametric content
model. We then use natural transformations from the source
content model to the target content model to derive DTD-
aware and validated XML document transformations. Ben-
efits of such transformations include static type-checking of
XML transformational programs, automatic validation of
target documents, and modular compositions of XML doc-
ument transformers.

We prototype these modular XML document transforma-
tions in Objective Caml. The prototype depends heavily
on the parametric module system of Objective Caml and is
highly modular. Using Objective Caml to model XML doc-
ument transformation also allows one to access high-level
language constructs and supporting libraries in Objective
Caml, hence enhance one’s productivity in XML program-
ming.

Categories and Subject Descriptors
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Specification Techniques.

General Terms
Design, Languages, Theory.

Keywords
Bird-Meertens formalism, document transformation and val-
idation, functional programming, modules and interfaces,
ML, Schema, XML.

1. BACKGROUND
Issues about XML document transformation have attracted
much research attention in recent years. As XML documents
are often quite complex, one needs certain guidelines in or-
der to express, clearly, the transformation one has in mind
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when processing them. Furthermore, one often requires the
transformation procedures to have certain nice properties,
so that one can be sure of the quality of the output docu-
ments, as well as the efficiency of the transformation proce-
dures themselves. For example, we may require the resulting
documents to be valid with respect to a certain DTD, and
we may demand the transformation procedure make no un-
necessary traversal on the input or intermediate documents
during the transformation.

There have been several proposals about XML query/processing
languages [9, 11, 12]. Many of these languages provides
XML-native syntax so one can program in concise expres-
sions the intended transformation. There are also XML
programming API in C++, Java, or other languages, to
help people process XML documents using conventional pro-
gramming languages [1]. What is less developed, however, is
an XML transformational framework where one can express
and prove properties of XML transformation functions. For
example, one may want to know whether two succeeding
XML document transformations can be fused into one so
that it suffices to traverse the input document only once.

The work reported in this paper is related to the follow-
ing work. XDuce is an typed XML processing language
that produces valid XML documents [12, 13]. Milo, Su-
ciu, and Vianu treated an XML transformer as a k-pebble
transducer whose type-correctness can be checked against
an output DTD [19]. Both of the above two languages are
first-order hence cannot express composition of XML trans-
formations in the languages themselves. Kuikka and Pent-
tonen surveyed grammar-based, tree transformational meth-
ods for transforming structured documents [15]. Akpotsui,
Quint, and Roisin worked on data type modeling for doc-
ument transformation in a structured editing systems [5].
Neven and Van den Bussche discussed the expressiveness
of attribute grammar based document transformation [22].
A data model for XML document transformation was dis-
cussed in Murata [20, 21], where an approach based on forest
automata is proposed. Murata also advocated the idea of
document transformation based on schema transformation.

Our work is inspired by Murata’s. However, we do not use
tree automata, nor attribute grammars. Rather, we formu-
late DTD-aware XML document transformations in a more
abstract setting, often borrowing notations and results from
category theory [16]. Our approach is algebraic [8], and can



be viewed as extending the Bird-Meertens formalism [7, 17]
to functions that map between two sets of mutually recur-
sive data types. In this paper, we freely use the notations
of Meijer, Fokkinga, and Paterson when writing fold/unfold
functions [18].

We have prototyped the theory developed in this paper in
Objective Caml [3], a functional language that supports
both a polymorphic type scheme and a parametric module
system. Our construction is highly modular and generic.
It is generic because it is parameterized by DTD expres-
sions. (See [6] for a detailed introduction to generic pro-
gramming.) This work is a continuation of our previous
work on generic validation of structural content [10], where
we show how untyped (i.e., well-formed) XML expressions
can be type-checked (i.e., validated) almost automatically
in a higher-order functional language that supports both a
polymorphic type scheme and a parametric module system.
This paper shows how to model and compose typed XML
transformational functions in such a functional language.

2. PARAMETRIC CONTENT MODELS
In an XML element type declaration, an element type is
given a content model which is a regular expression of ele-
ment type names. 1 Only element sequences that are deriv-
able from the regular expression are allowed as the children
of the element. For example, the following XML document
contains a DTD that defines two element types folder and
record. The document contains as a root a folder element,
which has an empty record element as its only child. It is
a valid XML document.

<?xml version="1.0"?>

<!DOCTYPE folder [

<!ELEMENT folder ((record,(folder|record)*)|

(folder,(folder|record)+))>

<!ELEMENT record EMPTY>

]>

<folder><record></record></folder>

The above DTD models the structure where a record must
contain no other element, and no folder is ever empty or con-
tains just another folder. (One may think of it as modeling
a tidy bookmark file.)

Although an element content model is a regular expression
of element type names, we may treat the element type names
in the regular expressions as parameters. We call them para-
metric content models, and the declared element types are
just the fixed points of the parametric content models. As
an example, for the element type declarations in the folder

DTD, we can define the following two parametric content
models F1 and F2, of which each takes two element types as

1An element can also has a mixed content model where
its children is a sequence of XML elements interspersed
with character data. As an example, <!ELEMENT folder
(#PCDATA|folder|record)*> declares folder to be of
mixed content. (#PCDATA denotes the interspersed char-
acter data.) One can still model folder by a regular ex-
pression (of two type variables) but now with an additional
type constant #PCDATA.

arguments:

F1(x0, x1) = (x1, (x0|x1)∗)|(x0, (x0|x1)+)

F2(x0, x1) = ε

The element types folder and record are the simultaneous
fixed points of F1 and F2:

folder = F1(folder, record)

record = F2(folder, record)

Treating element types as fixed points of parametric content
models allow us to use the parametric content models in
the modeling and composition of XML document transfor-
mations. For document transformations that are based on
mappings between different content models, we call them
DTD-aware XML document transformations as they will
necessarily involve the DTD of the source document and
the DTD of the target document.

