
Fast Algorithms for Computing Self�Avoiding Walks
and Mesh Intersections over Unstructured Meshes�

PeiZong Lee�� Chih�Hsueh Yang� and Jeng�Renn Yang
Institute of Information Science

Academia Sinica
Taipei� Taiwan� R�O�C�

Internet� fleepe�dickyang�yangjrg�iis�sinica�edu�tw
TEL� ���� 	
�
����
���
FAX� ���� 	
�
��
�����

Abstract

This paper is concerned with designing an e�cient algorithm for computing the in�
tersection of two unstructured meshes� The algorithm uses a background quadtree
of the �rst unstructured mesh and a self�avoiding walk �SAW� of the second un�
structured mesh� Due to the neighboring relationships of consecutive triangles
in the triangle sequence of a SAW� we can keep track of the location of each
triangle in the second unstructured mesh by means of the background quadtree�
This allows us to design a linear time algorithm for computing the mesh inter�
section� Experimental studies show that our e�cient algorithm for computing
the mesh intersection can save a lot of execution time in comparison with that
needed by other naive algorithms� We also present two new SAW�s� Using our
�rst�in��rst�out �FIFO� SAW can save an additional 	
 of the execution time in
comparison with that needed when using other SAW�s� This is because our FIFO
SAW employs better data locality� which is especially bene�cial for the current
hierarchical�memory computer architectures�

Keywords� advancing front method� background quadtree� �rst�in��rst�out queue� last�in�
�rst�out queue� mesh intersection� self�avoiding walk� unstructured mesh�

��� A preliminary version of this technical report is accepted to be presented at the ��th
AIAA Computational Fluid Dynamics Conference� Orlando� FL� U�S�A�� June
��
��

����

�This work was partially supported by the NSC under Grants NSC ��������E�������� and NSC ��������
E���������

�PeiZong Lee is the corresponding author� Internet	 leepe
iis�sinica�edu�tw� TEL	 ���
 ��� ���������
ext� ����� FAX	 ���
 ��� ����������

�

� Introduction

To implement numerical simulations of engineering applications� such as engine combustion

or computational �uid dynamics� unstructured meshes are tessellated in the computing do�

main before solving the speci�c governing equations� which are usually partial di�erential

equations ���� However� the boundary geometries of many simulated objects� like the valves

and chamber of a Direct�Injection Spark�Ignition gasoline engine ����� the blades in a gas

turbine� and a deforming droplet in the vicinity of a nozzle� change with time�

Figure � shows a period of �
� frames for engine combustion� which involves the processes

of fuel and air intake� compression of the fuel�air mixture� ignition and combustion of the

charge� expansion of gases� and the removal of waste� For this type of transient �where shapes

change with time� application� it is practical to generate a separate unstructured mesh for

each frame �of an object geometry within a period of operation�� Figure
 shows parts of

unstructured meshes for frame � and frame
� The unstructured mesh is regenerated because

the left intake valve moves� When simulating operations� we use interpolation techniques to

transfer the status of variables from frame i to frame i � � for � � i � M � and from frame

M to frame �� where we assume that a period of operation includes M frames�

To compute interpolations from frame i to frame i � � or from frame M to frame �� we

have to know the intersection of each triangle �element or cell� in the unstructured mesh of

frame i�� �or frame �� with respect to triangles in the unstructured mesh of frame i �or frame

M � respectively�� A naive implementation of computing mesh intersection requires O�N�N��

time complexity to test whether a triangle in the second unstructured mesh intersects with

each of the triangles in the �rst unstructured mesh� where we assume that the �rst mesh has

N� triangles� and that the second mesh has N� triangles�

If we construct a binary�search partition tree ��� for the �rst unstructured mesh in advance�

then �nding the �rst triangle�� in the �rst unstructured mesh which intersects with a speci�c

triangle �� in the second unstructured mesh requires only O�logN�� time complexity� The

�

Fram e1 Fram e2 Fram e3 Fram e4 Fram e5 Fram e6 Fram e7 Fram e8

Fram e9 Fram e10 Fram e11 Fram e12 Fram e13 Fram e14 Fram e15 Fram e16

Fram e33 Fram e34 Fram e35 Fram e36 Fram e37 Fram e38 Fram e39 Fram e40

Fram e41 Fram e42 Fram e43 Fram e44 Fram e45 Fram e46 Fram e47 Fram e48

Fram e17 Fram e18 Fram e19 Fram e20 Fram e21 Fram e22 Fram e23 Fram e24

Fram e25 Fram e26 Fram e27 Fram e28 Fram e29 Fram e30 Fram e31 Fram e32

Fram e49 Fram e50 Fram e51 Fram e52 Fram e53 Fram e54 Fram e55 Fram e56

Fram e57 Fram e58 Fram e59 Fram e60 Fram e61 Fram e62 Fram e63 Fram e64

Fram e65 Fram e66 Fram e67 Fram e68 Fram e69 Fram e70 Fram e71 Fram e72

Fram e73 Fram e74 Fram e75 Fram e76 Fram e77 Fram e78 Fram e79 Fram e80

Fram e81 Fram e82 Fram e83 Fram e84 Fram e85 Fram e86 Fram e87 Fram e88

Fram e89 Fram e90 Fram e91 Fram e92 Fram e93 Fram e94 Fram e95 Fram e96

Fram e97 Fram e98 Fram e99 Fram e100 Fram e101 Fram e102 Fram e103 Fram e104

Fram e105 Fram e106 Fram e107 Fram e108 Fram e109 Fram e110 Fram e111 Fram e112

Fram e113 Fram e114 Fram e115 Fram e116 Fram e117 Fram e118 Fram e119 Fram e120

Fram e121 Fram e122 Fram e123 Fram e124 Fram e125 Fram e126 Fram e127 Fram e128

Figure �� A period of �
� frames for the engine combustion�

The left intake valve

(a) (b)

