

FT-SOAP: A Fault-tolerant web service

Deron Liang1,2, Chen-Liang Fang3,4, Chyouhwa Chen4

1Institute of Information Science, Academia Sinica, Taipei, Taiwan, 11529, R.O.C.
2Department of Computer and Information Science, National Taiwan Ocean University,
Keelung, Taiwan, R.O.C.
3Department of Information Management, Jin-Wen Institute of Technology, Taipei, Taiwan,
R.O.C.
4Department of Electronic Engineering, National Taiwan University of Science and
Technology, Taipei, Taiwan, R.O.C.

Keywords: fault-tolerance, web service, SOAP, distributed computing environment

Abstract

Security is the major concern that refrains people from conducting commerce electronically.
The security concerns related to electronic commerce (EC) includes transaction security and
system security. We can partially address the transaction security issues by message
distribution middleware such as simple object access protocol (SOAP), which is one of the

information technology (IT) infrastructures that facilitate EC. It requires a comprehensive set
of IT in order to address the system security issues where fault-tolerance technology is one of
the core technologies to enhance the system survivability after attack. Based on our
preliminary investigation, we conclude that the current SOAP architecture is lack of
mechanism to build a highly reliable EC system. We propose a comprehensive fault-tolerance
framework based on the current SOAP architecture in order to address the system security
issues for EC. We consider this research is the continuing effort of our previous work on
fault-tolerant CORBA, thought there are similarities and differences between these two
technologies. We propose a standard recommendation that outlines a set of interfaces named
fault-tolerant SOAP (FT-SOAP). The FT-SOAP includes four functionalities and three basic

components. The SOAP architecture needs modifications/extensions to meet the requirements
of FT-SOAP. Our design takes the advantages of SOAP features. The new proposed
components in SOAP and the extensions of SOAP engine is backward compatible to
non-fault-tolerant SOAP system. Our approach can be used to develop other supports on
SOAP.

1 Introduction

Recently, SOAP (Simple Object Access Protocol) has become the most popular technology to
develop web service application. The application of electronic commerce is such an example.
According to Forrester Research, annual B2B commerce is expected to grow from about $43
Billion in 1998 to about 1.3 Trillion in 2003. During the same period, business-to-consumer
(B2C) commerce is expected to grow from $7.8 Billion to $108 Billion! [Free98][RC98].

The electronic commerce activities rely on five infrastructure technologies [Zwas96].
These infrastructure technologies are: 1) Common Business Service Infrastructure, 2)
Messaging and Information Distribution Infrastructure, 3) Multimedia Content and Network
Publishing Infrastructure, 4) Network Infrastructure, and 5) Interface Infrastructure. The
Messaging and Information Distribution Infrastructure is called distributed middleware in
information industry, such as OMG CORBA [OMG98], Microsoft’s DCOM [MSFT98] and
SOAP [W3C00].

Recently, the SOAP is becoming popular and important in distributed applications.
According to our survey, the SOAP standard has the following advantages:

1. The SOAP message transfer is based on HTTP for SMTP protocol. These protocols
can transfer through firewall and be well managed.

2. Since SOAP relies on HTTP/SMTP, the advantages of HTTP/SMTP can be applied
to SOAP, such as proxy and SSL.

3. The SOAP message transfer model is based on XML standard. IThe integration with
other standard is easy to achieve.

4. The SOAP is highly extensible.

There exist many risks when we use SOAP in EC. These risks, including system failures
and intrusions, could cause customers serious losses. Recent researches have reported that
security relative intrusion cases are increasing every year. Some polls also reported security
issue is the most serious barrier for shopping on Internet. In general, a good EC security
policy includes 5 phases: 1) frequently update vulnerability database and patch the system, 2)
install intrusion detection system, 3) detect intrusion, 4) start the standard procedure for
emergence response when the system is attacked, and 5) computer forensics. In general,
system manager uses software fault-tolerance to increase the EC system survivability
[CHI01][NMN00].

The security issues include transaction security and system security etc. We apply SOAP
technology to satisfy the partial requirements of transaction security. For system security,
most researches and commercial products focus on intrusion detection including IDS,
anti-virus, and firewall. The response and/or recovery mechanism after Internet attacks is lack

in most products and research works. According to our recent survey, the security related
issue, especially intrusion response, is lack in SOAP specification. That becomes an important
deficiency for developing SOAP-based applications. Therefore, we need a total solution by
using software fault-tolerance technology to enhance the system survival capability after
Internet attacks.