3. XML DOCUMENT TRANSFORMATION
AS FOLD/UNFOLD

For simplicity, we use s = (s1, s2, . . . , sn) to denote a DTD
s consisting of a tuple of element types s1, s2, . . . , sn. The
tuple (s1, s2, . . . , sn) is understood as the simultaneous fixed
point of a tuple of parametric content models P = (P1, P2, . . . , Pn).
That is,

(s1, s2, . . . , sn) = (P1(s1, s2, . . . , sn),

P2(s1, s2, . . . , sn),

. . . ,

Pn(s1, s2, . . . , sn))

We use s = Ps to denote s as the fixed point of P . Let
ups : Ps → s and downs : s → Ps be the two mappings
that together define the identities

ups ◦ downs = ids

downs ◦ ups = idPs

Because P is parametric, one can define a function Pf :
Ps→ Pt whenever given a tuple of functions f = (f1, f2, . . . , fn)
with fi : si → ti for each i. Pf is understood as

Pf = (P1(f1, f2, . . . , fn), P2(f1, f2, . . . , fn), . . . , Pn(f1, f2, . . . , fn))

where, for each i, Pi(f1, f2, . . . , fn) is the function that maps
Pi(v1, v2, . . . , vn) to Pi(f1(v1), f2(v2), . . . , fn(vn)). Moreover,
by the parametricity of P , one can show that

P ids = idPs,

(Pg) ◦ (Pf) = P (g ◦ f)

for all f : s → t and g : t → u. That is, P is a functor:
It maps types s and t to types Ps and Pt, and maps typed
function f : s→ t to function Pf : Ps→ Pt.

Let s = Ps and t = Qt be two DTDs with the same arity,
i.e., they each define exactly n element types. A function
from s to t — i.e., an XML document transformation that
maps documents of DTD s to documents of DTD t — is a



fold function if it is characterized by a reduction function
f : Pt→ t with the following commutative diagram:

s � ups Ps

t

(|f |)

?
�

f
P t

P (|f |)

?

Similarly, the transformation is an unfold function if it is
characterized by a generating function g : s → Qs with the
following commutative diagram:

Qs � g
s

Qt

Q[(g)]

?
�

downt

t

[(g)]

?

That is,

(|f |) ◦ ups = f ◦ P (|f |)
downt ◦ [(g)] = Q[(g)] ◦ g

or, equivalently,

(|f |) = f ◦ P (|f |) ◦ downs

[(g)] = upt ◦Q[(g)] ◦ g

4. NATURAL TRANSFORMATIONS BETWEEN
CONTENT MODELS

We re-introduce the notion of natural transformation, a con-
cept from category theory, and recast it in the context of
XML document transformation. Natural transformations
have been used to model polymorphic functions, see, e.g.,
[24]. Certain polymorphic functions, like the map function
for the list data type, are also known to be expressible as
both a fold function and as an unfold function. Here we
make an explicit connection between the above two obser-
vations, showing that a natural transformation between two
inductive bases P and Q is sufficient to define a function
from s = Ps to t = Qt that is both a fold function and an
unfold function.

Definition 4.1. Let P andQ denote two parametric con-
tent models of the same arity. A natural transformation η
from P to Q is a collection of functions that is indexed by
DTDs and satisfies the following equation

ηy ◦ Pf = Qf ◦ ηx

for any DTD x and y, and for any XML document transfor-
mation f : x→ y. That is, the following diagram commutes

Px
ηx - Qx

Py

Pf

?

ηy

- Qy

Qf

?

�

One can think of the transformation Pf : Px → Py as
the following: Apply f to the children x of the structural
content Px in order to produce a structural content Py with
children y. Likewise for transformation Qf : Qx → Qy. A
natural transformation η : P → Q changes the structure of
the content tree but does not alter child elements. Function
η is a natural transformation if it can be performed either
after the transformation Pf or before the transformation
Qf to arrive at same result. One may say η is polymorphic
as it maps between parametric content models and does not
look into the parameters, i.e., child elements, of the content.

Given two DTDs s = Ps and t = Qt, and a natural trans-
formation η : P → Q, one can construct a fold function
from s to t as (|upt ◦ ηt|) as well as an unfold function from
s to t as [(ηs ◦ downs)]. Furthermore, natural transformation
η provides a sufficient condition for the fold function and
the unfold function to coincide, as shown by the following
Proposition.

Proposition 4.2. (|upt ◦ ηt|) = [(ηs ◦ downs)]. �

Proof.

[(ηs ◦ downs)] = upt ◦Q[(ηs ◦ downs)] ◦ ηs ◦ downs

— definition of unfold

= upt ◦ ηt ◦ P [(ηs ◦ downs)] ◦ downs

— η a natural transformation

By the uniqueness of fold, one also has

(|upt ◦ ηt|) = upt ◦ ηt ◦ P (|upt ◦ ηt|) ◦ downs

It follows that (|upt ◦ ηt|) = [(ηs ◦ downs)]. �

Proposition 4.2 is best illustrated by the commutative dia-
gram in Figure 1.