Figure
� Parts of unstructured meshes near the left intake valve of �a� frame � and �b�
frame
 shown in Figure ��

whole set of triangles in the �rst unstructured mesh which intersect with �� can then be

found based on the local information of �� in a constant amount of time� Therefore� the

time complexity of computing mesh intersection is reduced to O�N� logN���

In this paper� we present an e�cient algorithm which can further reduce the time com�

plexity to O�N� � N�� for most cases� Our algorithm requires a background quadtree of

the �rst unstructured mesh and a triangle sequence of a self�avoiding walk for the second

unstructured mesh� The background quadtree� which is de�ned before unstructured mesh

generation to represent a smooth change of density distribution among triangles in the com�

puting domain ���� can be used to identify the location of a triangle� A self�avoiding walk

�SAW� over an arbitrary unstructured mesh is an enumeration of all the triangles of that

mesh such that two successive triangles share an edge or a vertex ���� A SAW can be treated

as a serialization technique which transforms a two�dimensional unstructured mesh into a

sequence of consecutive triangles�

We �rst construct a SAW sequence for the second unstructured mesh� Following the

SAW sequence� after �nding the intersection set ISET� of the �rst triangle� we can �nd the

intersection set ISET� of the second triangle based on the local information of ISET� in a

�

constant amount of time as the �rst triangle is adjacent to the second triangle by an edge

or by a vertex� Similarly� the intersection set ISET� of the third triangle can be found based

on the local information of ISET�� and so on� Therefore� the time complexity is reduced to

O�N� � N�� provided that each triangle in the second unstructured mesh always intersects

with triangles in the �rst unstructured mesh�

However� as the object geometry of the �rst frame may be di�erent from the object

geometry of the second frame� some triangles in the second unstructured mesh may not

intersect with any triangle in the �rst unstructured mesh� Therefore� the local information

of the predecessor�s intersection set breaks �and therefore requires additional searching�� In

this case� we use a background quadtree of the �rst unstructured mesh to keep track of the

location of each triangle �� in the SAW sequence of the second unstructured mesh� Then�

we exhaustively test intersections for �� and those triangles in the �rst unstructured mesh

which fall within the territory of the same quadtree leaf as that of��� If the territory of each

quadtree leaf contains at most a constant number of triangles� then each exhaustive test can

be done in a constant amount of time�

The average time complexity of keeping track of the location of each triangle in the

SAW sequence �of the second unstructured mesh� over the background quadtree �of the �rst

unstructured mesh� is di�cult to analyze� but it is bounded by O�logN��� where the height

of the background quadtree is O�logN��� However� since there is only a slight change of

the object geometries from frame i to frame i� � or from frame M to frame �� only a small

portion of triangles in the second unstructured mesh will not intersect with any triangle in the

�rst unstructured mesh� Therefore� the overhead of keeping track of the locations of all the

triangles f��
�
g in the SAW sequence over the background quadtree can be neglected� where

the set f��
�
g does not intersect with any triangle in the �rst unstructured mesh� Therefore�

the time complexity of mesh intersection is still O�N� �N���

The SAW sequences �over unstructured meshes� or space��lling curves �over structured

�

meshes� ���� are frequently used to enhance data locality� so that data accesses can comply

with current hierarchical�memory computer architectures �
� ���� In this paper� we present

two new SAW�s and one algorithm for �nding mesh intersection� We analyze the cache e�ects

of using these two new SAW�s and another two SAW�s suggested in ��� when executing mesh

intersection� We also present experimental studies of mesh intersection for all �
� frames of

engine combustion�

The rest of this paper is organized as follows� Section
 surveys related works� Sec�

tion � presents the two new SAW�s� Section � presents our algorithm for computing mesh

intersection� Section 	 presents experimental studies� and Section � gives some concluding

remarks�

� Related works

Many practical applications are usually time�varying �transient� and have complex geome�

tries� Therefore� more than one mesh can be adopted in the numerical simulations� These

meshes may coexist at the same time�step or be built in sequential time�steps� Mesh inter�

section plays an important role in such numerical simulations� Examples are described in the

following�

In multi�physics problems� since variables relevant to multiple physical phenomena are

obtained in synchronization steps� the optimal grids for each physical variable need not be the

same� so separate grids may be used to solve the appropriate equations for each variable� For

example� when the welding of a joint between two parts is simulated� one grid can be used to

solve the stress�strain relations to account for the mechanical deformation of the parts� and

the other grid can be used for thermal conduction calculations in the system� When both

the thermal and mechanical e�ects are considered� the solution data must be interpolated

back and forth between the two grids for each time step �����

In multi�body simulations� especially for problems with moving bodies or for those having

	

complex geometries� a series of body��tted grids separated for each component may overlap�

These are called overset grids� and interpolation is used to transmit data between the overset

grids in the �ow solver� The Chimera scheme is widely used to deal with this kind of prob�

lem ��� ���

�� It can break complex con�gurations into components �or regions�� generate a

series of separate body�conforming grids for each component �or region� of the con�guration�

and then overset these grids together to form a complete model �
���

In transient problems� like the propagation of a planar shock� local meshes are regenerated

as time progresses� and a set of dynamically adaptive meshes are built� The values of the

regenerated meshes need to be interpolated from old ones to new ones ���� The internal

combustion engine� which consists of chemical reaction� moving valves and pistons� and

fuel injection� is typically a transient problem with changing shapes� The mesh should

be regenerated if the valves and pistons move� The intermediate values also need to be

transferred from the old mesh to the new one�

Unstructured meshes are becoming important as they can be generated automatically for

applications with complex geometries or for those with dynamically moving boundaries �
���

For engine combustion applications� a fast approach might be to regenerate local meshes for

the places where boundaries change� However� the quality of the newly generated meshes in

these places might be poor in terms of the aspect ratio� area ratio� and edge ratio among the

triangles �elements or cells of a mesh� ���� The quality of a mesh in�uences the convergence

rate of the PDE solvers� Therefore� it is more suitable to generate a separate mesh for each

of the frames which represent boundary geometries for a period of operations�

The mesh intersection problem is also called the intergrid communication problem ��� �	�

�� grid transfer problem ����� or interpolation for unstructured grids ����� Chesshire and

Henshaw considered the overlapping of structured grids� where the density distribution of

each grid is uniform ���� They used inverse Cartesian mappings with a neighboring search to

�nd the nearest vertex �called an interpolation point��

�

Meakin et al� also adopted inverse Cartesian mappings to solve the intergrid communica�

tion problem ��� �	�

�� They found that in the highly re�ned regions� a cell �or a quadrant�

of a background Cartesian mesh might enclose a large number of grid elements �triangles��

Consequently� the index range of the search region de�ned by the vertices of the Cartesian cell

is likely to be large� and the resulting element �vertex or triangle� search costly� Therefore�

multi�level inverse Cartesian mappings were needed for a single grid�

To deal with unstructured meshes� L�ohner used a background quadtree to search nearby

grid elements ��
� ���� Plimpton et al� adopted recursive coordinate bisectioning techniques

to search nearby grid elements� Both of their methods can �nd an independent grid element

in a logarithmic amount of time�

SAW�s were �rst introduced by Heber� Biswas� and Gao for renumbering unstructured

meshes so that data locality for accessing neighboring data could be improved ���� As two

consecutive triangles in a SAW sequence shared an edge or a vertex� SAW�s were also used

to do data partitioning for sparse matrix applications over unstructured meshes on parallel

computers�

Cuthill and McKee suggested another renumbering method based on breadth��rst search

on a graph �	�� Starting from a vertex of minimal degree� they applied breadth��rst search

level�by�level� where vertices with a small degree within each level were numbered �rst�

followed by vertices with a large degree� Cuthill and McKee�s sequence is well�known for

reducing the bandwidth of a sparse matrix� Liu and Sherman further pointed out that

the reverse Cuthill�McKee �RCM� sequence� where level construction was restarted from a

vertex of minimal degree in the �nal level� was found to always be at least as good as its

corresponding Cuthill�McKee �CM� sequence in terms of minimizing the bandwidth of a

sparse matrix �����

Most applications found by using SAW�s or CM or RCM orderings were related to direct

solvers of sparse linear systems or iterative solvers using a conjugate gradient algorithm�

�

where sparse matrices were symmetric and positive de�nite� Therefore� di�erent orderings

could still get the correct answer because all of these orderings could make the solution

convergent� CM and RCM orderings can further minimize the number of non�zero �ll�in�s

in sparse matrices when solving sparse linear systems directly� Note that a large number

of non�zero �ll�in�s may prevent scientists from using direct solvers due to the limitation

imposed on the memory size�

However� for some computational �uid dynamic applications� such as Euler and Navier�

Stokes equations� due to the hyperbolic property� the resulting sparse matrix is not a sym�

metric matrix� Therefore� SAW�s or CM or RCM orderings might delay the convergence

of a solution obtained using iterative solvers� In e�ect� we have found that for the Euler

�ow solver� using a diagonal ordering can improve convergence� where in the diagonal or�

dering� triangle �� is prior to triangle �� if their gravity centers �x�� y�� and �x�� y�� satisfy

x�� y� � x�� y� ����� This is probably because elements �triangles� in the mesh are iterated

along a particular direction� for example� from south�east to north�west� according to the

elements� coordinates� Note that CM� RCM� and diagonal orderings are not SAW�s� The

e�ectiveness of an ordering depends on its applications�

In this paper� we emphasize that a SAW can be used as a sequence to �nd mesh inter�

section� However� SAW�s or CM or RCM orderings are not needed to be the ordering of an

unstructured mesh� as these orderings will not necessarily converge quickly when a general

iterative PDE solver is employed�

� Generating self�avoiding walks

An unstructured mesh is composed of triangles� Each triangle has three vertices� three

edges� and at most three adjacent triangles� Each pair of adjacent triangles share a common

edge� Each vertex is surrounded by several triangles� thus� these triangles have a common

vertex� Since the computing domain is connected� starting from any triangle� we can use the

�

advancing front method to traverse all the triangles in the computing domain�

��� An algorithm for generating self�avoiding walks

The advancing front method treats each edge as a front� Starting from any boundary edge

e� which we de�ne as the �rst and only active front� we cross edge e and enter the adjacent

triangle �� Now� in this new triangle �� we set the other two edges as two new active fronts
if these two edges were not crossed before� and set edge e as an inactive front because this

front is now hidden by other new active fronts� We repeatedly cross active fronts as described

above until all the fronts are set to be inactive�

In the following� we use a queue to store active fronts� This queue can be implemented

as a FIFO ��rst�in��rst�out� queue� a LIFO �last�in��rst�out� queue �which is a stack� or

any other interesting queue� The FIFO queue corresponds to a breadth��rst search� while

the LIFO queue corresponds to a depth��rst search� For clarity� we use hedge��xi
��ai to

represent an active front� where �xi
is visited but �a is not� and where edge is their shared

�common� edge� According to the direction from �xi
to �a� we also de�ne the left vertex

and the right vertex of the front as being the same as those of the front edge� Of course�

initially� we only have one special front hedge� ���ai� where edge is a boundary edge� We
use a double link list to store visited triangles �xi

� where one link points to its predecessor

�xi��
and the other link points to its successor �xi��

� We use j�a��b� � � � ��kj to represent
the number of triangles in the triangle sequence�

Algorithm � for generating self�avoiding walks �

Step �� Initially� the SAW sequence is empty� We start from an initial boundary front

hedge� ���ai�

Step �� �Enqueue phase�

Let �a be the adjacent triangle �which was not visited before as we just crossed a

�

new active front�� We insert �a into the SAW� Then� we reset the original front to be

inactive as it is now hidden by �a� However� we also get either � or � or
 new active

fronts�

Step ���� We get � active fronts� The enqueue phase stops� and we continue with

Step ��

Step ���� We get � active front� We have two cases�

Case
�
��� The original left vertex is the left vertex of the new front� and the

third vertex of �a is the right vertex of the new front�

Case
�
�
� The original right vertex is the right vertex of the new front� and the

third vertex of �a is the left vertex of the new front�

In both cases� we cross the new front and repeat Step
�

Step ���� We get
 active fronts� The original right vertex is the right vertex of the

new right front� and the third vertex of �a is the left vertex of the new right front�

The original left vertex is the left vertex of the new left front� and the third vertex

of �a is the right vertex of the new left front�

We �rst enqueue the new right front into a front queue� then� we cross the new

left front and repeat Step
�

Step �� �Dequeue phase�

We dequeue a front from the front queue� called hedge��xi
��ai�

If there is no front� then the Dequeue phase stops�

If �a was visited before� then we repeat Step ��

Otherwise� we reset the front to be inactive� We have four cases�

Case ���� When �xi
is not the �rst triangle in the SAW sequence� if �xi

� �a� and

�xi��
share a vertex� and moving clockwise along this shared vertex� none of �a� �b�

� � � � �k are visited� and if j�a��b� � � � ��kj � �� then we insert �k� �k��� � � � � �b� �a

��

into the SAW� such that the SAW sequence has the following order� �xi��
� �k� �k���

� � � � �b� �a� �xi
�

In the meantime� we mark �k� �k��� � � � � �b� �a to be visited and enqueue fronts

adjacent to �k� �k��� � � � � �b� �a into the front queue� After that� we repeat Step ��

Case ��
� When �xi
is not the last triangle in the SAW sequence� if �xi

� �a� and

�xi��
share a vertex� and moving counterclockwise along this shared vertex� none of

�a� �b� � � � � �k are visited� and if j�a��b� � � � ��kj � �� then we insert �a� �b� � � � �

�k� into the SAW� such that the SAW sequence has the following order� �xi
� �a� �b�

� � � � �k� �xi��
�

In the meantime� we mark �a� �b� � � � � �k to be visited and enqueue fronts adjacent

to �a� �b� � � � � �k into the front queue� After that� we repeat Step ��

Case ���� When �xi
is not the �rst triangle in the SAW sequence� if �xi

� �a� and

�xi��
share a vertex� and moving clockwise along this shared vertex� only �a is not

visited� then we insert �a into the SAW� such that the SAW sequence has the following

order� �xi��
� �a� �xi

�

In the meantime� we mark �a to be visited and enqueue the front adjacent to �a into

the front queue� After that� we repeat Step ��

Case ���� When �xi
is not the last triangle in the SAW sequence� if �xi

� �a� and

�xi��
share a vertex� and moving counterclockwise along this shared vertex� only �a

is not visited� then we insert �a into the SAW� such that the SAW sequence has the

following order� �xi
� �a� �xi��

�

In the meantime� we mark �a to be visited and enqueue the front adjacent to �a into

the front queue� After that� we repeat Step ��

Cases ��� and ��
 are prior to Cases ��� and ��� as we prefer to include more �share�edge�

consecutive triangles in the SAW sequence� For example� in Cases ��� and ��
� �xi
and �a

��

have a shared edge� �a and�b have a shared edge� � � � � and�k�� and�k have a shared edge�

For unstructured mesh applications� a triangle frequently needs information about its three

adjacent triangles� Therefore� �shared�edge� consecutive triangles have better data locality

than �shared�vertex� consecutive triangles do� In the following� we show that Algorithm �

can visit all the triangles� in addition� each triangle appears in the SAW sequence only once�

Thus� Algorithm � is complete�

Theorem � Algorithm � can visit all the triangles�

Proof� Algorithm � adopts the advancing front method to visit triangles� Thus� all the

triangles behind active fronts are visited� Active fronts are generated in Step
 and Step ��

In Step
 �of the enqueue phase�� for each active front hedge��xi
��ai enqueued into the

front queue� the front edge has a common vertex with �xi��
if �xi

is not the �rst triangle

in the SAW sequence� and has a common vertex with �xi��
if �xi

is not the last triangle in

the SAW sequence�

In Step � �of the dequeue phase�� new active fronts hedge
a
��a���

a
i� hedge

b
��b���

b
i� � � � �

and hedge
k
��k���

k
i are enqueued into the front queue� In addition� their corresponding

SAW sequence is either �xi��
� �k� �k�

� � � � � �a� �xi
or �xi

� �a� �b� � � � � �k� �xi��
� edge

a

has a common vertex with �xi
and a common vertex with �b� edgeb has a common vertex

with �a and a common vertex with �c� � � � � and edge
k
has a common vertex with �k���

Therefore� the edge of each active front has at least one common vertex with its preceding

triangle or its succeeding triangle�

Thus� Cases ���� ��
� ���� and ��� are exhaustive� Because triangles in the unstructured

mesh are connected by edges� there exists a triangle path connecting any two triangles� such

that any two consecutive triangles in the path have a common edge� An edge can be treated

as a front� therefore� all the triangles can be visited by the algorithm�

Theorem � Each triangle appears in the SAW sequence only once�

�

Proof� An active front is represented by hedge��xi
��ai� where �xi

is visited and �a is not�

In Step
� if �a is visited� then hedge��xi
��ai is not an active front� and we will not cross

the front edge� In Step �� when a front hedge��xi
��ai is dequeued from the front queue� we

�rst check whether �a was visited previously� If �a was visited previously� we ignore that

front� Thus� �a will not be inserted into the SAW sequence twice�

We now analyze the algorithm� We assume that the unstructured mesh contains N

triangles� Each front �or each edge� can be enqueued into and dequeued from the front

queue only once� thus� the time complexity of generating a SAW sequence is proportional

to the number of fronts �or edges�� Therefore� the time complexity of generating a SAW

sequence is O�N��

��� FIFO SAW and LIFO SAW

We have implemented a FIFO SAW� which is based on a FIFO queue� and a LIFO SAW�

which is based on a LIFO queue� We use the terms �FIFO� SAW and �LIFO� SAW to

distinguish between them and BFS SAW and DFS SAW proposed in ��� to avoid confusion�

Recall that in Algorithm �� we have an enqueue phase �Step
� and a dequeue phase �Step ���

In Step
 the SAW sequence is generated clockwise along the boundary of the computing

domain� Each triangle visited in Step
 has a common edge with its predecessor if this triangle

is not the �rst triangle in the SAW sequence� and has a common edge with its successor if this

triangle is not the last triangle in the SAW sequence� Each triangle has at most three adjacent

triangles� Although this triangle and two adjacent triangles are numbered consecutively� the

third adjacent triangle may have a number far from theirs�

To improve the average distance between adjacent triangles� we can restrict the number

of triangles inserted into the SAW sequence in the enqueue phase �Step
�� We use FIFO�c�

SAW or LIFO�c� SAW to represent the SAW with at most c triangles inserted into its sequence

in Step
� To understand the �avors of di�erent SAW�s� Figure � shows FIFO�
p
N� SAW�

��

FIFO��� SAW� LIFO�N� SAW� and LIFO��� SAW over an � � � structured mesh� where
the basic element in this structured mesh is a �square� cell instead of a �triangle� cell� In

these orderings� FIFO�
p
N� SAW has the best average distance between adjacent cells in this

example�

(a) (b) (c) (d)

Figure �� �a� FIFO�
p
N� SAW� �b� FIFO��� SAW� �c� LIFO�N� SAW� and �d� LIFO��� SAW

over an �� � structured mesh�

For convenience� we use FIFO SAW to represent FIFO�N� SAW and LIFO SAW to

represent LIFO�N� SAW to avoid confusion� Figure � shows four SAW�s over a sample

unstructured mesh� including our FIFO�
p
N� SAW� our LIFO SAW� and BFS SAW and

DFS SAW suggested in ����

A SAW is generated based on the graph data structure of an unstructured mesh� There�

fore� starting from a di�erent initial front will result in a di�erent SAW� In this paper� we

choose a boundary edge at the south�eastern corner as the initial front� In e�ect� we gener�

ate several SAW�s starting from di�erent boundary edges� although their average distances

between adjacent triangles vary quite a bit� the di�erences in their execution times for per�

forming mesh intersection are insigni�cant�

��� Quality measure of SAW�s

Heber� Biswas� and Gao proposed a quality measure in ���� which computes the average

distance between each pair of adjacent triangles of an unstructured mesh based on the num�

bering of the SAW sequence or the mesh ordering� This measure is a good reference for a

SAW sequence� Table � shows the average distances obtained by using di�erent mesh order�

��

(a)

(b)

(c)

(d)

Figure �� �a� FIFO�
p
N� SAW� �b� LIFO SAW� �c� BFS SAW� and �d� DFS SAW over an

unstructured mesh�

ings over �
� unstructured meshes of engine combustion shown in Figure �� Among them�

we also apply this measure to three non�SAW cases for comparison� ��� the original mesh

ordering obtained from mesh generators or mesh databases� �
� the diagonal ordering� and

��� the reverse Cuthill�McKee ordering �RCM�� Among these SAW�s� our FIFO�
p
N� SAW

has the minimum average distance� while our LIFO SAW has the maximum average distance�

Taking the number of walks through edges and vertices into consideration is another

interesting measure� The situation walk through an edge �edge�walk�� which means that two

consecutive triangles are tightly connected by a shared edge� may have better data locality

for certain PDE solvers than will two consecutive triangles be connected by a shared vertex

�	

Mesh order Avg� dist�

Original Order �����
�
Diagonal Order �����
RCM Order
���

FIFO Order ������

FIFO�
p
N� Order �����

LIFO Order �������
BFS Order �
���
DFS Order �������

Table �� The average distance when applying di�erent SAW�s on a mesh� The results are
averaged again based on the average distances of �
� meshes�

�vertex�walk�� Table
 shows the average counts of walks through edges and vertices for each

SAW over �
� unstructured meshes of engine combustion shown in Figure �� Our LIFO SAW

takes an edge�favor walk� so it has a minimum number of vertex�walks� but it also increases

the average distance� The counts of edge�walks for our FIFO SAW and FIFO�
p
N� SAW are

not as good as those for our LIFO SAW but are still better than those of both of H�B�G�s

SAW�s�

Our SAW H�B�G�s SAW

Walk count FIFO FIFO�
p
N� LIFO BFS DFS

�edge�walk �������� ����
��� �������� �������� ��������
�vert�walk ���
��� �
����� �������
�
���
 ��
����

Table
� The counts of walks through edges and vertices when applying di�erent SAW�s on
a mesh� The results are averaged again based on the counts of �
� meshes�

The e�ectiveness of these SAW�s in real applications� however� depends on their contri�

bution to saving execution time� We will study their cache e�ects in Section 	�

� Computing mesh intersections

Our algorithm requires a background quadtree of the �rst unstructured mesh and a SAW

sequence of the second unstructured mesh� The background quadtree� which was de�ned

before performing unstructured mesh generation� is used to represent a smooth change of

density distribution among triangles in the computing domain ���� If an unstructured mesh

is not associated with a background quadtree� we can construct one such that the territory

��

of each quadtree leaf contains at most a certain constant number of triangles� We say that

the territory of a quadtree leaf contains a triangle if the gravity center of that triangle falls

within the territory of this quadtree leaf� Figure 	 shows a background quadtree over a

sample unstructured mesh� which is traversed by our FIFO�
p
N� SAW� Figure 	 illustrates

the possibility of tracking the location of each triangle in a SAW sequence by means of a

quadtree� Note again that� in our mesh intersection algorithm� we really need a background

quadtree for the �rst unstructured mesh and a SAW sequence for the second unstructured

mesh to avoid confusion�

(c)

SENENWSW
(12) (12)

(b)

(a)
 (8) (8) (8) (9) (8) (9) (8) (8)

Figure 	� �a� A background quadtree over a sample unstructured mesh� which is traversed
by our FIFO�

p
N� SAW� �b� the territory of the quadtree� and �c� the quadtree structure�

where parentheses enclose the number of triangles in the territory of each quadtree leaf�

The idea behind our algorithm is as follows� If �� and ��
�
are adjacent to each other in

the second unstructured mesh� their triangle�intersection sets� with respect to triangles in the

