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Abstract

This paper is concerned with designing an e�cient algorithm for computing the in�
tersection of two unstructured meshes� The algorithm uses a background quadtree
of the �rst unstructured mesh and a self�avoiding walk �SAW� of the second un�
structured mesh� Due to the neighboring relationships of consecutive triangles
in the triangle sequence of a SAW� we can keep track of the location of each
triangle in the second unstructured mesh by means of the background quadtree�
This allows us to design a linear time algorithm for computing the mesh inter�
section� Experimental studies show that our e�cient algorithm for computing
the mesh intersection can save a lot of execution time in comparison with that
needed by other naive algorithms� We also present two new SAW�s� Using our
�rst�in��rst�out �FIFO� SAW can save an additional 	
 of the execution time in
comparison with that needed when using other SAW�s� This is because our FIFO
SAW employs better data locality� which is especially bene�cial for the current
hierarchical�memory computer architectures�
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� Introduction

To implement numerical simulations of engineering applications� such as engine combustion

or computational �uid dynamics� unstructured meshes are tessellated in the computing do�

main before solving the speci�c governing equations� which are usually partial di�erential

equations ���� However� the boundary geometries of many simulated objects� like the valves

and chamber of a Direct�Injection Spark�Ignition gasoline engine ����� the blades in a gas

turbine� and a deforming droplet in the vicinity of a nozzle� change with time�

Figure � shows a period of �
� frames for engine combustion� which involves the processes

of fuel and air intake� compression of the fuel�air mixture� ignition and combustion of the

charge� expansion of gases� and the removal of waste� For this type of transient �where shapes

change with time� application� it is practical to generate a separate unstructured mesh for

each frame �of an object geometry within a period of operation�� Figure 
 shows parts of

unstructured meshes for frame � and frame 
� The unstructured mesh is regenerated because

the left intake valve moves� When simulating operations� we use interpolation techniques to

transfer the status of variables from frame i to frame i � � for � � i � M � and from frame

M to frame �� where we assume that a period of operation includes M frames�

To compute interpolations from frame i to frame i � � or from frame M to frame �� we

have to know the intersection of each triangle �element or cell� in the unstructured mesh of

frame i�� �or frame �� with respect to triangles in the unstructured mesh of frame i �or frame

M � respectively�� A naive implementation of computing mesh intersection requires O�N�N��

time complexity to test whether a triangle in the second unstructured mesh intersects with

each of the triangles in the �rst unstructured mesh� where we assume that the �rst mesh has

N� triangles� and that the second mesh has N� triangles�

If we construct a binary�search partition tree ��� for the �rst unstructured mesh in advance�

then �nding the �rst triangle�� in the �rst unstructured mesh which intersects with a speci�c

triangle �� in the second unstructured mesh requires only O�logN�� time complexity� The
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Figure �� A period of �
� frames for the engine combustion�






The left intake valve

(a) (b)

Figure 
� Parts of unstructured meshes near the left intake valve of �a� frame � and �b�
frame 
 shown in Figure ��

whole set of triangles in the �rst unstructured mesh which intersect with �� can then be

found based on the local information of �� in a constant amount of time� Therefore� the

time complexity of computing mesh intersection is reduced to O�N� logN���

In this paper� we present an e�cient algorithm which can further reduce the time com�

plexity to O�N� � N�� for most cases� Our algorithm requires a background quadtree of

the �rst unstructured mesh and a triangle sequence of a self�avoiding walk for the second

unstructured mesh� The background quadtree� which is de�ned before unstructured mesh

generation to represent a smooth change of density distribution among triangles in the com�

puting domain ���� can be used to identify the location of a triangle� A self�avoiding walk

�SAW� over an arbitrary unstructured mesh is an enumeration of all the triangles of that

mesh such that two successive triangles share an edge or a vertex ���� A SAW can be treated

as a serialization technique which transforms a two�dimensional unstructured mesh into a

sequence of consecutive triangles�

We �rst construct a SAW sequence for the second unstructured mesh� Following the

SAW sequence� after �nding the intersection set ISET� of the �rst triangle� we can �nd the

intersection set ISET� of the second triangle based on the local information of ISET� in a

�



constant amount of time as the �rst triangle is adjacent to the second triangle by an edge

or by a vertex� Similarly� the intersection set ISET� of the third triangle can be found based

on the local information of ISET�� and so on� Therefore� the time complexity is reduced to