5. DEALING WITH MIS-MATCHED ARI-
TIES

In the previous section, we have shown how to use a natural
transformation from P to Q to derive a transformation from
s = Ps to t = Qt. A restriction is that P and Q must have
the same arity — both models accept the same number of
parameters. Otherwise there exists no natural transforma-
tion from P to Q. We are interested in the more general
case where the arities of P and Q differ, so we can model
more XML document transformations.

Let P = (P1, P2, . . . , Pm) be an m-ary content model, and
Q = (Q1, Q2, . . . , Qn) be an n-ary content model. Let M =



s � ups Ps
ηs - Qs � ηs ◦ downs

s

t

(|upt ◦ ηt|)

?
�

upt ◦ ηt

Pt

P (|upt ◦ ηt|)

?

ηt

- Qt

Q[(ηs ◦ downs)]

?
�

downt

t

[(ηs ◦ downs)]

?

Figure 1: Commutative diagram for Proposition 4.2.

{1, 2, . . . ,m} and N = {1, 2, . . . , n} be the two index sets.
We now model an XML document transformation from s =
Ps to t = Qt using an additional function σ : M → N
between the two index sets. Function σ prescribes that ele-
ments of type si in the source document will be transformed
into elements of type tσ(i) in the target document. In the
previous section, one is restricted to the case where M = N
and σ is the identity function.

From σ one derives two functors F and G:

F (x1, x2, . . . , xm) = (⊕σ(j)=1xj , . . . ,⊕σ(j)=ixj , . . . ,⊕σ(j)=nxj)

G(y1, y2, . . . , yn) = (yσ(1), . . . , yσ(i), . . . , yσ(m))

where ⊕σ(j)=ixj is the coproduct of those xj ’s with σ(j) = i,

that is, j ∈ σ−1(i). One immediate consequence is that for
each function h : x→ Gy there exists an equivalent function
k : Fx→ y, and vice versa. F is called the left adjoint of G
(equivalently, G is the right adjoint of F ). We call functors
like F and G arity-adjusting functors because F maps a m-
tuple to a n-tuple and G maps a n-tuple to a m-tuple.

We list in Appendix A basic properties of adjoint functors,
as as well proofs of additional propositions of arity-adjusting
adjoint functors. For now, it suffices to know that from F
and G, i.e., from σ alone, one can construct natural trans-
formations ϕx,y(h) = k and ψx,y(k) = h, where h : x→ Gy
is a m-tuple mapping and k : Fx → y a n-tuple mapping.
Furthermore, the following identities hold:

ϕx,y ◦ ψx,y = idFx→y

ψx,y ◦ ϕx,y = idx→Gy

From ϕ and ψ one can derive two universal arrows. They
are called unit and counit, and are natural transformations
as well:

unitx : x→ GFx = ψx,Fx(F id)

counity : FGy → y = ϕGy,y(G id)

Recall that in the previous section, we have used a natural
transformation η : P → Q to derive the transformation
from s = Ps to t = Qt as a fold function and as an unfold
function, but under the restriction that P and Q have the
same arity. Now that P and Q have different arities, so
instead we use a natural transformation η : PG → GQ to

derive a transformation from s to Gt as a fold function:

s � ups Ps

Gt

(|G upt ◦ ηt|)

?
�

G upt ◦ ηt

PGt

P (|G upt ◦ ηt|)

?

Similarly, whenever given a natural transformation θ : FP →
QF , one can derive a transformation from Fs to t as an un-
fold function:

QFs � θs ◦ F downs
Fs

Qt

Q[(θs ◦ F downs)]

?
�

downt

t

[(θs ◦ F downs)]

?

We are ready to show a sufficient condition for the fold func-
tion and the unfold function to coincide.

Proposition 5.1. (|G upt ◦ ηt|) = ψs,t[(θs ◦ F downs)] if
θx = ϕPx,QFx(ηFx ◦ P unitx). �

Proof. See Appendix A. �

Proposition 5.2. [(θs ◦ F downs)] = ϕs,t(|G upt ◦ ηt|) if
ηy = ψPGy,Qy(Q counity ◦ θGy). �

Proof. See Appendix A. �

The above two propositions show that the fold function and
the unfold function coincide if the two natural transforma-
tions coincide. Specifically, Proposition 5.1 shows that the
fold function defined by a natural transformation η : PG→
GQ is isomorphic to the unfold function defined by another
natural transformation θ : FP → QF if θ is derivable from
η. Similarly, an unfold function defined by θ is a fold func-
tion defined by η if η is derivable from θ.

In summary, we model a transformation from s = Ps to t =
Qt by a pair of adjoint functors F and G, as well as a natural
transformation η : PG→ GQ (equivalently, θ : FP → QF ).
The resulting s to t transformation can be viewed both as a
fold function and as an unfold function.



6. FUSING XML DOCUMENT TRANSFOR-
MATIONS

In this section we show that the usual fusion laws in fold/unfold
algebraic formalism can be translated to the setting of DTD-
aware XML document transformations. Let s = Ps, t = Qt,
and u = Ru be DTDs, and let F , G, and H be arity-
adjusting functors. The following diagram illustrates that
an unfold function [(g)] immediately followed by a fold func-
tion (|f |) can be fused together. The fused function, [[f, g]] =
(|f |) ◦ [(g)], is known as hylomorphism [18].

Fs
g - QFs

t

[(g)]

? downt-
�

upt

Qt

Q[(g)]

?

Hu

(|f |)

?
�

f
QHu

Q(|f |)

?

Fact 6.1. [[f, g]] = f ◦Q[[f, g]] ◦ g. (See [18].) �

The following diagram illustrates the situation where a fold
function can be fused with another function to become yet
another fold function.

s �
ups

Ps

Gt

(|f |)

?
�

f
PGt

P (|f |)

?

w

k

?
�

f ′
Pw

Pk

?