�rst unstructured mesh� have non�empty intersection� Thus� we can follow a SAW sequence

of the second unstructured mesh to use the local information of the preceding triangle�

intersection set to generate a succeeding triangle�intersection set� provided that each triangle

in the second unstructured mesh always intersects with triangles in the �rst unstructured

mesh�

��

However� if the object geometry of the �rst unstructured mesh is di�erent from the object

geometry of the second unstructured mesh� then some triangles in the second unstructured

mesh may not intersect with any triangle in the �rst unstructured mesh� Thus� the lo�

cal information of the preceding intersection set breaks �and therefore requires additional

searching�� In this case� we use a background quadtree of the �rst unstructured mesh to keep

track of the location of each triangle �� in the SAW sequence of the second unstructured

mesh� We exhaustively test intersections for �� and those triangles in the �rst unstructured

mesh which fall within the territory of the same quadtree leaf as that of ���

Algorithm � for computing the intersection of two meshes�

Pick out one triangle �� from the SAW sequence of the second unstructured

mesh�

If the predecessor�s triangle�intersection set is not empty�

then we use the local information of the predecessor�s triangle�intersection set to

generate the triangle�intersection set of ���

otherwise we use a background quadtree of the �rst unstructured mesh to keep

track of the location of ��� We exhaustively test intersections for �� and those

triangles in the �rst unstructured mesh which fall within the territory of the same

quadtree leaf as that of ���

Note that the triangle�intersection set of �� may fall across the territories of more than

one quadtree leaf� However� except for intersecting with boundary triangles� the triangle�

intersection set of �� is connected� Therefore� once we have found a triangle �� in the �rst

unstructured mesh such that �� ��� � �� the remaining triangle�intersection set of �� can

be found using the local information of ���

As for intersecting with boundary triangles� the resulting triangle�intersection set of ��

may be disconnected� Therefore� we have to consider all the territories of the quadtree leafs

��

that enclose ��� In e�ect� we consider all the candidate triangles that fall within the territo�

ries of those quadtree leafs in which three vertices and four range points of �� fall� Suppose

that three vertices of �� are �x�� y��� �x�� y��� and �x�� y��� Let xmax max�x�� x�� x���

xmin min�x�� x�� x��� ymax max�y�� y�� y��� and ymin min�y�� y�� y��� Then� four range

points of �� are �xmin� ymin�� �xmin� ymax�� �xmax� ymin�� and �xmax� ymax��

To evaluate whether a candidate triangle �� in the �rst unstructured mesh intersects

with ��� we perform the following four tests in turn� If the second� the third� and the fourth

tests are not satis�ed� then �� and �� do not intersect�

Test �� We perform a range test for �� and ��� If the range of �� and the range of ��

do not intersect� then �� and �� do not intersect� This is an inexact test� but it is a fast

way to prune o� many irrelevant candidates�

Test �� We test whether a vertex of �� is within ��� If it is� then all the triangles �in�

cluding ��� surrounding this vertex intersect with ��� We also mark all of their neighboring

triangles as candidates�

Test �� We test whether an edge of �� intersects with an edge of ��� If it does� then

both triangles �including ��� adjacent to this edge intersect with ��� We also mark all of

their neighboring triangles as candidates�

Test �� We test whether a vertex of �� is within ��� If it is� then �� intersects with

��� In this case all of �� is within ���

Since �� can intersect with at most a certain constant number of triangles in the �rst

unstructured mesh� we can �nd the whole set of triangles which intersects with �� based

on the local information of �� in a constant period of time� after �nding the �rst �� which

intersects with ��� In numerical simulations� the change of object geometries in successive

frames is kept small in order to guarantee achievement of convergence� Thus� there are

only a few triangles for which the local information of the preceding intersection�set breaks�

As mentioned in the Introduction� for this type of changing�shape application� the time

��

complexity of our algorithm for computing mesh intersection is linear with respect to the

number of triangles in the �rst and second unstructured meshes�

Note that it is possible to compute the range intersection of two target unstructured

meshes in a preprocessing step in order to screen out some irrelevant triangles if these two

meshes have only a small area of intersection� In our application� two consecutive frames

change very slightly� therefore� we ignore the preprocessing step�

� Experimental studies

Our experimental studies were implemented on a SUN Ultrasparc�� ��	� MHz� workstation�

Our benchmark suit contained �
� consecutive unstructured meshes �corresponding to �
�

frames� shown in Figure �� Table � lists the numbers of triangles� edges� and vertices of these

�
� unstructured meshes� Experimental results show the improvements obtained by using

SAW�s to compute mesh intersections and also show the impact of using di�erent SAW�s�

Table � shows the average execution time of mesh intersection using di�erent SAW�s

based on di�erent mesh orderings� These interesting orderings include� ��� the original mesh

ordering obtained from mesh generators or mesh databases� �
� the diagonal ordering� ���

the reverse Cuthill�McKee ordering �RCM�� ��� our FIFO SAW ordering� �	� our FIFO�
p
N�

SAW ordering� ��� our LIFO SAW ordering� ��� the BFS SAW ordering in ���� and ��� the

DFS SAW ordering in ���� We let the �rst mesh and the second mesh use the same kinds of

orderings as listed in the �rst dimension� These orderings could in�uence the convergence

rate of certain PDE solvers� We then used the di�erent SAW�s of the second mesh as listed

in the second dimension to compute mesh intersections� We stress again that mesh orderings

play an important role in determining the convergence rate of certain PDE solvers� however�

SAW�s were only used to �nd mesh intersections in this study�

When we did not use any SAW sequence� we used a quadtree to keep track of the location

of preceding triangles� denoted by QT�Track� Otherwise� we simply searched from the root

�

mesh ���s �edges �vert� mesh ���s �edges �vert� mesh ���s �edges �vert�

� ����� ����� ���� �� �
��� ����� ���� �� ����� ����
 ����
� �
��� ����
 ���� �� �

�� ����� �
�� �� ����� ����� ���

� �
��� ����� ���� �
 �
��� ����� ���� �� ����� ����� �

�
� ���
� �
��
 ���� �� ���
� ����� ���� �� ����
 ����� ����
� ����� ����� ���� �� ��
�� ����� ���� �� ����� ����� ����

 ����� ����� ���� �� ����� ����� ���� �� ��
�� ���

 �����
� ����� ����� ����� �� ����� ���
� ���� �� ����
 ����� �����
� ����
 ����� ����� �� ����� ����
 ���� �� ����� ����� ��
��
� ����� ����� ��
�
 �� ����� ����� ���� �� ��
�� ����� �����
�� ����
 ����� ����
 �� ����� ����� ���� �
 ���

 ����� ���
�
�� ����� ����� ����
 �� ����� ����� ���
 �� ��
�� ���
� �����
�� ����� ��
�� ����� �� ����� �����
��� �� ����� ���
� �����
�� ����
 ��
�� ��
�� �
 ����� ���
�
��� �� ����� ���
� �����
�� ����� ����� ����
 �� ���
� �����
��� ��� ��
�� ����� �����
�� ����� ����� ����� �� ����� �����
�
� ��� ����� ����
 ����

�
 ����
 ����� ����� �� ����� �����
�
� ��� ����� ���
� �����
�� ����� ����� �����
� ����� ����� ���
 ��� ���
� ��

� �����
�� ���
� ����� �����
� ����� ����� ���� ��� ����� ����� �����
�� ����� �

 ��
��
� ����
 �

�� ���� ��� ����� ����� ����

�� ����� �
��� ��
��
� ����� ����� ���� ��
 ����� ����� �����
�� ���
� �
��� ��
��
� ���
 ����� ���� ��� ����� ����� �����
�� ����� ����� �����
� ����� ����� ���� ��� ����� �
�
� �����
�� ����� ����� �����

 ����
 �

�� ���� ��� ����
 �
��� ��
��
�� ����
 ����� �����
� ����� ����� ���� ��� ����� ����� ����

�� ����� ����� �����
� ����� ����� ���
 ��� ����� ����
 �����
�
 ����� ����� �����
� ����� �����
�
� ��� ���
� ����� �����
�� ���
� ����� ���
� �� ����� �����
�
� ��� ��
�� ����� ����

�� ���
� ����
 ���
� �� ���
� �����
��� ��� ����
 ����� �����
�� ����� ����� ����� �� ����� ���
�
��� ��� ����� ���
� �����
�� ��
�� ���
� ����� �� ����� �����
��� ��
 ����
 ���
� ����

�� ����� ����� ����� �� ����� ����� ���
 ��� ����� ����� �����
�� ���

 ����� ���
� �� ����� ����� ���� ��� ����
 ����� �����
�� ��
�� ����� ����� �
 ����� ����� ���� ��� ����� ���

 ��
��
�� ����� ����� ��
�� �� ����� ����
 ���� ��� ��
�� ���
� �����
�� ����
 ����� ����� �� ����� ����� ���� ��� ����� ����� �����
�
 ��
�� ���

 ����� �� ����� ����� ���� ��� ��
�� ����� ��
�
�� ����� ����� ����
 �� ����� ����� ��
� ��� ����� ����� �
��
�� ����
 ����� ���� �� ����
 ����� ��
� ��� ����� �
��� ����
�� ����� ����� �

� �� �
��
 ����� ���� ��� �
��� ����� ���

�� ����� ����� ���
 �� �

�� ����� �
�
 ��
 �
��� ����� �
��
�� ����� ����� ���� �� ����� ����� ���� ��� ����� ����
 ����
�� ��
�
 �
��� ���� �� ����� ����� ���� ��� ���
 ����� ����
�� ����� ����� ���� �
 ��
�� �
��� ����

Table �� Number of triangles� number of edges� and number of vertices in each of �
�
unstructured meshes �for �
� frames shown in Figure ���

�

Our SAW H�B�G�s SAW No SAW

Mesh Order FIFO FIFO�
p
N� LIFO BFS DFS QT�Track QT�Only

Original Order ����
� ������ ������ ����� �����
 ������ ������
Diagonal Order ������ ������ ������ ����� �����
 ������ �
����
RCM Order ����� ������ ��
��� ������ ������ ������ �����

FIFO Order ��
�
� ������ ������ ������ ������ �����
 ������

FIFO Order�
p
N� �����
 �����
 ������ ��
��
 ������ ������ ��
���

LIFO Order ������ ������ ������ ������ ������ ������ �����

BFS Order ����
� ������ ��
��� ������ ������ ������ �����

DFS Order ������ ����
� ������ �����
 ������ ������ ����
�

Table �� The average execution time in millisecond of doing mesh intersections for every two
consecutive meshes in the �
� frames of engine combustion�

of a quadtree every time to �nd nearby triangles in the �rst mesh� denoted by QT�Only�

The average execution time was obtained by computing mesh intersections for every two

consecutive meshes in the �
� frames of engine combustion� and then averaging these �
�

lengths of execution time� We examine the results obtained in the following�

First� the results show that using any SAW improves the execution time of calculating

mesh intersections by �
 to
�
� depending on the mesh ordering� compared with not using

a SAW� This performance improvement is due to the connectivity of the SAW sequence� In

a SAW sequence� two consecutive triangles are connected by an edge or a vertex� therefore�

we can use their neighboring relationship to reduce the searching time�

Second� our FIFO SAW� FIFO�
p
N� SAW� and Heber�Biswas�Gao�s �H�B�G�s for short�

BFS SAW are the most competitive SAW�s for all mesh orderings listed in the �rst dimension

of Table �� as these three SAW�s are all based on some kind of breadth �rst search using

certain FIFO queues� The di�erences in the execution times required when using these three

SAW�s are less than �
� Our LIFO SAW performs the worst� which is about 	
 slower than

when using other SAW�s� The performance di�erences among the di�erent SAW�s can be

ascribed to the data locality property of these SAW�s�

Recall that as shown in Table �� the average distances of FIFO SAW� FIFO�
p
N� SAW�

and BFS SAW are much less than those of DFS SAW and LIFO SAW� Comparing the

execution times shown in Table �� we can see the e�ect of this average�distance factor with

these �ve SAW�s� However� the average distance is not the absolute factor a�ecting data

locality� In e�ect� the average distances of the diagonal ordering and RCM ordering are

less than those of FIFO SAW and H�B�G�s SAW�s� however� the former execution times are

worse than the latter execution times� as our algorithm is favored to follow a SAW sequence

in the second mesh to calculate mesh intersection� The diagonal ordering has the minimum

average distance� however� its execution times are worse than those of the RCM ordering� A

diagonal ordering is generated according to the triangles� spatially coordinate information�

but an RCM ordering is generated based on the graph data structure of the mesh� Therefore�

the RCM ordering has better data locality behavior than the diagonal ordering�

When calculating mesh intersection� the mesh ordering �the numbering of triangles in a

mesh� has little in�uence when a SAW sequence is followed in the second mesh� However�

the mesh ordering plays an important role when no SAW sequence is followed� In the last

column of Table �� the execution times required by QT�Track are always better than those

required by QT�Only� This indicates that all special purpose mesh orderings have some kind

of data locality� As for the cases in which QT�Track is used� we can see that when a mesh

