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Abstract

This paper proposes a wavelet—based approach to solving the shape from shading (SES) problem.
The proposed method takes advantage of the nature of wavelet theory, which can be applied to efficiently
and accurately represent “things,” to develop a faster algorithm for reconstr;,lcting better surfaces. To de-
rive the algorithm, the formulation of Horn [15], which combines several constraints into an objective
function, is adopted. In order to improve the robustnéss of the algorithm, two new constraints are
introduced into the objective function to strengthen the relation between an estimated surface and its coun-
terpart in the original image. Thus , solving the SFS problem becomes a constrained optimization process.
In the first stage of the process, the set of function variables to be solved is represented by a wavelet format.
Due to this format, the set of differential operators of different orders which is involved in the whole pro-
cess can be approximated with connection coefficients of Daubechies bases. In each iteration of the opti-
mization process, an appropriate step size which will result in maximum decrease of the objective function
is determined. After finding correct iterative schemes, the solution of the SFS problem will finally be de-
cided. Compared with conventional algorithms, the proposed scheme is a great improvement in the accu-
racy as well as the coﬁvergence speed of the SFS problem. Experimental results, using both synthetic and

real images, prove that the proposed method is indeed better than traditional methods.




List of Symbols

Symbol Explanation

E the observed image

R the reflectance map function

Z the height of the desired surface

N the normal of Z

7l the unit normal of Z

L the light direction

oy the slant angle of L

Ty the tilt angle of L

A the surface albedo

o the incident light flux

& the bias brightness

pand g the partial derivatives of Z with respect to
image coordinates, i.e., p = g—f and g = %%

R, and R, the partial derivatives of R with respect to '
D apd g,ie., Rp= %and R, = %

Pin an orthonomal basis generated by a scaling
function ¢(x)

Yin an orthonomal basis generated by a wavelet

function 9¥(x)
the weighting coefficients

an obyj ective function

M? the size of an image
V; the function space spanned by {qb j’”(x)}nez
W; the function space spanned by {1/) j"‘(x)}nez
S; f(x) " the projection of a continuous function, f{x), on V;
W; f(x) the projection of a continuous function, f{x), on W;
D(n) the Delta function
N the number of vanishing moments
I',oand I, the connection coefficients
'Yy, I, rk) and @) the 1-D connection coefficients
I'Dim, n), I"g,l)(m, ny, F@(m, n), etc. the 2-D connection coefficients




1. Introduction

The procedure for recovering three—dimensional surfaces of unknown objects is an important task in
computer vision research. A robust procedure which can correctly reconstruct surfaces of an object is im-
_portant in various applications such as visual inspection, autonomous land vehicle navi gation, surveillance
and robot control, etc. In the past decade, there have been extensive studies on this topic [1]-[35]; for
example, shape from defocusing [2]-[3], shape from stereopsis [4], shape from motion [5]-[6], shape from
texture [7]-[9] and shape from shading [10]-[35]. One of these methods, i.e., the shape from shading
(SFS) technique, recovers the surface shape of an object from a 2-D image given that the imaging geome-
try is known in advance. In general, the SFS problem is formulated as a first—order partial differential
equation (PDE). Since the formulated first-order PDE is nonlinear and ill-posed, it cannot be solved by a
general method. There have been extensive researches carried out to solve the SFS problem; for example,
Pong and Haralick [10], Ikeuchi and Horn [14], Brooks and Horn [15]-[16], Horn [17], Chellappa
[11]-[13], Pentland [20]-[25], Lee and Rosenfeld [26], Lee [27], Oliensis [28]1-[31], Lee [32]-[33], etc.
The above mentioned methods can be classified into two categories. Among them, one group tried to find a
closed—form solution while the other group considered the SFS problem as a constrained optimization
problem. As to the first approach, Pentland [20]-{23] developed a technique which assumes that the sur-
face is locally spherical at each point. The results obtained were based on second—order partial derivatives
of image intensities which are sensitive to noise. Lee and Rosenfeld [26] later improved this technique and
claimed that they only required the first—derivatives of image intensity. In[25], Pentland developed anoth-
er technique to solve the problem. His basic idea was to introduce a linear approximation to the true reflec-
tance function. This technique tried to derive an efficient closed—form solution for the surface shape. In

. fact, the above techniques which tried to find a closed—form solution are simple but unstable and
constrained. Usually, a closed-form solution is not certain to be found in this kind of problem. Therefore,

some researchers tried to find a more stable and efficient approach for the problem.

In contrast to the closed—form approach, another group of researchers formulated the SFS problem
as a kind of Euler equation and used the constrained optimization approach to solve it. In order to make the
ill-posed equation become well-posed, a lregularization technique [14]-{17] was usually applied. By
introducing the assumption that a surface should be smooth, Horn and his colleagues [14]-{17] first char-
acterized the problem as an objective function of discrete nodal variables. Thiskind of formulation made it

possible to solve the problem by using numerical techniques. However, the existence and uniqueness of a




smoothed surface is not guaranteed in their approach. Therefore, a new technique which dealt with the
integrability problem was developed later (Brooks and Horn {15]; Frankot and Chellappa [11]). In fact,
most SFS related solutions did not take into account the issue of integrability. Frankot and Chellappa [11]
argued that if the integrability constraint is not enforced, the solution to the SFS problem still remains am-
biguous. In their work, an orthogonal basis set of functions was used to describe surfaces. The surfaces
were then expressed as a linear combination of orthogonal basis functions. By using a standard iterative
and least—square scheme, the closest set of coefficients was found. In [10], Haralick and his colleagues
proposed a new method to solve the SFS problem. They used a facet model as a basis set of functions to
describe and recover surfaces from single or multiple images. The facet model assumes that the three~di-
mensional object surface is locally fit by a quadratic surface. Under the assumption that this quadratic
object surface has Lambertian reflectance, an intensity image surface is then modeled. Having estimated
the free parameters of thé Lambertian intensity image, the object surface is then recovered. Inspired by the
works of Haralick [10] ez al., and others [11), [13], [15], we propose a wavelet-based approach to solve the
SFS problem in this paper.