Fact 6.2. k ◦ (|f |) = (|f ′|) if k ◦ f = f ′ ◦ Pk. (See [8].) �

We now give a sufficient condition to fuse two XML docu-
ment transformations into one.

Proposition 6.3. Let (|f |) : s→ Gt and (|h|) : t→ Hu be
two fold functions derived by, respectively, the two inductive
functions f : PGt→ Gt and h : QHu→ Hu. Then,

G(|h|) ◦ (|f |) = (|Gh ◦ ηHu|)

if f = G upt ◦ ηt for some natural transformation η : PG→
GQ. �

Proof. By Fact 6.2, it suffices to show the equation

G(|h|) ◦G upt ◦ ηt = Gh ◦ ηHu ◦ PG(|h|)

holds in the following diagram.

s � ups Ps

Gt

(|f |)

?
�

f
PGt

P (|f |)

?

I@
@

@
@

G upt

	�
�

�
�

ηt

GQt

GHu

G(|h|)

?
�
Gh

GQHu

GQ(|h|)

?
�
ηHu

PGHu

PG(|h|)

?

But the equation follows directly from

G(|h|) ◦G upt = Gh ◦GQ(|h|)
— (|h|) a fold function, G a functor

GQ(|h|) ◦ ηt = ηHu ◦ PG(|h|)
— η a natural transformation.

�

Notice that, in the above, function h is not required to be
derivable from a natural transformation. It can be just any
function from QHu Hu. However, if function h is character-
ized by a natural transformation ζ : QH → HR such that
h = H upu ◦ ζu, then one has the additional benefit that

(|Gh ◦ ηHu|) = (|K upu ◦ ξu|),

where

K = GH

— K an arity-adjusting functor,

ξx = Gζx ◦ ηHx

— ξ : PK → KR a natural transformation.

That is, the resulting XML document transformation, the
fold function (|Gh ◦ ηHu|), is again characterized by a natu-
ral transformation ξ. Furthermore, ξ can be automatically
derived once ζ and η are given.

If one views the two XML document transformations as two
unfold functions, one derives the dual case where the fused
transformation is again an unfold function.

Proposition 6.4. Let [(g)] : Fs → t and [(h)] : Et → u
be two unfold functions derived by, respectively, the two
generating functions g : Fs → QFs and h : Et → REt.
Then,

[(h)] ◦ E[(g)] = [(θFs ◦ Eg)]
if h = θt ◦ E downt for some natural transformation θ :
EQ→ RE. �



Proof. By the unfold fusion law, it suffices to show the
equation

θt ◦ E downt ◦ E[(g)] = RE[(g)] ◦ θFs ◦ Eg

holds in the following diagram.

EFs
Eg- EQFs

θFs- REFs

EQt

EQ[(g)]

?

�
�

�
�

Edownt

� @
@

@
@

θt
R

Et

E[(g)]

? h - REt

RE[(g)]

?

u

[(h)]

?

downu

- Ru

R[(h)]

?

But the equation follows directly from

E downt ◦ E[(g)] = EQ[(g)] ◦ Eg
— [(g)] a unfold function, E a functor

θt ◦ EQ[(g)] = RE[(g)] ◦ θFs

— θ a natural transformation.

�

Again, the resulting unfold function is also characterized by
a natural transformation if both g and h are characterized
by natural transformations.

7. FURTHER GENERALIZATION WITH AT-
TRIBUTES

The element type definitions in an XML DTD may be ac-
companied with attribute-list declarations. For example,
one may require a record element to be annotated with ad-
ditional attributes, such as title and url, as shown below.

<?xml version="1.0"?>

<!DOCTYPE folder [

<!ELEMENT folder ((record,(folder|record)*)|

(folder,(folder|record)+))>

<!ELEMENT record EMPTY>

<!ATTLIST folder

subject CDATA #IMPLIED>

<!ATTLIST record

title CDATA #REQUIRED

url CDATA #REQUIRED>

]>

<folder subject="Research Institutes">

<record title="Academia Sinica"

url="http://www.sinica.edu.tw"></record>

</folder>

As a consequence, a DTD s = (s1, s2, . . . , sn) now is ex-
pressed as the simultaneous fixed point of the parametric
content model A • P , where

(A • P )(x1, x2, . . . , xn) = (A1 ⊗ P1(x1, x2, . . . , xn),

A2 ⊗ P2(x1, x2, . . . , xn),

. . . ,

An ⊗ Pn(x1, x2, . . . , xn))

where Ai is for attributes of the ith element type, and ⊗ is
the product operator.

The natural transformation η : PG → GQ that is used
previously to characterize a function from s to Gt as a fold
will now have type η : A • (PG) → G(B •Q). Furthermore,
the index set mapping function σ : M → N that defines
the adjoint functors F and G for mapping between P and
Q will now be generated to have type: σ : M → 2N , where
2N is the power set of N . This is because now an element of
one type can be mapped to elements of more than one type,
depending on the element’s attribute values.

From the new σ one also derives two new functors F and G:

F (x1, x2, . . . , xm) = (⊕1∈σ(j)xj , . . . ,⊕i∈σ(j)xj , . . . ,⊕n∈σ(j)xj)

G(y1, y2, . . . , yn) = (⊕j∈σ(1)yj , . . . ,⊕j∈σ(i)yj , . . . ,⊕j∈σ(m)yj)

As before, the natural transformation η : A• (PG) → G(B •
Q) will induce a fold function from s to Gt. Similarly, the
natural transformation θ : F (A•P ) → B • (QF ) will induce
a unfold function from Fs to t. However, the modularity
results in Section 6 (Propositions 6.3 and 6.4) also hold.