adopts the numbering of di�erent SAW sequences� the execution time is ��
 to ��
 faster

than that when the original ordering is adopted� This is because the reordered mesh takes

advantage of the data locality of that ordering� We can see that for mesh intersections� the

best orderings are our FIFO SAW� FIFO�
p
N� SAW� and H�B�G�s BFS SAW� all of which

have better data locality�

Note that despite the fact that our LIFO SAW has the longest average distance� there are

some potential applications as mentioned in ���� For example� walks have a long tradition of

applications in Monte Carlo methods used to study long�chain polymer molecules� This new

application� however� is beyond the scope of this presentation�

�

� Conclusion

In this paper� we have presented an e�cient algorithm for computing mesh intersections� We

have found that if �� and ��
�
are adjacent to each other in the second unstructured mesh�

their triangle�intersection sets with respect to the triangles in the �rst unstructured mesh have

non�empty intersections� Thus� we can follow a SAW sequence to use the local information of

a preceding triangle�intersection set to generate the succeeding triangle�intersection set� We

can also use a background quadtree to keep track of the location of each triangle in the SAW

sequence� This allows us to design a linear time algorithm for computing mesh intersections�

According to the results of experimental studies� our algorithm is superior than other naive

algorithms in terms of execution time�

For an unstructured mesh� the data of the logically neighboring triangles are not stored

together in the physical memory� Thus� data locality has a large impact on performance� We

have presented a FIFO SAW and a LIFO SAW� The FIFO SAW employs better data locality�

and by using it� we can reduce the execution time by 	
 compared with using other SAW�s�

We believe that this is due to the e�ect of data locality when operating under hierarchical�

memory computer architectures� which result in more page hits �and thus less page faults�

and more cache hits �and thus less cache misses��

References

��� E� Barszcz� S� K� Weeratunga� and R� L� Meakin� Dynamic overset grid communication on distributed
memory parallel processors� AIAA paper �������� American Institute of Aeronautics and Astronautics�
�����

��� D� A� Burgess and M� B� Giles� Renumbering unstructured grids to improve the performance of codes
on hierarchical memory machines� Advances in Engineering Software� ��	�������� �����

��� J� J� Chattot and Y� Wong� Improved treatment of intersection bodies with the Chimera method and
validation with a simple and fast �ow solver� Computers and Fluids� �����
�	�������� �����

��� G� Chesshire and W� D� Henshaw� Composite overlapping meshes for the solution of partial di�erential
equations� Journal of Computational Physics� ��	��
�� �����

��� E� Cuthill and J� McKee� Reducing the bandwidth of sparse symmetric matrices� In Proc� ��th Nat�

Conf� of the ACM� pages �������� ��
��

�

�
� M� de Berg� M� van Kreveld� M� Overmars� and O� Schwarzkopf� Computational Geometry� Algorithms

and Applications� Springer� Berlin� �����

��� O� Hassan� E� J� Probert� K� Morgan� and N� P� Weatherill� Unsteady �ow simulation using unstructured
meshes� Comput� Methods Appl� Mech� Engrg�� ���	���������� �����

��� G� Heber� R� Biswas� and G� R� Gao� Self�avoiding walks over adaptive unstructured grids� Concurrency�
Practice and Experience� ��	������� �����

��� P��Z� Lee and C��H� Chang� Unstructured mesh generation using automatic point insertion and local
re�nement� In Proc� National Computer Symposium� pages B����B���� Taipei� Taiwan� Dec� �����

���� P��Z� Lee� C��H� Chang� and M��J� Chao� A parallel Euler solver on unstructured meshes� In Proc�

ISCA ��th International Conference on Parallel and Distributed Computing Systems� pages ��������
Las Vegas� Nevada� Aug� �����

���� W��H� Liu and A� H� Sherman� Comparative analysis of the Cuthill�McKee and the reverse Cuthill�
McKee ordering algorithms for sparse matrices� SIAM Journal on Numerical Analysis� �����	��������
Apr� ���
�

���� R� L�ohner� Some useful data structures for the generation of unstructured grids� Communications in

Applied Numerical Methods� �	�������� �����

���� R� L�ohner� Adaptive remeshing for transient problems� Computer Methods in Applied Mechanics and

Engineering� ��	�������� �����

���� M� M� Maricq� D� H� Podsiadlik� D� D� Brehob� and M� Haghgooie� Particulate emissions from a direct�
injection spark�ignition �DISI� engine� SAE Technical Paper ������������� �����

���� R� L� Meakin� A new method for establishing intergrid communication among systems of overset grids�
AIAA paper ������
� American Institute of Aeronautics and Astronautics� �����

��
� L� Oliker� X� Li� G� Heber� and R� Biswas� Parallel conjugate gradient	 E�ects of ordering strate�
gies� programming paradigms� and architectural platforms� In Proc� ISCA ��th International Conf� on

Parallel and Distributed Computing Systems� pages �������� Las Vegas� Nevada� Aug� �����

���� S� Plimpton� B� Hendrickson� and J� Stewart� A parallel rendezvous algorithm for interpolation between
multiple grids� In Proc� Supercomputing��	
 available via WWW at http	��www�supercomp�org�sc���
TechPapers�sc�� FullAbstracts�Plimpton
���index�htm� Orlando� FL� Nov� �����

���� N� C� Prewitt� D� M� Belk� and W� Shyy� Parallel computing of overset grids for aerodynamic problems
with moving objects� Progress in Aerospace Sciences� �
	�������� �����

���� H� Samet� The Design and Analysis of Spatial Data Structures� Addison�Wesley� Reading� MA� �����

���� J� L� Steger� F� C� Dougherty� and J� A� Benek� A Chimera grid scheme� ASME FED� �	���
�� �����

���� J� F� Thompson� B� K� Soni� and N� P� Weatherill� editors� Handbook of Grid Generation� CRC Press�
Boca Raton� FL� �����

���� A� M� Wissink and R� L� Meakin� On parallel implementations of dynamic overset grid methods� In
Proc� Supercomputing���
 available via WWW at http	��www�supercomp�org�sc���proceedings�TECH�
WISSINK�INDEX�HTM� San Jose� CA� Nov� �����

	