Wavelet theory has proved to be a useful tool in various applications such as numerical analysis [62],
pattern recognition {63], image interpolation [64]-[65], image compression [43], solutions to differential
equations [50), etc. Basically, wavelet theory is a mathematical tool used for describing “things”™ more
efficiently and precisely. Since a wavelet set has superior representation capability, in this paper we shall
use this characteristic to efficiently and accurately solve the SFS problem. In order to obtain a good solu-
tion to this ill-posed p’ro,blem., an objective function which should be minimized to yield an optimal solu-
tion is introduced. In this paper, the objective function defined i)y Horn [15], which combines a brightness
constraint, an integrability constraint, and a smoothness constraint, is adopted. In order to improve the
robustness of the algorithm, two new constrainté are introduced into the objective function to strengthen
the relation between an estimated surface and its counterpart in the original image. Thus, solving the SES
problem becomes a constrained optimization process. In the first stage of the process, the set of function
variables to be solved is represented by a wavelet format. Due to this format, the set of differential opera-
tors of different orders which is involved in the whole process can be approximated with connection coeffi-
cients of a Daubechies basis. In each iteration of the optimization process, an appropriate step size which
will result in a maximum decrease of the objective function is determined. After finding correct iterative

schemes, the solution of the SFS problem will finally be decided. Incomparison with conventional meth-
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ods, there are several advantages when wavelet theory is applied for solving the SFS problem. First, since
wavelets can be used to represent both the function variables and differential operators more accurately, the
error term in the computation process will drop to a satisfactory level in a very short period. Second , since
the representation is very accurate, the quality of the reconstructed surface is better than that from other
approaches. The rest of the paper is organized as follows. In the next section, the basic formulation of the
SFES problem and its relation to wavelets will be briefly addressed. Then, some preliminary issues includ-
ing the basic concepts of the wavelet transform and its relation to differential operators will be introduced
in Section 3. In Section 4, the proposed solution of the SES problem will Be clearly described. The exper-
imental results will be reported in Section 5. Finally, a conclusion and discussion will be presented in Sec-

tion 6.

2. Shape from Shading and Wavelets

In this section, we shall introduce the basic formulation of the SFS problen_l. Furthermore, the key
concept of how to incorporate wavelet thcofy in the SFS problem will also be discussed. In general, in
order to solve the SFS problem, there are two major concerns. First, a mathematical model which correctly
describés the relations between a recovered surface and its corresponding region in the original image has
to be found. Second, there must exist an efficient and robust method to determmine the parameters of this
model. In the SES problem, an image is usually modeled as follows:

E = R({p,q),
aZ YA

where E is the observed image, R is the reflectance map function, p = 304 = B—y and Z(x,y) is the height

of the desired surface. The reflectance map function, R, is a function of the angle between the surface

normal, N , and the light direction, L. Thus, R at each pixel (x,y) can be expressed as follows [13], [15]:

R(p,q) = AoN-L +E, %)
where A corresponds to the surface albedo, g the incident light flux and & the bias brightness. The normal
of surface Zat pixel (x, y) can be written as (— p, — g, 1)’. By normalization, the unit normal 7 of surface Z

at pixel (x,y) can be written as follows:

A 1 . t
A —————— (—P,“q,l)- ' (2)
Jl+p+q |
The illumination direction L is defined by (singy costy, sinoy sint;, cos o), where 0y and 7 are the slant

and tilt angles, respectively. From Equations (1) and (2), R can be rewritten as follows:

. AP




— §Ino, COST,p — Sin0; sint;q + cosoy

. 3

Inthismodel, 4, o, & 7 and o, canall beestimated from the observed image E(x,y) [13], [22], [26].

R(p,q) = Ao

In the SFS problem, the ultimate goal is to reconstruct the unknown surface Z{x,y). However, there is no
existent direct solution for Z(x,y). Therefore, two aforementioned variables, p and g, were introduced to
indirectly solve the problem. In Equation (3), p and g are a pair of unknowns to be solved. Basically,
Equation (3) is a first—order PDE. Since there is only one equation while two variables need to be solved, in
the present form the problem is, therefore, an ill-posed problem. It is well-known that a nonlinear and
jll-posed equation has no unique solution. Hence, in order to derive the solution of the SFS problem, this
problem is reformulated in the constrained optimization style. A typical cost function of the SFS problem
is usually defined as follows {11]-[17]:

W= “{[E(x,y)—R(p,q)le P2+ p3+ad+ad)

| + 1l(Zs = P + (2, — M} dx dy. @)
The first term on the right hand side of Equation (4) denotes the “brightness error.” The second term is a
measure of “departure from smoothness.” The third term enforces the integrability of the constrained
optimization problem [11], [17]. #and y, are the Lagrange multipliers. In Equation (4), the objective is
to solve the set of unknowns p, g and Z subject to an optimization process which minimizes the cost func-
tion W, It is well-known that a constrained optimization problem needs an extraordinary amount of com-
putation. Therefore, an'efficient method which requires less computation is preferable. In this paper, we
apply wavelet theory to propose an efficient method for solving the SFS problem. Since a wavelet set can
efficiently and accurately represent things, we thus select a wavelet—-based scheme to represent the set of

function variables p, g, and Z. We expect from this good beginning that the solutions of the SES problem

can be more accurately solved in an efficient manner. By properly defining an M? admissible function
space spanned by a set of finitely supported wavelet bases, the set of function variables p, ¢ and Z which are

required to be solved can be represented by the following wavelet format:

M—-1M-1 .
Z&y) = ) D> udifmy), )
i=0 j=0
M—-IM-1
plx,y) = Z pr,ﬁb,;,-(x,y),
i=0 j=0



M—-1M-1

and q(x!y) = z Z Qiﬁbl"j(x’y)’

i=0 j=0
where ¢, ;s the scaling function basis of the space V=span {¢q g, @¢ 1, -+ - Popr~1-P 1,0+ Prr— 1.41— 1}
and z;» p;;and g;; are the weighting coefficients. If the set of weighting coefficients z;, p;;and ¢;; that
| minimizes the cost function W can be determined, then the SFS problem can be solved. Therefore, the SFS
problem can be considered a process which requires minimizing an objective function W of 3M 2 nodal
variables z;; p;; and g;; Basically, there exist several types of scaling basis functions which can be
adopted to solve this problem. In this paper, we select the tensor product of the third—order Daubechies’
scaling function [44]-[48] to span the solution space. The details about how to apply wavelet theory to the
SFS problem will be further discussed in Section 4. In what follows, we shall address some preliminary

issues as preparation for solving the SFS problem.

3. Relation between Wavelet Basis and Differential Operators

Since wavelet theory will be applied as the basis for deriving the solution of the SFS problem, in
what follows we shall introduce some key concepts and properties of this mathematical tool. Then, due to
the fact that the SFS problem normally requires the calculation of a number of differential equations, the
relationship between wavelets and differential operators of different orders will also be discussed. Basical-
ly, wavelet theory is a noble-mathematical tool which can be used to represent-a “thing” more efficiently
and precisely. The thing could be a signal, system, process or some physical phenomenon approximated by
aset of “special elements.” These special elements, which must be oscillatory and must quickly decay to
zero, are called *“wavelets.” Each wavelet in the wavelet set comes from a single function, i.e., the so—
called “mother wavelet.” In general, a signal function f{x) can be broken down into many little wavelets
which are generated by a mother wavelet. This breaking process is called a wavelet transform. By putting
these little wavelets back together, one can reconstruct the signal function f{x). This process is recognized

as the inverse wavelet transform.

Basically, the process of wavelet transform represents a continuous function, f{x), with a limited
number of successive approximations, each of which is basically a smoothed version of f{x) [59], [65]. In
this paper, we will employ the Daubechies scaling function [44]-[48] in wavelet theory to represent contin-

uous functions. Denote the Daubechies scaling function by ¢(x) and its dilation and translation functions




9il2p(2/x — n) by ¢ ia() for j, n € Z. Let V; be the function space spanned by {q‘) j’”(x)}nez' In fact,
{¢ i n(x)} <z is an orthonomal basis of V;. The function spaces V;, j € Zhave the following properties:
! n

1) V; €V, forall j € Zand

2) CJ V, = LY(R).

j==
Let S; f(x) be the projection of a continuous function, f{x), on V, i.e.

Sif = cinialdn € Z
n

where ¢;, = j J(x)¢; (x)dx . By property (2), {Sj f(x)} ezis an approximation scheme of f{x) in which
! ? n
Sip1 fx) is a better approximation than S; f(x) forall j € Z

The difference between two successive approximations, S; f(x) and S i1 f(x), can be expanded by

another set of orthonomal basis P, ,(x) which is generated by dilation and translation from another proto-
type function 3(x), called the Daubechies wavelet function. Let W; fx) = Sie1 fx) - §; fx). We

have
W, f) = > di()n € Z,

where ¥ in®) = 2if Zl,l)(2jx —n)andd;, = J flxnp j’n(x)dx. Let W;denote the function space spanned by

[1,0 j,.n(x) }nez‘ We have

LYR) = (kea'WJ-) @ V;forall j € Z.
. =J

In other words, any continuous function f{x) € L?(R) can be approximated by

F@) =S @+ > > de . | ©6)

k=jncZ
In what follows, we shall try to determine the relation between the wavelet transform and differen-

tial operators. Basically, this relation is a key issue for efficiently and accurately solving the SFS problem.

In order to obtain the solution of the SFS problem, a number of differential operators of different orders

[




which are involved in the optimization process have to be handled. In the SFS problem, the set of function
yariables to be solved is p, ¢, and Z. In order to represent these variables efficiently and accurately, in
Section 2, we have proposed using linear combinations of wavelet bases to represent them. Here, we shall
discuss how to represent differential operators of different orders by using linear combinations of wavelet
bases so that the optimization process can be executed more efficiently and accurately. To start, we repre-

sent the original signal f{x) as follows [54]:

F@) = D cpul), )

n

where ¢, = J Fx)p(x — n)dx. Since J ¢(x — nydx = 1 and @p(x) is compactly supported, we can

think of ¢(x — n) as a function which is similar to a delta function. Therefore, we have

fln) = Jf(X)tﬁ(x — n)dx. (8)
Substituting Equation (8) into Equation (7) and differentiating it, we have
1@ = D fme' . ©)
If we expand ¢’ ,(x) based on the scaling function and wavelet function, then the following equation is
obtained:
' (x) = ZF B+ > T, (10)
J=0k
where )
. J [ . .
' L= @' (x — nm)p(x — k)dx, (11)
and ’
I s ¢'(x — nypjx — K)dx. (12)

The above formulation is the so—called wavelet-Galerkin method [54]. I', , and I Jn (arecalled connection

coefficients [39]-[60]. These coefficients can be explicitly calculated for specific families of wavelets.
For example, the Daubechies wavelet system [45] with N=2 vanishing moments can be calculated and ex-
pressed as follows:

8 8 —
Other examples of connection coefficients can be found in [59]- [60] If we substitute Equation (10) into

Equation (9), we have

10



F10) = D fOIub® + D fOI 90, (13)
nk

Jj=0nk
By multiplying both sides of Equation (13) with ¢,(x) and integrating, we find that

-

GRS J Fr@px = Bdx = > FF,, = > Lo flk + n).
If the scaling function ¢{(x) has N vanishing moments,%he above equa'?ion can be further simplified as fol-

lows [54], [57]:

2N-—2

Fily=~ > Loflc+n. (14)
rn=—2N+2

As to the second—order case, a similar derivation process can be applied accordingly. A function
variable f{k) which is operated on by a second—order derivation can be represented as follows:

2N-2

= Y Iofk+m, (15)

n=—32N+2
where

re, = pr”(x ~ n)p(x — K)dx.