O�N� � N�� provided that each triangle in the second unstructured mesh always intersects

with triangles in the �rst unstructured mesh�

However� as the object geometry of the �rst frame may be di�erent from the object

geometry of the second frame� some triangles in the second unstructured mesh may not

intersect with any triangle in the �rst unstructured mesh� Therefore� the local information

of the predecessor�s intersection set breaks �and therefore requires additional searching�� In

this case� we use a background quadtree of the �rst unstructured mesh to keep track of the

location of each triangle �� in the SAW sequence of the second unstructured mesh� Then�

we exhaustively test intersections for �� and those triangles in the �rst unstructured mesh

which fall within the territory of the same quadtree leaf as that of��� If the territory of each

quadtree leaf contains at most a constant number of triangles� then each exhaustive test can

be done in a constant amount of time�

The average time complexity of keeping track of the location of each triangle in the

SAW sequence �of the second unstructured mesh� over the background quadtree �of the �rst

unstructured mesh� is di�cult to analyze� but it is bounded by O�logN��� where the height

of the background quadtree is O�logN��� However� since there is only a slight change of

the object geometries from frame i to frame i� � or from frame M to frame �� only a small

portion of triangles in the second unstructured mesh will not intersect with any triangle in the

�rst unstructured mesh� Therefore� the overhead of keeping track of the locations of all the

triangles f��
�
g in the SAW sequence over the background quadtree can be neglected� where

the set f��
�
g does not intersect with any triangle in the �rst unstructured mesh� Therefore�

the time complexity of mesh intersection is still O�N� �N���

The SAW sequences �over unstructured meshes� or space��lling curves �over structured
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meshes� ���� are frequently used to enhance data locality� so that data accesses can comply

with current hierarchical�memory computer architectures �
� ���� In this paper� we present

two new SAW�s and one algorithm for �nding mesh intersection� We analyze the cache e�ects

of using these two new SAW�s and another two SAW�s suggested in ��� when executing mesh

intersection� We also present experimental studies of mesh intersection for all �
� frames of

engine combustion�

The rest of this paper is organized as follows� Section 
 surveys related works� Sec�

tion � presents the two new SAW�s� Section � presents our algorithm for computing mesh

intersection� Section 	 presents experimental studies� and Section � gives some concluding

remarks�

� Related works

Many practical applications are usually time�varying �transient� and have complex geome�

tries� Therefore� more than one mesh can be adopted in the numerical simulations� These

meshes may coexist at the same time�step or be built in sequential time�steps� Mesh inter�

section plays an important role in such numerical simulations� Examples are described in the

following�

In multi�physics problems� since variables relevant to multiple physical phenomena are

obtained in synchronization steps� the optimal grids for each physical variable need not be the

same� so separate grids may be used to solve the appropriate equations for each variable� For

example� when the welding of a joint between two parts is simulated� one grid can be used to

solve the stress�strain relations to account for the mechanical deformation of the parts� and

the other grid can be used for thermal conduction calculations in the system� When both

the thermal and mechanical e�ects are considered� the solution data must be interpolated

back and forth between the two grids for each time step �����

In multi�body simulations� especially for problems with moving bodies or for those having

	



complex geometries� a series of body��tted grids separated for each component may overlap�

These are called overset grids� and interpolation is used to transmit data between the overset

grids in the �ow solver� The Chimera scheme is widely used to deal with this kind of prob�

lem ��� ��� 

�� It can break complex con�gurations into components �or regions�� generate a

series of separate body�conforming grids for each component �or region� of the con�guration�

and then overset these grids together to form a complete model �
���

In transient problems� like the propagation of a planar shock� local meshes are regenerated

as time progresses� and a set of dynamically adaptive meshes are built� The values of the

regenerated meshes need to be interpolated from old ones to new ones ���� The internal

combustion engine� which consists of chemical reaction� moving valves and pistons� and

fuel injection� is typically a transient problem with changing shapes� The mesh should

be regenerated if the valves and pistons move� The intermediate values also need to be

transferred from the old mesh to the new one�

Unstructured meshes are becoming important as they can be generated automatically for

applications with complex geometries or for those with dynamically moving boundaries �
���

For engine combustion applications� a fast approach might be to regenerate local meshes for

the places where boundaries change� However� the quality of the newly generated meshes in

these places might be poor in terms of the aspect ratio� area ratio� and edge ratio among the

triangles �elements or cells of a mesh� ���� The quality of a mesh in�uences the convergence

rate of the PDE solvers� Therefore� it is more suitable to generate a separate mesh for each

of the frames which represent boundary geometries for a period of operations�

The mesh intersection problem is also called the intergrid communication problem ��� �	�



�� grid transfer problem ����� or interpolation for unstructured grids ����� Chesshire and

Henshaw considered the overlapping of structured grids� where the density distribution of

each grid is uniform ���� They used inverse Cartesian mappings with a neighboring search to

�nd the nearest vertex �called an interpolation point��
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Meakin et al� also adopted inverse Cartesian mappings to solve the intergrid communica�

tion problem ��� �	� 

�� They found that in the highly re�ned regions� a cell �or a quadrant�

of a background Cartesian mesh might enclose a large number of grid elements �triangles��

Consequently� the index range of the search region de�ned by the vertices of the Cartesian cell

is likely to be large� and the resulting element �vertex or triangle� search costly� Therefore�

multi�level inverse Cartesian mappings were needed for a single grid�

To deal with unstructured meshes� L�ohner used a background quadtree to search nearby

grid elements ��
� ���� Plimpton et al� adopted recursive coordinate bisectioning techniques

to search nearby grid elements� Both of their methods can �nd an independent grid element

in a logarithmic amount of time�

SAW�s were �rst introduced by Heber� Biswas� and Gao for renumbering unstructured

meshes so that data locality for accessing neighboring data could be improved ���� As two

consecutive triangles in a SAW sequence shared an edge or a vertex� SAW�s were also used

to do data partitioning for sparse matrix applications over unstructured meshes on parallel

computers�

Cuthill and McKee suggested another renumbering method based on breadth��rst search

on a graph �	�� Starting from a vertex of minimal degree� they applied breadth��rst search

level�by�level� where vertices with a small degree within each level were numbered �rst�

followed by vertices with a large degree� Cuthill and McKee�s sequence is well�known for

reducing the bandwidth of a sparse matrix� Liu and Sherman further pointed out that

the reverse Cuthill�McKee �RCM� sequence� where level construction was restarted from a

vertex of minimal degree in the �nal level� was found to always be at least as good as its

corresponding Cuthill�McKee �CM� sequence in terms of minimizing the bandwidth of a

sparse matrix �����

Most applications found by using SAW�s or CM or RCM orderings were related to direct

solvers of sparse linear systems or iterative solvers using a conjugate gradient algorithm�
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where sparse matrices were symmetric and positive de�nite� Therefore� di�erent orderings

could still get the correct answer because all of these orderings could make the solution

convergent� CM and RCM orderings can further minimize the number of non�zero �ll�in�s

in sparse matrices when solving sparse linear systems directly� Note that a large number

of non�zero �ll�in�s may prevent scientists from using direct solvers due to the limitation

imposed on the memory size�

However� for some computational �uid dynamic applications� such as Euler and Navier�

Stokes equations� due to the hyperbolic property� the resulting sparse matrix is not a sym�

metric matrix� Therefore� SAW�s or CM or RCM orderings might delay the convergence

of a solution obtained using iterative solvers� In e�ect� we have found that for the Euler

�ow solver� using a diagonal ordering can improve convergence� where in the diagonal or�

dering� triangle �� is prior to triangle �� if their gravity centers �x�� y�� and �x�� y�� satisfy

x�� y� � x�� y� ����� This is probably because elements �triangles� in the mesh are iterated

along a particular direction� for example� from south�east to north�west� according to the

elements� coordinates� Note that CM� RCM� and diagonal orderings are not SAW�s� The

e�ectiveness of an ordering depends on its applications�

In this paper� we emphasize that a SAW can be used as a sequence to �nd mesh inter�

section� However� SAW�s or CM or RCM orderings are not needed to be the ordering of an

unstructured mesh� as these orderings will not necessarily converge quickly when a general

iterative PDE solver is employed�

� Generating self�avoiding walks

An unstructured mesh is composed of triangles� Each triangle has three vertices� three

edges� and at most three adjacent triangles� Each pair of adjacent triangles share a common

edge� Each vertex is surrounded by several triangles� thus� these triangles have a common

vertex� Since the computing domain is connected� starting from any triangle� we can use the
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advancing front method to traverse all the triangles in the computing domain�

��� An algorithm for generating self�avoiding walks

The advancing front method treats each edge as a front� Starting from any boundary edge

e� which we de�ne as the �rst and only active front� we cross edge e and enter the adjacent

triangle �� Now� in this new triangle �� we set the other two edges as two new active fronts
if these two edges were not crossed before� and set edge e as an inactive front because this

front is now hidden by other new active fronts� We repeatedly cross active fronts as described

above until all the fronts are set to be inactive�

In the following� we use a queue to store active fronts� This queue can be implemented

as a FIFO ��rst�in��rst�out� queue� a LIFO �last�in��rst�out� queue �which is a stack� or

any other interesting queue� The FIFO queue corresponds to a breadth��rst search� while

the LIFO queue corresponds to a depth��rst search� For clarity� we use hedge��xi
��ai to

represent an active front� where �xi
is visited but �a is not� and where edge is their shared

�common� edge� According to the direction from �xi
to �a� we also de�ne the left vertex

and the right vertex of the front as being the same as those of the front edge� Of course�

initially� we only have one special front hedge� ���ai� where edge is a boundary edge� We
use a double link list to store visited triangles �xi

� where one link points to its predecessor

�xi��
and the other link points to its successor �xi��

� We use j�a��b� � � � ��kj to represent
the number of triangles in the triangle sequence�

Algorithm � for generating self�avoiding walks �

Step �� Initially� the SAW sequence is empty� We start from an initial boundary front

hedge� ���ai�

Step �� �Enqueue phase�

Let �a be the adjacent triangle �which was not visited before as we just crossed a
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new active front�� We insert �a into the SAW� Then� we reset the original front to be

inactive as it is now hidden by �a� However� we also get either � or � or 
 new active

fronts�

Step ���� We get � active fronts� The enqueue phase stops� and we continue with

Step ��

Step ���� We get � active front� We have two cases�

Case 
�
��� The original left vertex is the left vertex of the new front� and the

third vertex of �a is the right vertex of the new front�

Case 
�
�
� The original right vertex is the right vertex of the new front� and the

third vertex of �a is the left vertex of the new front�

In both cases� we cross the new front and repeat Step 
�

Step ���� We get 
 active fronts� The original right vertex is the right vertex of the

new right front� and the third vertex of �a is the left vertex of the new right front�

The original left vertex is the left vertex of the new left front� and the third vertex

of �a is the right vertex of the new left front�

We �rst enqueue the new right front into a front queue� then� we cross the new

left front and repeat Step 
�

Step �� �Dequeue phase�

We dequeue a front from the front queue� called hedge��xi
��ai�

If there is no front� then the Dequeue phase stops�

If �a was visited before� then we repeat Step ��

Otherwise� we reset the front to be inactive� We have four cases�

Case ���� When �xi
is not the �rst triangle in the SAW sequence� if �xi

� �a� and

�xi��
share a vertex� and moving clockwise along this shared vertex� none of �a� �b�

� � � � �k are visited� and if j�a��b� � � � ��kj � �� then we insert �k� �k��� � � � � �b� �a

��



into the SAW� such that the SAW sequence has the following order� �xi��
� �k� �k���

� � � � �b� �a� �xi
�

In the meantime� we mark �k� �k��� � � � � �b� �a to be visited and enqueue fronts

adjacent to �k� �k��� � � � � �b� �a into the front queue� After that� we repeat Step ��

Case ��
� When �xi
is not the last triangle in the SAW sequence� if �xi

� �a� and

�xi��
share a vertex� and moving counterclockwise along this shared vertex� none of

�a� �b� � � � � �k are visited� and if j�a��b� � � � ��kj � �� then we insert �a� �b� � � � �

�k� into the SAW� such that the SAW sequence has the following order� �xi
� �a� �b�

� � � � �k� �xi��
�

In the meantime� we mark �a� �b� � � � � �k to be visited and enqueue fronts adjacent

to �a� �b� � � � � �k into the front queue� After that� we repeat Step ��

Case ���� When �xi
is not the �rst triangle in the SAW sequence� if �xi

� �a� and

�xi��
share a vertex� and moving clockwise along this shared vertex� only �a is not

visited� then we insert �a into the SAW� such that the SAW sequence has the following

order� �xi��
� �a� �xi

�

In the meantime� we mark �a to be visited and enqueue the front adjacent to �a into

the front queue� After that� we repeat Step ��

Case ���� When �xi
is not the last triangle in the SAW sequence� if �xi

� �a� and

�xi��
share a vertex� and moving counterclockwise along this shared vertex� only �a

is not visited� then we insert �a into the SAW� such that the SAW sequence has the

following order� �xi
� �a� �xi��

�

In the meantime� we mark �a to be visited and enqueue the front adjacent to �a into

the front queue� After that� we repeat Step ��

Cases ��� and ��
 are prior to Cases ��� and ��� as we prefer to include more �share�edge�

consecutive triangles in the SAW sequence� For example� in Cases ��� and ��
� �xi
and �a
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have a shared edge� �a and�b have a shared edge� � � � � and�k�� and�k have a shared edge�

For unstructured mesh applications� a triangle frequently needs information about its three

adjacent triangles� Therefore� �shared�edge� consecutive triangles have better data locality

than �shared�vertex� consecutive triangles do� In the following� we show that Algorithm �

can visit all the triangles� in addition� each triangle appears in the SAW sequence only once�

Thus� Algorithm � is complete�

Theorem � Algorithm � can visit all the triangles�

Proof� Algorithm � adopts the advancing front method to visit triangles� Thus� all the

triangles behind active fronts are visited� Active fronts are generated in Step 
 and Step ��

In Step 
 �of the enqueue phase�� for each active front hedge��xi
��ai enqueued into the

front queue� the front edge has a common vertex with �xi��
if �xi

is not the �rst triangle

in the SAW sequence� and has a common vertex with �xi��
if �xi

is not the last triangle in

the SAW sequence�

In Step � �of the dequeue phase�� new active fronts hedge
a
��a���

a
i� hedge

b
��b���

b
i� � � � �

and hedge
k
��k���

k
i are enqueued into the front queue� In addition� their corresponding

SAW sequence is either �xi��
� �k� �k�

� � � � � �a� �xi
or �xi

� �a� �b� � � � � �k� �xi��
� edge

a

has a common vertex with �xi
and a common vertex with �b� edgeb has a common vertex

with �a and a common vertex with �c� � � � � and edge
k
has a common vertex with �k���

Therefore� the edge of each active front has at least one common vertex with its preceding

triangle or its succeeding triangle�

Thus� Cases ���� ��
� ���� and ��� are exhaustive� Because triangles in the unstructured

mesh are connected by edges� there exists a triangle path connecting any two triangles� such

that any two consecutive triangles in the path have a common edge� An edge can be treated

as a front� therefore� all the triangles can be visited by the algorithm�

Theorem � Each triangle appears in the SAW sequence only once�
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Proof� An active front is represented by hedge��xi
��ai� where �xi

is visited and �a is not�

In Step 
� if �a is visited� then hedge��xi
��ai is not an active front� and we will not cross

the front edge� In Step �� when a front hedge��xi
��ai is dequeued from the front queue� we

�rst check whether �a was visited previously� If �a was visited previously� we ignore that

front� Thus� �a will not be inserted into the SAW sequence twice�

We now analyze the algorithm� We assume that the unstructured mesh contains N

triangles� Each front �or each edge� can be enqueued into and dequeued from the front

queue only once� thus� the time complexity of generating a SAW sequence is proportional

to the number of fronts �or edges�� Therefore� the time complexity of generating a SAW

sequence is O�N��

��� FIFO SAW and LIFO SAW

We have implemented a FIFO SAW� which is based on a FIFO queue� and a LIFO SAW�

which is based on a LIFO queue� We use the terms �FIFO� SAW and �LIFO� SAW to

distinguish between them and BFS SAW and DFS SAW proposed in ��� to avoid confusion�

Recall that in Algorithm �� we have an enqueue phase �Step 
� and a dequeue phase �Step ���

In Step 
 the SAW sequence is generated clockwise along the boundary of the computing

domain� Each triangle visited in Step 
 has a common edge with its predecessor if this triangle

is not the �rst triangle in the SAW sequence� and has a common edge with its successor if this

triangle is not the last triangle in the SAW sequence� Each triangle has at most three adjacent

triangles� Although this triangle and two adjacent triangles are numbered consecutively� the

third adjacent triangle may have a number far from theirs�

To improve the average distance between adjacent triangles� we can restrict the number

of triangles inserted into the SAW sequence in the enqueue phase �Step 
�� We use FIFO�c�

SAW or LIFO�c� SAW to represent the SAW with at most c triangles inserted into its sequence

in Step 
� To understand the �avors of di�erent SAW�s� Figure � shows FIFO�
p
N� SAW�
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FIFO��� SAW� LIFO�N� SAW� and LIFO��� SAW over an � � � structured mesh� where
the basic element in this structured mesh is a �square� cell instead of a �triangle� cell� In

these orderings� FIFO�
p
N� SAW has the best average distance between adjacent cells in this

example�

(a) (b) (c) (d)

Figure �� �a� FIFO�
p
N� SAW� �b� FIFO��� SAW� �c� LIFO�N� SAW� and �d� LIFO��� SAW

over an �� � structured mesh�

For convenience� we use FIFO SAW to represent FIFO�N� SAW and LIFO SAW to

represent LIFO�N� SAW to avoid confusion� Figure � shows four SAW�s over a sample

unstructured mesh� including our FIFO�
p
N� SAW� our LIFO SAW� and BFS SAW and

DFS SAW suggested in ����

A SAW is generated based on the graph data structure of an unstructured mesh� There�

fore� starting from a di�erent initial front will result in a di�erent SAW� In this paper� we

choose a boundary edge at the south�eastern corner as the initial front� In e�ect� we gener�

ate several SAW�s starting from di�erent boundary edges� although their average distances

between adjacent triangles vary quite a bit� the di�erences in their execution times for per�

forming mesh intersection are insigni�cant�

��� Quality measure of SAW�s

Heber� Biswas� and Gao proposed a quality measure in ���� which computes the average

distance between each pair of adjacent triangles of an unstructured mesh based on the num�

bering of the SAW sequence or the mesh ordering� This measure is a good reference for a

SAW sequence� Table � shows the average distances obtained by using di�erent mesh order�

��



(a)

(b)

(c)

(d)

Figure �� �a� FIFO�
p
N� SAW� �b� LIFO SAW� �c� BFS SAW� and �d� DFS SAW over an

unstructured mesh�

ings over �
� unstructured meshes of engine combustion shown in Figure �� Among them�

we also apply this measure to three non�SAW cases for comparison� ��� the original mesh

ordering obtained from mesh generators or mesh databases� �
� the diagonal ordering� and