Note that functors F and G are not adjoint functors in the
usual category (of which objects are fixed-arity products and
arrows are element-wise total functions). However, if we al-
low arrows in the category to be element-wise partial func-
tions, then in a limited sense, F and G are still adjoint to
each other.

8. AN ILLUSTRATING EXAMPLE
Let us consider the following three DTDs:

<!ELEMENT even (odd?)> -- DTD s

<!ELEMENT odd (even)>

<!ELEMENT succ (succ?)> -- DTD t

<!ELEMENT list_even (one*)> -- DTD u

<!ELEMENT list_odd (one*)>

<!ELEMENT one EMPTY>

DTD s specifies that an even element contains either 0 or
1 odd element, and an odd element contains exactly 1 even

element. DTD t specifies that a succ element contains either
0 or 1 succ element. DTD u specifies that a list even

element contains any number of one elements, a list odd

element contains any number of one elements, and a one

element contains no element. Note that DTDs s, t, and u
are defined, respectively, as the fixed points of the following
parametric content models P , Q, and R (also shown with



their Objective Caml type definitions):

P1(x1, x2) = x2? = x2 option

P2(x1, x2) = x1 = x1

Q1(y1) = y1? = y1 option

R1(z1, z2, z3) = z3∗ = z3 list

R2(z1, z2, z3) = z3∗ = z3 list

R3(z1, z2, z3) = ε = unit

Now consider the following two transformations:

T1 A pair of functions f1 and f2 that transform, respec-
tively, an even element to a succ element and an odd

element to a succ element. Both functions maintain
the “sizes” of the input arguments, e.g. f1 maps
<even></even> to <succ></succ>, and f2 maps
<odd><even><odd><even></even></odd></even></odd>

to <succ><succ><succ><succ></succ></succ></succ>

</succ>.

T2 A function g that transforms a succ element to the cor-
responding sequence of one elements, which are en-
closed within a list even element if the total number
of one elements is even. Otherwise the sequence of
one elements is enclosed within a list odd element.
That is, <succ> </succ> is mapped to <list even>

</list even>, and
<succ><succ><succ><succ></succ></succ></succ>

</succ> is mapped to <list odd><one></one>

<one></one><one></one></list odd>.

Both transformations can be viewed as as fold operations.
The rest of this section details the construction, as well as
how the two folds can be fused. The first transformation
has the index set mapping σs→t(1) = {1}, σs→t(2) = {1},
while the second transformation has the index set mapping
σt→u(1) = {1, 2}. These two index mappings specify two
arity-adjusting functors G and H as follows.

G(y1) = (y1, y1)

H(z1, z2, z3) = z1 ⊕ z2

We need functor G to characterize the pairs (f1, f2) as a fold
operation induced by a natural transformation η : PG →
GQ. Similarly, H is needed in order for g to be characterized
as a fold induced by a function ζ : QH → HR.

Now that we have functors P,Q,R,G, and H, the types of
η and ζ are worked out to be

ηy : (P1(G(y1) → Q1(y1))⊗ (P2(G(y1) → Q1(y1))

ζz : Q1(H(z1, z2, z3)) → H(R1(z1, z2, z3),

R2(z1, z2, z3), R3(z1, z2, z3))

with z1 = u1, z2 = u2, and z3 = u3

Note that ζ is not a natural transformation as we need addi-
tional constraints that z1 = u1, z2 = u2, and z3 = u3. This
does not affect the fusion of T1 and T2 because, as shown
in Proposition 6.3, ζ need not be a natural transformation.

What do the definitions of η and ζ look like? η is a pair of
functions so let us call its two components by η1 and η2. η1

assembles the content for a succ element from the content of
an even element, assuming the latter already consists of, if
any, a succ element. Likewise, η2 assembles the content for a
succ element from the content of an odd element, assuming
the latter must already consist of a succ element. Again, ζ
assembles the content for a list even or a list odd element
from the content of a succ element, assuming the latter al-
ready consists of, if any, a list even element or a list odd

element. Because both transformations T1 and T2 main-
tain the sizes of the input arguments, we can arrive at the
Objective Caml code in Figure 2.

By Proposition 6.3, a transformation that combines T1 then
T2 is also a fold operation. It is induced by the function
ξ = Gζ ◦ ηHz. Function ξ has type

ξ : (P1(H(z1, z2, z3), H(z1, z2, z3)) →
H(R1(z1, z2, z3), R2(z1, z2, z3), R3(z1, z2, z3))) ⊗
(P2(H(z1, z2, z3), H(z1, z2, z3)) →
H(R1(z1, z2, z3), R2(z1, z2, z3), R3(z1, z2, z3)))

and with the constraints that z1 = u1, z2 = u2, and z3 = u3.
As with η, ξ has two components ξ1 and ξ2. ξ1 assembles
the content for a list even element from the content of
an even element, assuming the latter already consists of, if
any, a list odd element. Likewise, ξ2 assembles the content
for a list odd element from the content of an odd element,
assuming the latter must already consist of a list even el-
ement.

Now, we need not code ξ at all! The code for ξ will be
generated, automatically, by a higher-order module that
takes both η and ζ as input and produces ξ as its output.
The higher-order module simply implements the equation
ξ = Gζ ◦ηHz (see Proposition 6.3). This is demonstrated by
module type COMPOSE PG2GQ 2 1 3 in Figure 4, where it takes
two natural transformations (with one of them with addi-
tional sharing constraints), and produces a natural transfor-
mation (with additional sharing constraints).