Basically, the first—order and second—order differential operators in Equations (14) and (15) are calculated
and absorbedin I, , and I ﬁ,k, respectively. From Equations (14) and (15), we can find that both differ-
entiated function variables ( f andf'’) can be approximated by linear combinations of the translations of
their original function vé(riable (f). Itis obvious that the connection coefficients which absorb the calcula-
tion of differential operators play an important role in bridging the gap between wavelets and differential

operators. In this paper, all connection coefficients are calculated based on a specific family of wavelets,

i.e., the Daubechies wavelet system{45].

4. Wavelet—based Solution to the Shape from Shading Problem

In this paper, we propose a wavelet—based method, which is more robust, efficient, and accurate than
traditional methods, to solve the SES problem. In order to improve the robustness, we propose to modify
the cost function. It is known that in Zheng and Chellappa’s paper [ 13], they required that the gradients of

the reconstructed intensity must equal that of the input image, i.e.,
Ry(p,q) = Exx, y) and Ry(P, q) = Ey(xa ).

I1



However, if these nonlinear constraints are introduced into the cost function, the computation load will be
significantly increased. In order to alleviate the above difficulties while still maintaining the relations

among Z, p and g , we propose to introduce two new constraints as follows:

Zye = px and  Zy, = gy.

Having the new constraints, the cost function can be redefined as follows:

W= J J[[E(x,y) - Rp.@1* + (% + P + 4k + )

+ = p* F By — a2 + [Za-p)? + (2 — O*|dxdy. (16)
It is noticeable that the new constraints not only enforce integrability but also introduce a smoothness
constraint in an implicit manner. In what follows, we are ready to detail an efficient algorithm for solving

the SFS problem based on wavelet theory.

First of all, we assume that the surface Z(x,y) to be reconstructed is defined at the fine resolution 0,
ie., Z(x,y) = SoZ(x,y). Aswas described in Section 2, Z{(x,y) can be represented by a wavelet format as

follows:

M-1M-1

Zxy) = D D Zmaplx — my = 1), (17.2)
m=0 n=0

where z,,, are the weighting coefficients, and ¢(x — m,y — n)’s are the wavelet basis of a certain sub-
space at the fine resolution 0. The size of surface Z(x,y) is M X M. Similarly, p(x,y ) and g(x,y) can be

defined accordingly a'é follows:

_ M=1M-1 ' ‘
PEY) = D D Pmaplx —my —n), (17.b)

m=0 n=0
M—-1M-1

and g(6,3) = > > qmap(x — my = n), (17.c)

m=0 n=0

where p,,,and g, are the weighting coefficients. Plugging Z pand g defined in Equation (17) into

Equation (16), we have

M=) M—1 _
W = J'I{[E(x,y) - R( 2 Pm,n¢m,n(X,y), 2 Qm,ngbm,n(JC,y))]z

mn=0 mn=0

M=1 M=t M=—1 M—1
Y PuaBEN? + (> PP+ (Y SN + () ama )]

mn=0 mn=0 mn=0 mn=0

12




M—1 M=1 M—1 M-1
1Ym0 = D P+ (D 2uad @) = D amadSn )]

mn=0 mn=0 mna=0 mn=0

) M-1 M—1 M=1 M=1
+ [( Z Zm,nqsg,)n(x:y) - Z Pm.nfpm.n(x’)’))z +( Z Zm.n¢f§,)n(JCJ) - Z Qm,n‘.bm,n(xs)’))z]}dxd)’a (18)

mua=0 mn=0 mn=0 mn=0
g2 .
where  @ua(x,y) = ¢(x — m,y —n), ¢ = ——gbm,n(x y) and 98 = ax2¢m,n(x, y). Similarly,
32
(n{)n = —qﬁm #(x,y) and q& ay2¢"""(x’ y). If the 3M? nodal variables py, , @mn and z,, that

minimize the objective function W can be found, then the surface Z(i,j) can be recovered. Before deriving
the iterative schemes for p, g and Z, we have to define a set of connection coefficients [59]-[60] in advance.
Basically, we can follow the similar derivation process described in Section 3 and define the following

connection coefficients:

( | [
rd(m,n) = J f ¢z, )P x, Vdrdy, IPm,m) = | | 99 1), y)dxdy,
) ’
[ [
Im,n) = | | 9y, y)dxdy, T Pm,n) = ] @O, y)pUx, y)dxdy,
' J J J
PYm,n) = ( ¢x, Y)pD, (x, y)dxdy, T$Him, n) = r¢°”>(x, NG (x, y)dxdy,
J J ’ .

,
I'®m,n) = | PO 0x, YWD, (x, y)dxdy, FP(m,n) = J J¢@)¢2?n(x, Y)dxdy,

rr

I'Om,ny = | | $P 0P malx, y)dxdy and IV, n) = J qu‘”(x, YPmn(x, y)dxdy.