��� the reverse Cuthill�McKee ordering �RCM�� Among these SAW�s� our FIFO�
p
N� SAW

has the minimum average distance� while our LIFO SAW has the maximum average distance�

Taking the number of walks through edges and vertices into consideration is another

interesting measure� The situation walk through an edge �edge�walk�� which means that two

consecutive triangles are tightly connected by a shared edge� may have better data locality

for certain PDE solvers than will two consecutive triangles be connected by a shared vertex

�	



Mesh order Avg� dist�

Original Order �����
�
Diagonal Order �����
RCM Order 
���

FIFO Order ������

FIFO�
p
N� Order �����

LIFO Order �������
BFS Order �
���
DFS Order �������

Table �� The average distance when applying di�erent SAW�s on a mesh� The results are
averaged again based on the average distances of �
� meshes�

�vertex�walk�� Table 
 shows the average counts of walks through edges and vertices for each

SAW over �
� unstructured meshes of engine combustion shown in Figure �� Our LIFO SAW

takes an edge�favor walk� so it has a minimum number of vertex�walks� but it also increases

the average distance� The counts of edge�walks for our FIFO SAW and FIFO�
p
N� SAW are

not as good as those for our LIFO SAW but are still better than those of both of H�B�G�s

SAW�s�

Our SAW H�B�G�s SAW

Walk count FIFO FIFO�
p
N� LIFO BFS DFS

�edge�walk �������� ����
��� �������� �������� ��������
�vert�walk ���
��� �
����� ������� 
�
���
 ��
����

Table 
� The counts of walks through edges and vertices when applying di�erent SAW�s on
a mesh� The results are averaged again based on the counts of �
� meshes�

The e�ectiveness of these SAW�s in real applications� however� depends on their contri�

bution to saving execution time� We will study their cache e�ects in Section 	�

� Computing mesh intersections

Our algorithm requires a background quadtree of the �rst unstructured mesh and a SAW

sequence of the second unstructured mesh� The background quadtree� which was de�ned

before performing unstructured mesh generation� is used to represent a smooth change of

density distribution among triangles in the computing domain ���� If an unstructured mesh

is not associated with a background quadtree� we can construct one such that the territory

��



of each quadtree leaf contains at most a certain constant number of triangles� We say that

the territory of a quadtree leaf contains a triangle if the gravity center of that triangle falls

within the territory of this quadtree leaf� Figure 	 shows a background quadtree over a

sample unstructured mesh� which is traversed by our FIFO�
p
N� SAW� Figure 	 illustrates

the possibility of tracking the location of each triangle in a SAW sequence by means of a

quadtree� Note again that� in our mesh intersection algorithm� we really need a background

quadtree for the �rst unstructured mesh and a SAW sequence for the second unstructured

mesh to avoid confusion�

(c)

SENENWSW
(12) (12)

(b)

(a)
 (8)  (8)  (8)  (9)     (8)  (9)  (8)  (8)

Figure 	� �a� A background quadtree over a sample unstructured mesh� which is traversed
by our FIFO�

p
N� SAW� �b� the territory of the quadtree� and �c� the quadtree structure�

where parentheses enclose the number of triangles in the territory of each quadtree leaf�

The idea behind our algorithm is as follows� If �� and ��
�
are adjacent to each other in

the second unstructured mesh� their triangle�intersection sets� with respect to triangles in the

�rst unstructured mesh� have non�empty intersection� Thus� we can follow a SAW sequence

of the second unstructured mesh to use the local information of the preceding triangle�

intersection set to generate a succeeding triangle�intersection set� provided that each triangle

in the second unstructured mesh always intersects with triangles in the �rst unstructured

mesh�

��



However� if the object geometry of the �rst unstructured mesh is di�erent from the object

geometry of the second unstructured mesh� then some triangles in the second unstructured

mesh may not intersect with any triangle in the �rst unstructured mesh� Thus� the lo�

cal information of the preceding intersection set breaks �and therefore requires additional

searching�� In this case� we use a background quadtree of the �rst unstructured mesh to keep

track of the location of each triangle �� in the SAW sequence of the second unstructured

mesh� We exhaustively test intersections for �� and those triangles in the �rst unstructured

mesh which fall within the territory of the same quadtree leaf as that of ���

Algorithm � for computing the intersection of two meshes�

Pick out one triangle �� from the SAW sequence of the second unstructured

mesh�

If the predecessor�s triangle�intersection set is not empty�

then we use the local information of the predecessor�s triangle�intersection set to

generate the triangle�intersection set of ���

otherwise we use a background quadtree of the �rst unstructured mesh to keep

track of the location of ��� We exhaustively test intersections for �� and those

triangles in the �rst unstructured mesh which fall within the territory of the same

quadtree leaf as that of ���

Note that the triangle�intersection set of �� may fall across the territories of more than

one quadtree leaf� However� except for intersecting with boundary triangles� the triangle�

intersection set of �� is connected� Therefore� once we have found a triangle �� in the �rst

unstructured mesh such that �� ��� � �� the remaining triangle�intersection set of �� can

be found using the local information of ���

As for intersecting with boundary triangles� the resulting triangle�intersection set of ��

may be disconnected� Therefore� we have to consider all the territories of the quadtree leafs