9. MODULAR XML TRANSFORMATIONS
WITH ML MODULES

We have used Objective Caml to prototype XML transfor-
mations according to the principles developed in this pa-
per. Objective Caml is a functional language in the ML
family that supports both a polymorphic type scheme and
a parametric module system [3]. Our prototype is highly
modular, in the sense that parametric modules are heavily
used to structure, and to parameterize, layers of categori-
cal constructions: Functors, parametric content models and
their fixed-points, arity-adjusting adjoint functors, natural
transformations induced by arity-adjusting functors, and fi-
nally, fold/unfold functions derived by natural transforma-
tions. Previously we have also used highly modular ML
code for generic validation of XML elements [10]. The ML
prototype for transforming structural content is generic as
well, as modules in the prototype are DTD-parameterized
and strongly typed. Note that, for illustrating purpose, the
code we showed in Figure 2 is a de-functorized and simplified
version of the fully modular code.



(*--- O’Caml type defintions for parametric content models P, Q, R. ---*)

type (’a, ’b) p1 = ’b option

type (’a, ’b) p2 = ’a

type ’a q1 = ’a option

type (’a, ’b, ’c) r1 = ’c list

type (’a, ’b, ’c) r2 = ’c list

type (’a, ’b, ’c) r3 = unit

(*--- P, Q, R are functors, and the following are their "map" functions. ---*)

let map_p1 (f1, f2) w = match w with None -> None | Some b -> Some (f2 b)

let map_p2 (f1, f2) w = f1 w

let map_q1 f w = match w with None -> None | Some a -> Some (f a)

let map_r1 (f1, f2, f3) w = List.map f3 w

let map_r2 (f1, f2, f3) w = List.map f3 w

let map_r3 (f1, f2, f3) w = ()

(*--- O’Caml type definitions for XML element types. ---*)

type even = Even of (even, odd) p1

and odd = Odd of (even, odd) p2

type succ = Succ of succ q1

type list_even = ListEven of (list_even, list_odd, one) r1

and list_odd = ListOdd of (list_even, list_odd, one) r2

and one = One of (list_even, list_odd, one) r3

(*--- s2t and t2u are fold functions for XML transformations, ---*)

(*--- constrained by the arity-adjusting functors G and H. ---*)

(*--- Note that functor G is inlined into the defintion of s2t. ---*)

type (’z1, ’z2, ’z3) h = Z1 of ’z1 | Z2 of ’z2

let map_h (f1, f2, f3) w = match w with Z1 a -> Z1 (f1 a) | Z2 b -> Z2 (f2 b)

let s2t ((eta1: (’y1, ’y1) p1 -> ’y1 q1), (eta2: (’y1, ’y1) p2 -> ’y1 q1)) =

let rec even2succ (Even p1) = Succ (eta1 (map_p1 (even2succ, odd2succ) p1))

and odd2succ (Odd p2) = Succ (eta2 (map_p2 (even2succ, odd2succ) p2))

in

(even2succ, odd2succ)

let t2u (zeta: (’z1, ’z2, ’z3) h q1 -> ((’z1, ’z2, ’z3) r1, (’z1, ’z2, ’z3) r2, (’z1, ’z2, ’z3) r3) h) =

let an_even_list w = ListEven w

in let an_odd_list w = ListOdd w

in let rec don’t_care w = don’t_care w

in let rec succ2list (Succ q1) = map_h (an_even_list, an_odd_list, don’t_care) (zeta (map_q1 succ2list q1))

in

succ2list

(*--- eta and zeta form the inductive bases of the fold functions; ---*)

(*--- f1, f2, and g are the transformations as required by T1 and T2 in Section 8. ---*)

let eta1 w = w

let eta2 w = Some w

let zeta w = match w with None -> Z1 []

| Some (Z1 (ListEven z1)) -> Z2 ((One ()) :: z1)

| Some (Z2 (ListOdd z2)) -> Z1 ((One ()) :: z2)

let ((f1: even -> succ), (f2: odd -> succ)) = s2t (eta1, eta2)

let (g: succ -> (list_even, list_odd, one) h) = t2u zeta

Figure 2: De-functorized Objective Caml code for the example in Section 8. Note that type annotations are
not needed; they are added for clarity purposes.



module type FUN1 =

sig

type ’x1 t

val map: (’x1 -> ’y1) -> ’x1 t -> ’y1 t

end

module type FUN2 =

sig

type (’x1, ’x2) t

val map: (’x1 -> ’y1) * (’x2 -> ’y2) ->

(’x1, ’x2) t -> (’y1, ’y2) t

end

module type ATT2 =

sig

type t1

type t2

end

module type SYS2 =

sig

module F1: FUN2

module F2: FUN2

end

module type DTD2 =

sig

module A: ATT2

module S: SYS2

type t1

type t2

module T1:

sig

type t = t1

val up: A.t1 * (t1, t2) S.F1.t -> t

val down: t -> A.t1 * (t1, t2) S.F1.t

end

module T2:

sig

type t = t2

val up: A.t2 * (t1, t2) S.F2.t -> t

val down: t -> A.t2 * (t1, t2) S.F2.t

end

end

Figure 3: Module interfaces, in Objective Caml, for
modular XML transformations. (Part 1 of 2)

Figures 3 and 4 show brief segments of the modular code.
They contain the interfaces (called module types in Objective
Caml) of the major modules that are involved in the layered
constructions. The fold functions that map from a binary
DTD to a unary DTD are named as f1 and f2 in module
type XF 2 1. In turn, a module of type XF 2 1 is returned
by a module of type FOLD 2 1. As one can see in Figure
3, we use an m-ary type constructor in ML to model an
m-ary functor. A set of m m-ary functor (c.f. module type
SYS2) is needed to specify an XML DTD with a set of m
m-ary parametric content models. One may wonder if this
approach is practical as a DTD may contain up to a hundred
element types, and as such, we need 100-ary (and up) type
constructors. But as we have shown in our previous study
[10], this is not a problem for the Objective Caml compiler.