JJ
If we decompose the cost function W as

ror

W, = | |Exy) — R@(x, ), q(x, y))2dxdy,

Wy = ( Z Pma®,(x, y3)2dxdy,

JJmnO

Wa = ( (( Z Pma 3, (%, y) dxdy,

-J J mn=0
ks
W = | [ (D amad, (x5 dxdy,
J ) mn=0
(M :
Wy = ( z qm,n¢,(§?n(x,Y))2dxdy,
J mn=0
( roM—1 M=1
Wi = | (D 2 = D puapntx,y) dxdy,
J ma=0 mn=4_ .

13




M-1 M—1
W32 = IJ(( Z Zm.n¢s,)l?2(x=y) - Z Q;n,n¢f,’:?n(x,Y)).2dxdy,

ma=0 mn=0

M=l M—1
W41 = J ( z Zm,n¢f7f,)n(%y) - Z Ppn,nﬁbrn,n(x,y))dedy; ‘
J

mun=() mn=0

r M—1 M—=1
and Wy = J ( z Zm,n¢f,{)n(x,)0 - Z Qm.n¢m.n(x»Y))2dXdy,

mu=0 mn=0

then we have

Let Op;j, 0g;;and 0z;  represent the updating amounts of p, ; g;;, and z;;in the iterative equations, re-

spectively. If p’;; q';;andz’;; represent the values after update, then

If weplug p';;,4'; jand ', into W, W, will be updated by an amount 6W;. By Taylor’s expansion, W,

can be rewritten as follows:

W = W, + oW,
=W, + 2R — B)Rp,0p;; + 2(R — E)Ry,0q;; + 2Ry, Ry, 0p; 0q;; + R}.OpF; + RE. 547,
where the higher order derivatives Rp,, Rgq and R, are all zero due to the linear approximation of R
around (p,q). Similarly, if p';;, ¢';;andz';; are plugged into Wy, the value of W, will be changed by
O0W,,, that is:

M-1 '
Wai = Wy + 0Wy, = J J (D PO = my = n) + p; pPx — i,y — ) *dxdy

mn=0
M—-1
= Wy + 20p;; ), Pma J J P05, V)BT (x, y)dxdy
m,n=0

+ 0p3; J J P x Y)p e, y)xdy

M=1
= Wy + 20p;; Z Pl (i — m,j — n) + 6p}TP(0,0).
mn=0

The same derivation can be applied to Wy, Wy, and W,,, where

M=1 ,
Wi = Wy + 0Wyy = Woy + 20p;; > Pmal i — m,j — m) + 8pEI3(0,0),

mn=0

M—1
' 2),, . 2
Was = Way + 0Wyy = Wy + 20q;; . qualx (i = m.j — n) + 8g2 10,0,

mn=0

14




M—1 _
' 2),. . :
and Was = Wy + 0Wyy = Wyy + 20q;; > qumaly i — m,j — n) + 6630,(0,0).
mn=0
As to the case of W, and W3, we can derive accordingly and obtain the following:

W31 = Wiy + 6Wy,

M-1 M—1
= W3 — 2apiJ[ Z Zm,nr,?)(f —-mj—n) — Z Pm,nr,(xz)(i - mj—n)]+ 25P;J<52gjl'§c3)(0, 0+ 610:'2,;1.&2)(0’ 0

mna=( mn=0
M=1 M-l
+ 5zi2‘,-1§4)(0, 0) + 20z, Z Ll i — myj — n) — 20z;; Z Pl Pm — i, — ).
‘ man=90 mn=0
Wéz:z ﬂ%2'+ 6“%2
M= M=1
= Wy~ g0 D wmd DU —mj—m) = > qual @l — m,j — m)] + 20,52, (0, 0) + 6g27F(0,0)
mn=10 : . ma=0 ’
M—1 M—1
+ 822 1¥9(0,0) + 26z Z Zmal 0 — m,j — n} — 20z, z Gl P = iyn — ).
man=0 mn=0

For the case of W,; and W,,, we have

W44=='Wu14*5ﬁﬁl

M~1
= Way = 20p[ D" zmal G = m,j — 1) = pyjd + 20p; 97,10, 0) + 8p2, + 6210, 0)
mn=0
M—1 M-1
+ 202, D 2mal O —mj— 1) =20z Y pualPlm = iyn = j).
ma=0 mn=0
M-1" ’ .
Wi = Wi = 20q;1 D7 2mal P = m,j — n) — g, + 204,82, T0,0) + 643, + 3z2T(0,0)-
. mn=0 -

M—1 M-t
+ 20z;; Z zm,nff)(i -m,j—n)— 262,;,— Z qm,nfg,l)(m - in—j.
mn -

mn=0

Since I'¥(0,0) = 0 and I'¥(0,0) = O when & is an odd positive integer, we can thus reorganize the

above terms and rewrite W as follows:

W =W+ 6W= W+ W, + Wy + Wy + Wy + W,y + 6Wy, + Wy, + 6W,, + 6W,,

=W+ 2R — E)R,Op;; + 2R — E)RPq;; + 2R,R0p, 8g;; + Rgapz?',j + Rgaq?J
M—1

. . M=1
+ 2ap£,j Pmin[ZI:(?)(f - m,j - n) + I'g;z)(i - m’j - n)] - 2(5[),-‘]- Z Zm,nr,(gs)(i —m,j —n)
mun=0 mup=0
K 2 [y 2
= 20p;; D tnal 0 = m,j — n)+ 28p, p;; + pEI2IP(0,0) + r{?o,0 + 1]
mn=0
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M~—1 . M=l

+20g;; D qmal[ P = mj — n) + 20 = mj — )] = 26 > 2ua P~ mj = n)
ma=0 mn=0
M—-1

— 23q,; Zozm,@% = m,j = n)+ 28q;,9;; + 87T P(0,0) + 2I7P(0,0) + 1]
M1

+202; Ozl = m,j — ) + TG — m,j — n) + IO — m,j = n) + 6 — mj — n)

ma=0

M—1
~ 202 > puall&m — in = ) + I'On —~ i,n = j)]

mn={
M—1
—202;; > quallOm = i;n = ) + I6n = i,n = )
ma=0
+ 022170, 0) + IE9(0,0) + I'P(0,0) + I'P(0, 0)). QL