��



that enclose ��� In e�ect� we consider all the candidate triangles that fall within the territo�

ries of those quadtree leafs in which three vertices and four range points of �� fall� Suppose

that three vertices of �� are �x�� y��� �x�� y��� and �x�� y��� Let xmax  max�x�� x�� x���

xmin  min�x�� x�� x��� ymax  max�y�� y�� y��� and ymin  min�y�� y�� y��� Then� four range

points of �� are �xmin� ymin�� �xmin� ymax�� �xmax� ymin�� and �xmax� ymax��

To evaluate whether a candidate triangle �� in the �rst unstructured mesh intersects

with ��� we perform the following four tests in turn� If the second� the third� and the fourth

tests are not satis�ed� then �� and �� do not intersect�

Test �� We perform a range test for �� and ��� If the range of �� and the range of ��

do not intersect� then �� and �� do not intersect� This is an inexact test� but it is a fast

way to prune o� many irrelevant candidates�

Test �� We test whether a vertex of �� is within ��� If it is� then all the triangles �in�

cluding ��� surrounding this vertex intersect with ��� We also mark all of their neighboring

triangles as candidates�

Test �� We test whether an edge of �� intersects with an edge of ��� If it does� then

both triangles �including ��� adjacent to this edge intersect with ��� We also mark all of

their neighboring triangles as candidates�

Test �� We test whether a vertex of �� is within ��� If it is� then �� intersects with

��� In this case all of �� is within ���

Since �� can intersect with at most a certain constant number of triangles in the �rst

unstructured mesh� we can �nd the whole set of triangles which intersects with �� based

on the local information of �� in a constant period of time� after �nding the �rst �� which

intersects with ��� In numerical simulations� the change of object geometries in successive

frames is kept small in order to guarantee achievement of convergence� Thus� there are

only a few triangles for which the local information of the preceding intersection�set breaks�

As mentioned in the Introduction� for this type of changing�shape application� the time

��



complexity of our algorithm for computing mesh intersection is linear with respect to the

number of triangles in the �rst and second unstructured meshes�

Note that it is possible to compute the range intersection of two target unstructured

meshes in a preprocessing step in order to screen out some irrelevant triangles if these two

meshes have only a small area of intersection� In our application� two consecutive frames

change very slightly� therefore� we ignore the preprocessing step�

� Experimental studies

Our experimental studies were implemented on a SUN Ultrasparc�� ��	� MHz� workstation�

Our benchmark suit contained �
� consecutive unstructured meshes �corresponding to �
�

frames� shown in Figure �� Table � lists the numbers of triangles� edges� and vertices of these

�
� unstructured meshes� Experimental results show the improvements obtained by using

SAW�s to compute mesh intersections and also show the impact of using di�erent SAW�s�

Table � shows the average execution time of mesh intersection using di�erent SAW�s

based on di�erent mesh orderings� These interesting orderings include� ��� the original mesh

ordering obtained from mesh generators or mesh databases� �
� the diagonal ordering� ���

the reverse Cuthill�McKee ordering �RCM�� ��� our FIFO SAW ordering� �	� our FIFO�
p
N�

SAW ordering� ��� our LIFO SAW ordering� ��� the BFS SAW ordering in ���� and ��� the

DFS SAW ordering in ���� We let the �rst mesh and the second mesh use the same kinds of

orderings as listed in the �rst dimension� These orderings could in�uence the convergence

rate of certain PDE solvers� We then used the di�erent SAW�s of the second mesh as listed

in the second dimension to compute mesh intersections� We stress again that mesh orderings

play an important role in determining the convergence rate of certain PDE solvers� however�

SAW�s were only used to �nd mesh intersections in this study�

When we did not use any SAW sequence� we used a quadtree to keep track of the location

of preceding triangles� denoted by QT�Track� Otherwise� we simply searched from the root
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Table �� Number of triangles� number of edges� and number of vertices in each of �
�
unstructured meshes �for �
� frames shown in Figure ���
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Our SAW H�B�G�s SAW No SAW

Mesh Order FIFO FIFO�
p
N� LIFO BFS DFS QT�Track QT�Only

Original Order ����
� ������ ������ ����� �����
 ������ ������
Diagonal Order ������ ������ ������ ����� �����
 ������ �
����
RCM Order ����� ������ ��
��� ������ ������ ������ �����

FIFO Order ��
�
� ������ ������ ������ ������ �����
 ������

FIFO Order�
p
N� �����
 �����
 ������ ��
��
 ������ ������ ��
���

LIFO Order ������ ������ ������ ������ ������ ������ �����

BFS Order ����
� ������ ��
��� ������ ������ ������ �����

DFS Order ������ ����
� ������ �����
 ������ ������ ����
�

Table �� The average execution time in millisecond of doing mesh intersections for every two
consecutive meshes in the �
� frames of engine combustion�

of a quadtree every time to �nd nearby triangles in the �rst mesh� denoted by QT�Only�

The average execution time was obtained by computing mesh intersections for every two

consecutive meshes in the �
� frames of engine combustion� and then averaging these �
�

lengths of execution time� We examine the results obtained in the following�

First� the results show that using any SAW improves the execution time of calculating

mesh intersections by �
 to 
�
� depending on the mesh ordering� compared with not using

a SAW� This performance improvement is due to the connectivity of the SAW sequence� In

a SAW sequence� two consecutive triangles are connected by an edge or a vertex� therefore�

we can use their neighboring relationship to reduce the searching time�

Second� our FIFO SAW� FIFO�
p
N� SAW� and Heber�Biswas�Gao�s �H�B�G�s for short�

BFS SAW are the most competitive SAW�s for all mesh orderings listed in the �rst dimension

of Table �� as these three SAW�s are all based on some kind of breadth �rst search using

certain FIFO queues� The di�erences in the execution times required when using these three

SAW�s are less than �
� Our LIFO SAW performs the worst� which is about 	
 slower than

when using other SAW�s� The performance di�erences among the di�erent SAW�s can be

ascribed to the data locality property of these SAW�s�

Recall that as shown in Table �� the average distances of FIFO SAW� FIFO�
p
N� SAW�

and BFS SAW are much less than those of DFS SAW and LIFO SAW� Comparing the

execution times shown in Table �� we can see the e�ect of this average�distance factor with







these �ve SAW�s� However� the average distance is not the absolute factor a�ecting data

locality� In e�ect� the average distances of the diagonal ordering and RCM ordering are

less than those of FIFO SAW and H�B�G�s SAW�s� however� the former execution times are

worse than the latter execution times� as our algorithm is favored to follow a SAW sequence

in the second mesh to calculate mesh intersection� The diagonal ordering has the minimum

average distance� however� its execution times are worse than those of the RCM ordering� A

diagonal ordering is generated according to the triangles� spatially coordinate information�

but an RCM ordering is generated based on the graph data structure of the mesh� Therefore�

the RCM ordering has better data locality behavior than the diagonal ordering�

When calculating mesh intersection� the mesh ordering �the numbering of triangles in a

mesh� has little in�uence when a SAW sequence is followed in the second mesh� However�

the mesh ordering plays an important role when no SAW sequence is followed� In the last

column of Table �� the execution times required by QT�Track are always better than those

required by QT�Only� This indicates that all special purpose mesh orderings have some kind

of data locality� As for the cases in which QT�Track is used� we can see that when a mesh

adopts the numbering of di�erent SAW sequences� the execution time is ��
 to ��
 faster

than that when the original ordering is adopted� This is because the reordered mesh takes

advantage of the data locality of that ordering� We can see that for mesh intersections� the

best orderings are our FIFO SAW� FIFO�
p
N� SAW� and H�B�G�s BFS SAW� all of which

have better data locality�

Note that despite the fact that our LIFO SAW has the longest average distance� there are

some potential applications as mentioned in ���� For example� walks have a long tradition of

applications in Monte Carlo methods used to study long�chain polymer molecules� This new

application� however� is beyond the scope of this presentation�
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� Conclusion

In this paper� we have presented an e�cient algorithm for computing mesh intersections� We

have found that if �� and ��
�
are adjacent to each other in the second unstructured mesh�

their triangle�intersection sets with respect to the triangles in the �rst unstructured mesh have

non�empty intersections� Thus� we can follow a SAW sequence to use the local information of

a preceding triangle�intersection set to generate the succeeding triangle�intersection set� We

can also use a background quadtree to keep track of the location of each triangle in the SAW

sequence� This allows us to design a linear time algorithm for computing mesh intersections�

According to the results of experimental studies� our algorithm is superior than other naive

algorithms in terms of execution time�

For an unstructured mesh� the data of the logically neighboring triangles are not stored

together in the physical memory� Thus� data locality has a large impact on performance� We

have presented a FIFO SAW and a LIFO SAW� The FIFO SAW employs better data locality�

and by using it� we can reduce the execution time by 	
 compared with using other SAW�s�

We believe that this is due to the e�ect of data locality when operating under hierarchical�

memory computer architectures� which result in more page hits �and thus less page faults�

and more cache hits �and thus less cache misses��
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