Based on our previous work FT CORBA [LFY99], we propose a fault-tolerant SOAP
based middleware platform. We have two major targets in this work: 1) to define a
fault-tolerant SOAP service standard recommendation, and 2) to implement an FT-SOAP
service prototype. The standard recommendation is presented in section 3 in detail. The
prototype implementation is discussed in section 4. Our performance experiments on the
prototype have shown the efficiency of the service. We shall discuss this in the end of this
paper.

The

SOAP-based web service lacks FT support when it is used in critical tasks. We identify
the needed FT functionalities for SOAP. Based on our analysis, three basic components RM,
fault manager, and logging/recovery mechanism are needed to support FT in SOAP. The
replication manager manages and constitutes FT groups. The fault managers, including fault
notifier and fault detector etc., is used to monitor protected web service group. The
logging/recovery mechanism is used to log the service activities and perform recovery
process for the web service group. The SOAP architecture needs modifications/extensions to
meet the requirements of FT-SOAP. Such as, a new WSG tag in WSDL is needed to describe
group web service; an interceptor on request path to perform FT functions; extend the
capabilities of SOAP engine to handle SOAP group object information system. Our design
takes the advantages of SOAP features. For example, the new WSG apply the XML
extensibility. The interceptor extend axis SOAP, which is compliant to SOAP 1.1, in future,
the interceptor can be achieved by using intermiadary of new message processing model of
the SOAP 1.2. The design has to be compliant to the current SOAP standard. The new
proposed components in SOAP and the extensions of SOAP engine is backward compatible to
non-fault-tolerant SOAP system. Our approach can be used to develop other supports on
SOAP. Such as security for web service, routing in web service, and interoperating with other
middleware, etc.

2 The fault-tolerance for web service

The FT-SOAP architecture is shown in Figure 1. We design four functionalities in the
FT-SOAP system: replication management, fault management, logging/recovery mechanism
and client FT transparency. As shown in Figure 1, The FT-SOAP consists three components,

replication manager (RM), fault managers, and logging/recovery mechanism, in the system.
The RM performs the replication management including group constitution and membership
management. The fault managers, fault notifier and fault detector as shown in the figure,
performs the fault detection and fault management functions. For SOAP 1.1, the
logging/recovery mechanism is implemented as an interceptor in SOAP core engine. The
interceptor captures and logs the invocation activities for recovery process. We shall use a
complete example to explain the usage of our FT-SOAP system. The complete example
includes initialization phase, run-time phase, and fault recovery phase. The fault tolerant web
service group is constituted in the initialization phase. During the run-time phase, the logging
mechanism logs the activities of all arrival requests. When fault occurs, the recovery
mechanism in the new primary server will perform the recovery process and then take over
the primary server. If client is built on a FT-SOAP, the client will be unaware the fault
happening in the server.

S1
HOST H1

SOAP Engine

Factory

ReplicationManager

Application(admin)

UDDI

Fault NotifierSet properties

Create service

Create service

Register WSDL
of service

Logging &
recovery
mechanism

S2
HOST H2

SOAP Engine

Factory Fault Detector

Logging &
recovery
mechanism

C

HOST H0

SOAP Engine

Fault detector

Fault report
Notification

interceptor

Fault detector

Figure 1 The FT-SOAP System Architecture

Group constitution
As shown in Figure 2, the application (AP) administration program uses the built-in

group constitution function of FT-SOAP service to constitute a fault tolerant web service
replication group. The AP may register their fault-tolerance policy to the FT-SOAP service.
Such that, the FT-SOAP service may perform the fault detection and recovery process based
on the given policy. The 6 steps procedure is shown in the following:

S1

HOST H1

SOAP engine

Factory
S2

HOST H2

SOAP engine

Factory

ReplicationManager
5

AdmAP

UDDI

interface S1 S2

Fault notifier

2. Register properties

3. Create service

1. Retrieve WSDL of RM

6. register
WSDL of service

4. Create service

Figure 2 Constitute a web service group

Step 1: The user administration AP (AdmAP) retrieves WSDL of replication manager
(RM) from UDDI.

Step 2: The AdmAP registers necessary replication properties to RM, such as replication
style, and fault monitoring style.

Step 3: The AdmAP requests RM to create service.
Step 4: The RM requests the factory of each group member to deploy required web

service based on the registered properties. That is, the factory registers all relative
information of the web service to SOAP engine. The factory has to return the
WSDL of the group member to RM.