In order to insure that the terms in Equation (21) are in accordance with the format of the tensor product
method [44]-[48],[61], we set ¢(x,y) = @(x)¢ (y). In this form, the 2-D connection coefficients in Equa-
tion (21) can be converted into 1-D form. For example, the 2-D connection coefficient I’ §C4)(m, n) canbe

converted into 1-D form by the following derivation:

: I'm,n) = J Igb(:oc)(x, y)qb(n)(x'— my — njdxdy

= f PP ()P (x — m)dx f PPy — mydy = T'Y(m)D(n),

where D(n) = {(li othersise 2 T9(r) = j ") x — m)dx. Let I'P(m) = J $P()pWx — mdx,

!

I'®m) = f ¢(xx)(x)l¢(")(x — m)dx and I'V(m) = Igb(x)(x)gb(x — m)dx. The other connection coefficients

can be derived accordingly as follows:

I'Pen,n) = DINn),  TQm,n) =TAmI D),  I'dim,n) = FOmIrm),

I®m,n) = DEWIOm),  IO(m,n) = DmIP(m), r®m,n) = D P(m),

I'B(m,n) = DI A(n),  I'Y(m,n) = DWIM(m), and I'D(m,ny = DI V(n).
Moreover, if the scaling function ¢{x) has N vanishing moments [59][60], then for m &
[— 2N + 2,2N — 2], I'®m) =I'®m) = I'P(m) = M'Y(m) = 0. Table 1 illustrates the 1-D connec-
tion coefficients for Daubechies’s wavelet with N=3 vanishing moments. In order to make the optimiza-

tion process efficient, 6 W has to be maximized. Therefore, from Equation (21), we can obtain the follow-

ing equations:
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W _ 4 aaW_Oad BW _

3p,; > a6q, aoz,
From OW _ = 0, we obtain '
adp,;
N2
[R + 30P0) + 116p;; + RyRBg;; = (E = BBy —pjy+ > 2 JIO® + TOR)]
k=—-2N+2
2N-2 )
= D> RPimiy + by TP, (22.2)
k=—-2N+2
Slmllarly, from —— WOW = (0 and OW = (J, we obtain
66 66
: 2N-~-2 ]
RpROp;; + [RG + 3P0 + 116g;; = E = RRy — g+ > 2, I + I
k=—2N+2 '
AN—=2
= D gy + 2q5; W), (22.b)
k= -2N+2 '
and
2[7(0) + I'®0)18z;,
. 2N-2 2N -2
=~ > pgIO®R IR > g, T + TG
k=—-2N+2 k=—2N+2
2N=-2 2N-=-2
~ D IR+ IOWI- S g, JITOW + IR (220
k==2N4+2 k=—-2N+2
Equation (22) can be further simplified as follows:
Dydp;; + Rp R 0q;; = Cy, (23.2)
RPNquJapi‘i + Dzzaqlil = C2 (23.b)
and Dy30z;; = Gy, (23.¢)

where C; equals the right hand side of Equation (22.a), C, represents the right hand side of Equation
(22.b), and C4 is the right hand side of Equation (22.c). As to the values of Dy, Dy, and D43, we have
Dy = R}, + 3T®(0) + 1, Dy = R+ 3I'D(0) + 1, and Dyy = 2I'D(0) + 2I'™(0). By solving
Equation (23), we have

5}7;',; = (C1Dyy — Csz.-dun)/ D,

8q;; = (CoDy — CiRp, Rq )/ D,
where D = DD, — RI%.-JR%,-,-- Summarizing the above results, the required iterative equations can be

represented as follows:
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P?,}H = pj; + Opy; q}'}"'l = g;; + 0¢;; and Z?}H = zj} + 0z (24)
Since the iterative equations shown in Equation (24) will be applied to all elements of an image, some
boundary conditions have to be introduced to avoid those calculations that involve some pixels outside the
legal image. Here, a pixel z;; is classified as a boundary pixel if i <Oor j<Qori>M —1or

j > M — 1. Each boundary pixel should satisfy a set of boundary conditions as follows:

L z;; = zp;if i < Oforeachj.

2.z;; = z;pif j < Oforeach .

3.2 = gy if i > M — 1foreachj].

4. 7 = 7341 1f j > M — 1 for each..
The set of boundary conditions also applies to p;; and g;; Based on Equation (24), we can iteratively
solve the SFS problem. By using wavelet-based representations in the set of iterative equations, the de-

sired set of solutions can converge in a more efficient way. The complexity of the proposed algorithm is

O(M?) . The fact that fewer iterations are required is the major advantage of the proposed method.

5. Experimental Results

In order to prove the efficiency and accuracy of our algorithm, we used two synthetic images and two
real images as test images. Among them, two synthetic images were used to verify whether the proposed
theory is accurate. On the other hand, two real images were used to examine how well this algorithm
works. All testimages were of size 256 X 256. In the experiments, two synthetic images were generated
with the parameters ¢ = 250,0; = & /4 7; = xf4 and § = 0. Foreach synthetic image, the surface
heights around the'Border of each object were assumed to be zero. In addition, the estimated parameters
A,@, 05, T, and & for two real images were derived by applying Zheng and Chellappa’s method[13j. At

each iteration of the dynamic equations, the Gauss—Seidel method was performed to update variables.