The complete Objective Caml code of the prototype can be
found at the following URL:

http://www.iis.sinica.edu.tw/~trc/x_dot_ml.html

10. IS IT PRACTICAL?
Is this framework of modular XML transformations ever
practical? Can it apply to schema languages other than
DTD, e.g., XML Schema [4] and Relax NG [2]. Before an-
swering these criticisms, we would like to mention that the
ML code in Figures 2, 3, and 4 is not necessarily to be
written by human. Instead, the code can be automatically
generated by user specifications. The specifications in turn
are formulated using GUI-based tools that allow users to set
up mappings from source DTDs to target DTDs, visually.
See, e.g., [14, 23] for work on visual specifications of XML
transformations. Our contribution in this paper is to set up
a framework where multiple specifications can be efficiently
combined and fused into one.

Our mapping of an XML document to an ML-typed value
depends on XML DTD’s 1-deterministic content model prop-
erty2. That is, we take for granted that an XML document
(with a DTD) will uniquely “parsed” into an ML value (of
the corresponding ML data type). This ensures that an
XML transformation specified by a DTD-to-DTD natural
transformation contains no ambiguity. XML Schema, like
XML DTD, maintains the 1-deterministic content model
property but Relax NG does not. As a result, it will be
more challenging to develop a similar transformation frame-
work for Relax NG (whose content models allows ambiguity
in the deviations of element sequences).

11. CONCLUSION
We have shown that certain XML document transforma-
tions can be modeled as a fold operation and as an unfold
operation. Such a transformation is derived from a natural
transformation from the source content model to the tar-
get content model. We also show that such XML document
transformations are modular, in the sense that the compo-
sition of two XML document transformations is again char-
acterized by a natural transformation. A prototype written

2Briefly, 1-deterministic content model demands that one
look-ahead is always sufficient for the unique derivation of
an element sequence from its content model.



module type ADJ_2_1 =

sig

module F:

sig

module F1: FUN2

end

module G:

sig

module F1: FUN1

module F2: FUN1

end

type (’x1, ’x2, ’y1) fx2y = (’x1, ’x2) F.F1.t -> ’y1

type (’x1, ’x2, ’y1) x2gy = (’x1 -> ’y1 G.F1.t) * (’x2 -> ’y1 G.F2.t)

val psi: (’x1, ’x2, ’y1) fx2y -> (’x1, ’x2, ’y1) x2gy

val varphi: (’x1, ’x2, ’y1) x2gy -> (’x1, ’x2, ’y1) fx2y

end

module type PG2GQ_2_1 =

sig

module A: ATT2

module P: SYS2

module B: ATT1

module Q: SYS1

module X: ADJ_2_1

module Eta: functor (T: sig type t1 end) ->

sig

val f1: A.t1 * (T.t1 X.G.F1.t, T.t1 X.G.F2.t) P.F1.t -> (B.t1 * T.t1 Q.F1.t) X.G.F1.t

val f2: A.t2 * (T.t1 X.G.F1.t, T.t1 X.G.F2.t) P.F2.t -> (B.t1 * T.t1 Q.F1.t) X.G.F2.t

end

end

module type XF_2_1 =

sig

module S: DTD2

module T: DTD1

module X: ADJ_2_1

val f1: S.t1 -> T.t1 X.G.F1.t

val f2: S.t2 -> T.t1 X.G.F2.t

end

module type FOLD_2_1 = functor (Source: DTD2) -> functor (Target: DTD1) ->

functor (Nat: PG2GQ_2_1 with module A = Source.A and module P = Source.S

and module B = Target.A and module Q = Target.S) ->

XF_2_1 with module S = Source and module T = Target and module X = Nat.X

module type COMPOSE_PG2GQ_2_1_3 = functor (NatN: PG2GQ_1_3) ->

functor (NatM: PG2GQ_2_1 with module B = NatN.A and module Q = NatN.P) ->

PG2GQ_2_3 with module A = NatM.A and module P = NatM.P and module B = NatN.B

and module Q = NatN.Q and module X = ComposeAdj_2_1_3 (NatN.X)(NatM.X)

Figure 4: Module interfaces, in Objective Caml, for modular XML transformations. (Part 2 of 2)



in Objective ML has been constructed to experiment with
this modular style of XML document transformations.
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APPENDIX
A. PROOF
Let A,B be two categories, and F : A → B, G : B →
A be two functors between them. F is a left adjoint of
G (equivalently, G is a right adjoint of F ) if there exist
natural transformations ϕ and ψ such that ϕx,y(h) = k and
ψx,y(k) = h, where h : x → Gy is an arrow in A, and
k : Fx→ y an arrow in B. Furthermore, ϕ and ψ constitute
an isomorphism between the arrows in A and the arrows in
B.