Step 5: For each group member:
a. RM adds member to the web service group.
b. RM activates member by referring to the replication style.
c. RM decides whether to activate fault detection or not based on the replication

style, and fault monitoring style.
d. RM subscribes fault notification from fault notifier for this member.
e. For passive replication style, RM chooses a member as primary.
f. RM composites Group Service WSDL, and activates the primary member.

 Step 6: RM registers the WSDL of the service to UDDI.

Logging mechanism
Figure 3 shows a centralized logging mechanism. The logging mechanism logs the

invocation activities to a centralized reliable logging file system for the future recovery
process. When the recovery mechanism on new primary member is activated, the recovery
mechanism retrieves the invocation logs and replays the invocations if necessary. The

scenario is show in the following:

Centralized
reliable file

system

HOST H1

SOAP engine

primary

Server replica

S1

HOST H2

SOAP engine

backup

Server replica

S2

HOST H0

SOAP engine

client

C

Logging &
recovery
mechanismInterceptor

1.invoke

2.interceptor notify
Logging & recovery
mechanism

3.Logging & recovery
mechanism save the
activity to reliable
storage

Figure 3 Logging management

Step 1: Client application make a request to the primary server replica of the web
service.

Step 2: The interceptor of the SOAP engine in primary server replica has been called for
notifying the completion of the request. The interceptor informs logging
mechanism to log all necessary information of this request.

Step 3: The logging mechanism receives the logging notification and writes the
information to a centralized reliable file system.

Fault detection and recovery
The Figure 4 depicts the scenario of fault management. The service coordinates fault

detection for AP. When a fault is detected, the system notifies the corresponding devices to
response the fault. Then the relative fault-tolerance information is updated for current state.
The RM registers new service information to UDDI based on the current group state. The
usage scenario is shown in the following steps:

S1

HOST H1

SOAP engine

Factory
S2

HOST H2

SOAP engine

Factory

ReplicationManager
3

UDDI

interface S2

fault notifier

1. fault notification

4. register
WSDL of service

2. recovery mechanism

Figure 4 Fault management

Step 1: The fault notifier receives fault report from fault detector when the primary
member S1 is failed. The fault notifier sends fault notification to corresponding
RM for the group.

 Step 2: RM starts the recovery process on host H2.
 Step 3: RM modifies the new group service WSDL.
 Step 4: RM registers the modified group service WSDL to UDDI.

Client side fault transparency
The client side FT-SOAP engine tries to re-transfer the invocation to other replica when

the primary server is failed to response. Such that, the client AP unaware happening of the
failure.

S1
HOST H1

SOAP Engine

Logging &
recovery
mechanism

S2
HOST H2

SOAP Engine

Logging &
recovery
mechanism

C

HOST H0

SOAP Engine

interceptor

1.invoke

Failed Primary New Primary

2.exception

3.invoke

Figure 5 Client side fault transparency

Client:
Step 1: send request to primary service.

Step 2: primary is faulty and returns exception to client SOAP engine.
Step 3: The client SOAP engine retrieves the replicas information from the given WSG.

The SOAP engine resends the request to all other replicas in sequence. If all
replicas return failure exception, then client SOAP engine returns exception to
client AP. The client AP needs to retrieve new WSG and try to invoke again
starting from the step 1.

Server:
The interceptor in the server side SOAP engine decide whether to serve this

arriving request or not based on the fault tolerant information in the SOAP engine.
That is, the SOAP engine will return an exception to client if this replica is not
primary.

3 The fault-tolerant SOAP service

In this section, we propose three basic components to support the fault tolerance on SOAP.
Furthermore, an extended SOAP architecture is presented to meet the fault tolerant
requirements.

Basically, we use service approach to support the fault-tolerance in SOAP. We propose
three basic components, replication manager (RM), fault managers, and logging/recovery
mechanism. The fault managers include fault notifier and fault detector. The RM and fault
managers are defined as interfaces in web service description language (WSDL). We shall
given detail discussion in this section later. Beside these basic components design, we propose
extended SOAP architecture to achieve full fault tolerance supports in SOAP. The extended
functionalities are extended WSDL schema for group service description: a new added web
service group (WSG) tag; interceptor concept in SOAP; and extended object information in
SOAP engine.

A new tag, web service group or WSG, is added in WSDL for a fault-tolerant WS group.
The schema is shown Figure 6. The new WSG tag is designed for client side fault
transparency. The client side SOAP engine will have a chance to inspect the WSG
information if the invocation is failed. The client SOAP engine may try to send invocation to
rest replicas in order till the invocation is successfully executed. If all replicas listed in the
WSG could not response the request, then the SOAP engine returns a failure exception to
client application. If client application got a failure exception, then it should consider
retrieving new WSDL again. A sample WSG is shown in Figure 7

<WSG>
<PRIMARY version=”xx.xx” location=”host :port” />
<REPLICA version=”xx.xx” location=”host : port” />
<REPLICA version=”xx.xx” location=”host : port” />

</WSG>

Figure 6 The extension to the WSDL: the service group tag <WSG/>

<WSG>
<PRIMARY version=”1.0” location=”H1.our.domain: :8080” />
<REPLICA version=”1.0” location=”H2.our.domain::8080t” />

</WSG>

Figure 7 The sample service group tag <WSG/>

As discussed in previous section, the replication management provides the following
functionalities: create passive group, set property, membership management, query group
member, and register fault notifier. These functionalities are divided into four interfaces:
PropertyManager, GenericFactory, ServiceGroupManager, and ReplicationManager. We
have to remind readers, these interfaces are defined in Java IDL for the readability only. The
definitions of these interfaces are given in Figure 8, Figure 9, Figure 10, and Figure 11
respectively.

interface PropertyManager {
 void set_default_properties(in Properties props);
 Properties get_default_properties();
 void remove_default_properties(in Properties props);
 void set_type_properties(in typeID type_id, in Properties props);
 Properties get_type_properties(in typeID type_id);
 void remove_type_properties(in typeID type_id, in Properties props);
};

Figure 8 Interface PropertyManager

interface GenericFactory {
 Service create_service(in typeID id);
 void destory_service(in Service service);
};

Figure 9 Interface GenericFactory

interface ServiceGroupManager {
 ServiceGroup create_member(in TypeID type_id, in Location the_location);
 ServiceGroup add_member(in ServiceGroup srvGrp, in Service serviceMember);
 ServiceGroup remove_member(in ServiceGroup srvGrp, in Location the_location);
 ServiceGroup set_primary_member(in ServiceGroup srvGrp, in Location the_location);
 Locations locations_of_member(in ServiceGroup srvGrp);
}

Figure 10 Interface ServiceGroupManager

interface FaultNotifier: NS_consumer;
interface ReplicationManager:PropertyManager,GenericFactory,ServiceGroupManager, NS_consumer{
 void register_fault_notifier(in FaultNotifier fault_notifier);

 FaultNotifier get_fault_notifier();
 }

Figure 11 ReplicationManager

In PropertyManager interface, the application may set up their desired fault tolerant
attributes, or properties. We propose eight types of properties: ReplicationStyle,
MembershipStyle, ConsistencyStyle, FaultMonitoringStyle, InitialNumberReplicas,
MinimumNumberReplicas, FaultMonitoringIntervalandTimeOut, and CheckpointInterval.
The detail property definitions are given in Appendix.

In order to log the invocation activities for future recovery process, we use interceptor
concept to achieve the logging function. Current available platform, such axis and MS SOAP,
only support SOAP 1.1, we have to extend SOAP engine to intercept request and log the
activities. According to new developing SOAP 1.2, a new message model is proposed. That is,
the new SOAP 1.2[] defines message routing in intermiadaries. The intermiadary can be used
as interceptor to perform logging function. Therefore, the logging/recovery mechanism can be
easily implemented as a portable logging mechanism.

An example
In Figure 12, we reuse the usage example in the previous section to show the usage of

the replication related interfaces and properties, the sample code of the user administration AP
is shown inFigure 13:

Step 1:The user administration AP (AdmAP) retrieves the WSDL of replication manager
from UDDI.

Step 2:Before constituting a replication group, the user application sets the desired fault
tolerance properties by calling the setting property function of PropertyManager
interface. The properties include ReplicationStyle, MembershipStyle,
InitialNumberReplicas, and MinimumNumberReplicas etc. The
PropertyManager::set_default_properties() is to set up system default properties.
PropertyManager::get_default_properties() is used to query the system default
properties.

Step 3:The GenericFactory interface provides infrastructure-controlled membership style
management. It provides an easiest and automatic way to manage a service group.
After setting the desired fault tolerant properties by using PropertyManager
interface, the user application can easily constitute the service group by calling
GenericFactory::create_service() and GenericFactory::delete_service().

Step 4:The replication manager makes factory::create_service() requests to several hosts,
H1 and H2, to deploy service and returns the WSDL of the service to Replication
Manager.

Step 5: RM decides whether to activate fault detection or not based on the replication

style, and fault monitoring style. Then RM register to fault notifer by calling
FaultNotifier::connect_structured_comsumer() to receive the fault notification of
this service group. If it is passive replication style, the RM chooses the one
member as primary by calling GenericFactory::activate_service() to the primary .

Step 6: RM composites the WSDL of the web service group, and registers to UDDI.

S1

HOST H1

SOAP engine

Factory

S2
HOST H2

SOAP engine

Factory

ReplicationManager

Application(admAP)

UDDI

Incident notifier

2. PropertyManager::set_default_roperties()

3. GenericFactory::create_service()

1. Retrieve WSDL of RM

5. register
WSDL of service

4. GenericFactory::create_service()

5. FaultNotifier::
connect_structured_comsumer()

Figure 12 A replication management example

Import …;
public class AdmAP {
 …

public static void main(java.lang.String[] args) {
 …
 // step 1 retrieve RM’s WSDL from uddi
 …

Properties props = new Properties(); //prepare propoerties
..

 Service service = new Service();
Call call = (Call) service.createCall();
…
call.setOperationName(new QName("ReplicationManagerImpl","set_default_properties"));
…
call.invoke(new Object [] {typeId,props}); //step 2 set properties
Call call = (Call) service.createCall();
…
call.setOperationName(new QName("ReplicatonManagerImpl","create_service"));
..
String WSDL = (String) call_createSrevice.invoke(new Object [] {typeId}); //step 3 create_service
…
}

}

Figure 13 The samples java code of admAP

4 Performance evaluation

In this section, we shall discuss the implementation and evaluate our prototype system. Due to
lack of the new SOAP 1.2 open source product, we use Apache Axis to implement our
FT-SOAP. Furthermore, java SOAP product is suitable to develop platform-independent
SOAP applications. We implement and evaluate our FT-SOAP on Linux and Microsoft 2000
platform. The both platforms are installed SunMicro java development tool kit J2SDK. The
MS and Linux systems are installed on Pentium III PC with 512MB memory.

To deploy a fault tolerant web service by using our FT-SOAP, overhead will occur in our
fault tolerant service components. According to our analysis, the system overhead comes from
the logging mechanism, fault detection, and checkpointing. We shall discuss three
experiments design and show the experiment result in this section.

The logging mechanism overhead happens when it intercepts the invocation and logs the
information into a reliable file system. We measure two sets of response time on the same
server with logging and without logging. The two hosts are installed on a local area network.
Therefore, the experiment can avoid the interference of irrelevant network traffic. The logging
overhead is obtained by comparing the two sets of response time. The logging execution time
depends on the message size of the invocation. We vary the message size from 1KB to 512KB
to measure the response time on the client. The result is shown in Figure 14. The result shows
the system takes only 330 ms to log an invocation when the message size is up to 512KB. In
general, the average message size of an invocation is less 10KB and the overhead is less than
1.5ms. The result shows that the logging overhead is very insignificant when compare to
seconds response time for a web service invocation.

Logging overhead

0
50

100
150
200
250
300
350

0 100 200 300 400 500
Message size (KB)

O
ve

rh
ea

d
(m

s)

Figure 14 The logging overhead

With the same environment of logging overhead experiment, we use a distributed fault
detector to poll a protected web service server and measure the CPU usage. We vary the
polling time interval from 1 second to 30 second to measure the CPU utilization. As shown in
Figure 15, the result shows the polling overhead is less than 2% of CPU utilization. In general,
the polling interval is configured as 30 seconds and we found the detection overhead is less
than 0.25% of CPU utilization.

Fault detecion overhead

0%

1%

1%

2%

2%

3%

3%

0 10 20 30

Detecion Interval (seconds)

C
PU

 u
lti

za
tio

n

4 services

2 services

1 service

Figure 15 The fault detection overhead

References:
[CHI01] John Chirillo, Hack attacks denied - a complete guide to network lockdown, 2001.
[Free98] L. Freeman, “Net Drives B-to-B to New Highs World-Wide”, NetMarketing，

January 1998 (www.netb2b.com).

[NMN00] Stephen Northcutt, Donald McLachlan, Judy Novak, Network Intrusion Detection:
An Analyst's Handbook, September, 2000.
[MSFT98] Microsoft, DCOM Technical documents, http://msdn.microsoft.com/library/
[RC98] T. Retter and M. Calyniuk, Technology Forecast: 1998, (Price Waterhouse, March
1998).
[W3C00] Simple Object Access Protocol (SOAP) 1.1 , http://www.w3.org/TR/SOAP/
[Zwas96] V. Zwass, “Electric Commerce: Structures and Issues”, International Journal of
Electric Commerce (Fall 1996).