Figure 1 shows the experimental results of a synthetic portrait image. Figure 1(a) is a true range
surface used to generate a 2-D synthetic image. Figure 1(b) shows the 3-D plot of (a). Figure 1(c) shows
the test intensity image generated from Figure 1(a). The surface recovered by our algorithm is shown in
Figure 1(d). The 3~D plot of the reconstructed surface is shown in Figure 1(e). From the above results, we
can find that the reconstructed surface is close to the original surface. Since there are no sufficient bound-
ary conditions available, the errors between the reconstructed surface and the original surface are indis-
pensable. Figure 1(f) shows the image generated by projecting the reconstructed surface onto a 2-D sur-

face. The set of parameters 4,9, 0;, 7, and & adopted is the same as that used to generate Figure 1(c).
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Figure 2 illustrates another example of a synthetic Mozart image. Figure 2(a) shows a true range
surface which was used to generate a 2-D synthetic image. Figure 2(b) is the 3-D plot of 3(a). Figure 2(c)
shows the test intensity image generated from (a) with parameters 0, = #/4, 1, = x/4, ¢ = Oand.
Ao = 250. Notice that since the original depth surface has holes inside the object and discontinuities
along the object boundaries, the 2—-D synthetic image has noise at the places where those holes are located.
The surface recovered under these circumstances is shown in Figure 2(d). The 3-D plot of the recon-
structed surface is shown in Figure 2(e). Due to the discontinuities and holes, there exist indispensable
eIToTS betwéen the reconstructed surface and the original surface. However, the deviation is tolerable and,
therefore, the result is considered satisfactory. Figure 2(f) shows the image generated from the recovered

surface by lising the same set of parameters 4,0, oy, 7; and &.

In order to verify the performance of the proposed SFS algorithm, it was necessary to apply our algo-
rithmto natural images. The next example shows the results obtained by applying our approach fo the Lena
image. Figure 3(a) shows the original Lena image. The reflectance map parameters estimated by Zheng
and Chellppa’s method[13] are 40=192.01, 0,=59.92°, 7,=7.74° and §=3.0. The depth map recovered
by our algorithm is shown in Figure 3(b). Itis difficult to evaluate the performance of our algorithm when
itis applied to a real image. It can be seen from Figure 3(b) that the shape of the hat, cylinder and shoulder
are recovered correctly, Other features such as nose, eyes, lips, etc. are also correctly reconstructéd. Figure
3(c)is the 3-D plot of (b). Figure 3(d) shows the image synthesized from the reconstructed (p,¢) maps with
the same reflectance map parameters. Figure 3(e) shows another image synthesized from the recon-

structed surface using the same set of reflectance map parameters except 7 ;= 97.74°.

Figure 4 is the case of another real image. Figure 4(a) shows the original multi-pepper image. The .
reflectance map parameters estimated are 190=255.96, 6,=58.20°, 7,=15.92° and £=0.0. The depth map
recovered by our algorithm is shown in Figure 4(b). It is noticeable that this image is more complicated
because it contains many small peppers, albedo variations, and shadows. For the above reason, some pep-
pers which were originally inside the image could nabfg?énstructed correctly. However, most of the ob-
jects which were originally contained in the image were correctly recovered by our algorithm. Figure 4(c)
shows the 3-D plot of (b). Figure 4(d) shows the image synthesized from the reconstructed ( p,q) maps

using the same set of reflectance map parameters. Figure 4(e) shows another image synthesized from the

same set of reflectance map parameters except 7;=105.92°.
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In order to compare our algorithm with other methods, two brilliant works in the literature, which
were respectively proposed by Horn [17] and Zheng—Chellppa [13], are selected. Here, we made some
modifications to Horn’s method so that it could converge even faster. In the comparison, we used the Lena
image and the multi-pepper image, respectively. For each image, the average magnitudes of the *“bright-
ness error” and “integrability constraint” at each pixel were chosen as the indicators to compare their per-
formances. Figure 5 shows the comparison results when the three methods were applied on the Lena
image. Figure 5(a) shows how the average magnitude of the brightness error decreases over time for the
three different methods. Figure 5(b) shows the results obtained by using the average magnitude of integra-

'bility constraint as an error measure. In this experiment, the results indicate that our method performs
better than the other two methods. Figure 6 shows other comparison results when the three methods are
applied to the multi-pepper image. Figures 6(a) and (b) are the results obtained by using the average
brightness error at each pixel as a comparison measure. Since the average “brightness error”” magnitude of
(b), obtained by our method, is too small, it is therefore représented by aseparate figure with different scale
( x 1073). In Figure 6(b), different N represent different compactly supported bases. The results, which
show the average magnitude of integrability constraint of the three methods, are shown in Figure 6(c).
From the results shown in Figures 5 and 6, it is obvious that the wavelet-based SFS algorithm is indeed an

efficient , robust, and accurate way to solve the SFS problem.

6. Conclusions

In this paper, we have applied wavelet theory to solve the shape from shading problem for 3-D sur-
face reconstruction. To derive this algorithm, we have adopted the formulation of Horn [15]-[17], which
combines several constraints into an objective function, which is then minimized. In order to strengthen
the relations among Z, p and g, two new constraints have been introduced into the objective function. The
pfocess of solving the SFS problem was then converted into a constrained optimization problem. The pro-
posed method uses a wavelet basis to approximate a curved surface so that a new technique which can
reconstruct a 3-D surface better and make the procéss converge faster can be developed. To verify the
performance of the proposed method, two synthetic images and two two real images were adopted as test
data. Experimental results proved that our method works better than do traditional methods, both in con-

vergence speed and accuracy.
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Table 1:

Figure 1:

Figure 2:

Caption of Table
The connection coefficients for Daubechies’s basis with three vanishing moments.
Captions of Figures

The SFS algorithm applied to a portrait image. (a) The true range surface used to generate a
synthetic image. (b) The 3-D plot of (a). (c) The input intensity image generated from (a) with
parameters o, = n/4, 7, = n/4, £ = 0and g = 250. (d) The reconstructed surface. (e) The
3-Dplotof(d). (f) The outputintensity image generated from (d) using the same set of parame-
ters as in (c). - '

The SFS algorithm applied to the Mozart image. (a) The true range surface used to generate a
synthetic image. (b) The 3D plot of (a). (c) The input intensity image generated from (a) with
parameters o, = n/4, 7, = n/4, &€ = 0 and Zp = 250. (d) The reconstructed surface. (e) The

~ 3-Dplotof (d). (f) The output intensity image generated from (d) using the same set of parame-

Figure 3:

Figure4:

Figure 5:

Figure 6:

ters as in (c).

The SFS algorithm applied to the Lena image. (a) The input image. Its estimated reflectance
map parameters are o, = 59.52°, 7, = 7.74°, ¢ = 192.01 and £ = 3.0. (b) The recon-
structed surface. (c) The 3—D plot of (b). (d) The image generated from the reconstructed (p, ¢)
maps with the same reflectance map parameters. (e) The image synthesized from the recon-
structed (p, g) using the same set of reflectance map parameters except 7, = 97. 749,

The SFS algorithm applied to a multi—pepper image. (a) The input image. Its estimated reflec-
tance map parameters are o, = 58.20°, v, = 15.92°, 1o = 255.96and &£ = 0.0 (b) The re-
constructed surface. (c) The 3-D plot of (b). (d) The image generated from the reconstructed (p,
q) maps with the same reflectance map parameters. (e) The image synthesized from the recon-
structed (p, g) using the same set of reflectance map parameters except z, = 105, 92°,

The comparisons of our SFS algorithm with two other algorithms based on the Lena image. (a)
The results of adopting the average magnitude of the “brightness error’ at each pixel as an error
measure. (b) The results of adopting the average “‘integrability constraint” magnitude as a
comparison measure.

The comparisons of our SFS algorithm with two other algorithms based on the multi—pepper
image. (a) The average magnitudes of the “brightness error” generated by the other two algo-
rithms. (b) The average “brightness error’ of our algorithm. The scale of the vertical axis has
been scaled down to 10~°. Two curves in (b) are results obtained by different compactly sup-
ported basis (N=3, 4). (c) The results of adopting the average “integrability constraint” magni-
tude as a comparison measure.
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T~ 4] = 0.00034246575342 | F'O[— 4] = — 0.00535714285714 ] I®{—4) = —0.0075 | T™[= 4] = — 0. 05625
rOr—31= 0.01461187214612 | F®[— 3} = — 0.11428571428572| I'®[—3] = —0.0800 | F™[— 3] = — 0. 30000
I[—2] = — 0. 14520547945206 | TD[— 2] = 0.876190476190471 I'®[— 2] = 0.8950 | 9[- 2] = 1.92500
U= 1= 0.74520547945206 } I@[— 1] = — 3.39047619047619{ I'®O[— 1] = — 1.5200| I'™[~ 1] = — 4. 10000
rol= 0.0 I'P[0]=5.26785714285715 | I®[0]= 0.0000 | I 0]= 5.06250
UL L) = — 0.74520547945206 | I 1] = —3.39047619047619 | [ 1] = 1.5200 | I 1 1= — 4. 10000
rBr21=" 0,14520547945206 | I®[21= 0.87619047619047 | I'®[2}= —0.8950 | I'¥[2]= 1.92500
31 =—-0,01461187214612 | I3 ] = — 0.11428571428572 | I 3]1= 0.0800 | I'“[ 3] = — 0.30000
4] =~0,00034246575342 | TP 41 = —0.00535714285714 | I'®{4]= 0.0075 | I'[4]= ~0.05625

Table 1. The connection coefficients for Daubechies’s
basis with three vanishing moments.
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(H)

(e)

250.

Oand ¢

=xfd, t,=n/4,E =

used to generate a synthetic image. (b) The 3-D plot of (a). (c) The input intensity

image generated from (&) with parameters o,
(d) The reconstructed surface. (e) The 3-D plot of (d). (f) The output intensity

Figure 1. The SFS algorithm applied to a portrait image. (a) The true range surface
image generated from (d) using the same set of parameters as in (¢).

)

(d)
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Figure 2. The SFS algorithm applied to the Mozart image. (a) The true range surface
used to generate a synthetic image. (b) The 3-D plot of (a). (c) The input intensity
image generated from (a) with parameters o, = %/4, v, = #/4, £ = 0and Ap = 250.
(d) The reconstructed surface. (e) The 3-D plot of (d). (f) The output intensity
image generated from (d) using the same set of parameters as in (c).
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Figure 4. The SFS algorithm applied to a multi-pepper image. (a) The input image.
Its estimated reflectance map parameters are o, = 58 .20°, T, = 15.029,
Ao = 255.96and £ = 0.0 (b) The reconstructed surface. (c) The 3-D plot of (b).
(d) The image generated from the reconstructed (p, ) maps with the same reflectance
map parameters. (¢) The image synthesized from the reconstructed (p, g) using the
same set of reflectance map parameters except 7, = 105 . 92°.
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Figure 5. The comparisons of our SFS algorithm with two other algorithms based on
the Lenaimage. (a) Theresults of adopting the average magnitude of the “brightness
error”’ at each pixel as an error measure. (b) The results of adopting the average “in-

tegrability constraint’ magnitude as a comparison measure.
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Figure 6. The comparisons of our SFS algorithm with two other algorithms based on
the multi-pepper image. (a) The average magnitudes of the “‘brightness error’ gen-
erated by the other two algorithms. (b) The average “brightness error” of our algo-
rithm. The scale of the vertical axis has been scaled down to 107°. Two curves in (b)
are results obtained by different compactly supported basis (N=3, 4). (c) The results
of adopting the average “integrability constraint” magnitude as a comparison mea-

surc.
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