ϕx,y ◦ ψx,y = idFx→y

ψx,y ◦ ϕx,y = idx→Gy

From the naturality of ϕ and ψ, one has the following equa-
tions

ϕx,y(h ◦ f) = ϕx,y(h) ◦ Ff
ϕx,y(Gg ◦ h) = g ◦ ϕx,y(h)

ψx,y(k ◦ Ff) = ψx,y(k) ◦ f
ψx,y(g ◦ k) = Gg ◦ ψx,y(k)

where f is an arrow in A and g an arrow in B. Furthermore,
from the definitions of universal arrows unit and counit,

unitx : x→ GFx = ψx,Fx(F id)

counity : FGy → y = ϕGy,y(G id)

one also derives the following equations

ϕx,y(h) = counity ◦ Fh
ψx,y(k) = Gk ◦ unitx

Given s = Ps, t = Qt, and two natural transformations
η : PG→ GQ and θ : FP → QF , we can show the following
equivalence relation.

Lemma A.1. θx = ϕPx,QFx(ηFx ◦ P unitx) if and only if
ηy = ψPGy,Qy(Q counity ◦ θGy) �



Proof. We show here that “only if” direction. Proof for
the other direction is similar.

Our proof is based on the following commutative diagram.

PGy
� PGcounity

P unitGy

- PGFGy

GQy

ηy

?
�

GQ counity

GQFGy

ηFGy

?

We first show that

PGcounity ◦ P unitGy = P (Gcounity ◦ unitGy)

= P (ψGy,y(counity))

= P (ψGy,y(ϕGy,y(idGy)))

= P (idGy) = idPGy

Since η is a natural transformation, we have

ηy ◦ PGcounity = GQ counity ◦ ηFGy

implies

ηy ◦ PGcounity ◦ P unitGy = GQ counity ◦ ηFGy ◦ P unitGy

which in turn implies

ηy = GQ counity ◦ ηFGy ◦ P unitGy

Therefore,

ϕPGy,Qy(ηy) = ϕPGy,Qy(GQ counity ◦ ηFGy ◦ P unitGy)

= Q counity ◦ ϕPGy,QFGy(ηFGy ◦ P unitGy)

= Q counity ◦ θGy

Because ψ and ϕ are inverse to each other, the above equa-
tion implies

ηy = ψPGy,Qy(Q counity ◦ θGy).

Proof about the other direction is similar, and is based on
the following commutative diagram.

FPx
FP unitx - FPGFx

QFx

θx

? QFunitx -
�

Q counitFx

QFGFx

θGFx

?

�

We also prove the following two lemmas.

Lemma A.2. G(θs◦Fdowns)◦units = ψPs,QFs(θs)◦downs

�

Proof. We know that ψPs,QFs(θs) = Gθs ◦ unitPs. It
follows that

ψPs,QFs(θs) ◦ downs

= Gθs ◦ (unitPs ◦ downs)

= Gθs ◦ (GFdowns ◦ units)

= G(θs ◦ Fdowns) ◦ units

�

Lemma A.3. GQ[(θs◦Fdowns)]◦ψPs,QFs(θs) = ηt◦P (ψs,t[(θs◦
Fdowns)]) if θx = ϕPx,QFx(ηFx ◦ P unitx). �

Proof. Since θs = ϕPs,QFs(ηFs ◦ P units) and ϕ and ψ
are inverse to each other, we know that ψPs,QFs(θs) = ηFs ◦
P units.

It follows that

GQ[(θs ◦ Fdowns)] ◦ ψPs,QFs(θs)

= GQ[(θs ◦ Fdowns)] ◦ ηFs ◦ P units

= ηt ◦ PG[(θs ◦ Fdowns)] ◦ P units

= ηt ◦ P (G[(θs ◦ Fdowns)] ◦ units)

= ηt ◦ P (ψs,t[(θs ◦ Fdowns)])

�

We now prove the main result.

Proposition A.4. The following statements are all true.

1. (|G upt ◦ηt|) = ψs,t[(θs ◦F downs)] if θx = ϕPx,QFx(ηFx ◦
P unitx).

2. (|G upt◦ηt|) = ψs,t[(θs◦F downs)] if ηy = ψPGy,Qy(Q counity◦
θGy).

3. [(θs ◦F downs)] = ϕs,t(|G upt ◦ηt|) if θx = ϕPx,QFx(ηFx ◦
P unitx).

4. [(θs◦F downs)] = ϕs,t(|G upt◦ηt|) if ηy = ψPGy,Qy(Q counity◦
θGy).

�

Proof. Note that (|G upt ◦ ηt|) = ψs,t[(θs ◦ F downs)] if and
only if [(θs ◦ F downs)] = ϕs,t(|G upt ◦ ηt|). Note also that,
by Lemma A.1, θx = ϕPx,QFx(ηFx ◦ P unitx) if and only if
ηy = ψPGy,Qy(Q counity ◦ θGy). It follows that if one of the
four statements is true, then all four statements are true.
We now show the first statement to be true.

ψs,t[(θs ◦ Fdowns)]

= G[(θs ◦ Fdowns)] ◦ units

= Gupt ◦GQ[(θs ◦ Fdowns)] ◦G(θs ◦ Fdowns) ◦ units

— Definition of unfold

= Gupt ◦GQ[(θs ◦ Fdowns)] ◦ ψPs,QFs(θs) ◦ downs

— Lemma A.2

= Gupt ◦ ηt ◦ P (ψs,t[(θs ◦ Fdowns)]) ◦ downs

— Lemma A.3

By the uniqueness of the fold operator, it follows that (|G upt◦
ηt|) = ψs,t[(θs ◦ F downs)] �


