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Abstract

Systolic arrays, which are made out of simple processing elements connected by data links, have
made significant improvements in speeding up computation in comparison to conventional computers.
Although systolic arrays belong to distributed memory parallel devices, they adopt systolic communi-
cations instead of message passing communications for sending data between neighboring processing
elements. Therefore, it is important to provide necessary and sufficient conditions to avoid data colli-
sions in the data links for a correct algorithm design. In this paper, we present necessary and sufficient
conditions for mapping the class of shift-invariant uniform-dependence algorithms structured as nésted
loops into grid-comnected systolic arrays of arbitrary dimensions. The proposed conditions, which are
based on the ZERO-ONE-INFINITE property of tokens’ behavior that describes how many times tokens
are used and generated during the computation, can allow us to generate all feasible solutions.

Index Terms— algorithm transformation, data collision, data link, grid-connected systolic array,

nested-loop algorithm.
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1 Introduction

It is significant that many time-intensive scientific algorithms are formulated as nested loops, which are
inherently regularly structured. In this paper we study the mapping of shift-invariant uniform-dependence
algorithms structured as nested loops into grid-connected systolic arrays without data collisions in the data
links. Although previously there has been a significant amount of research studying the transformations of
nested-loop algorithms into systolic arrays {3] (4] [12]-(19] [22] [23], the proposed methods either are not
general enough for solving the mapping of nested-loop algorithms into arbitrary dimensional systolic arrays
or cannot avoid the possibility of data collisions in data links. A complete survey of the systolic array

transformations can be seen in [5] [10] {11].

In general, the transformations presented in these papers are all based on the hyperplane method [9).
This technique finds the data-dependence vectors of an algorithm first, and then finds a non-singular linear
mapping which preserves the data-dependence ordering of the original algorithm. This technique is also
called space-time mapping. However, previous attempts did not consider the cases when data might collide
in the data links. As we will show in Section 5, transformations which satisfy conditions presented in other

research papers may still incur data collisions in data links.

Although Lee and Kedem [11] have introduced a set of ﬁecessa.'ry and sufficient conditions for correctly -
transforming a p-nested-loop algorithm into a ¢-D systolic array, where D stands for dimensional and -
1 € ¢ < p, yet in their model, a data link, in which a set of data tokens with a specific data-dependence
vector flow through, has only one direction. Therefore, if a data token wants to flow to the diagonal PE
(for example, the north-eastern processing elemént), there must be a data link connecting the current PE
and the diagonal PE. This;design will of course increase the complexity of the hardware and the fabrication
cost of the target systolic array, because additional data links and their corresponding 1/0 pins are very
expensive to be included in a chip with a limited area. Similarly, in Ganapathy and Wah’s model, a data

link also has only one direction [6], and they incur the same problem.

It is our goal in this paper to present a complete set of necessary and sufficient conditions for mapping
nested-loop algorithms with uniform-dependence relations into grid-connected systolic arrays of arbitrary
dimensions, including 1-D linear systolic arrays or 2-D mesh-connected systolic arrays or high dimensional
ones. It is of practical importance to develop such necessary and sufficient conditions for a correct mapping.

Because the topology of a grid-connected systolic array is regular, in addition, each PE of a ¢-D grid-

connected systolic array has only 2¢ data links. This architecture is thus especially suitable for the VLSI




(Very Large Scale Integration) implementations, such as the Warp computer [1], which is a linear systolic

array, and the iWarp computer [2], which is a mesh-connected systolic array, designed in CMU.

The rest of this paper is organized as follows. In Section 2, we relate general nested-loop algorithms
with uniform-dependence relations to the grid-connected systolicrarra,ys. We also explain data collisions
with an example. In Section 3, we present a complete set of necessary and sufficient conditions for a correct
mapping under the constraint that at each time step, in each data link between two neighboring PFEs there
is at most one data token which can flow through. In Section 4, we generalize the conditions in Section 3
by allowing fo shuffle traveling tokens. In Section 5, we compare our model with related research works.

Finally, some concluding remarks and the directions of future works are given in Section 6.

2 Relating Nested-Loop Algorithms to Systolic Arrays

A p—nested-loop- aigorithm Ag is comprised of l'.hrf_:é p.'a..rts: (1) the loop index sei, I’ = {(iy, 73, ..., 3p)'
| €43 <uj, 1<j < p}, which is also called the problem space, where [; and u; are respectively the
lower bound and the upper bound for each level j of the loop; (2) the set of variables Vi, including input
variables, output variables, and temporary . variables; and (3) the sequence of statemenis Fuy in the loop

body.

'

Given a p-nested-loop algorithm, we can find data-dependence vectors [20] [21] and classify them ac-
cording to the ZERO-ONE-INFINITE property [10]. In general, data-dependence vectors can be defined
in four ways: (1) modify-modify dependency, which is the relation that a variable is generated (modified)
in different indices; (2) use-use dependéncy, which is the relation that a variable is used in different indices:
(3) modify-use d‘:ependency, which is the relation that a variable is generated in one index and will be vsed
in the other index; and (4) use-modify dependency, which is the relation that a variable is used in one index

and will be generated in the other index.

Each different variable token symbol in the loop body causes one data-dependence vector of either
modify-modify dependency or use-use dependency. If each variable token is either generated only once or
used only once, the data-dependence vector is of type ZERQ. If each variable token is generated or used
periodically during the computation, the data-dependence vector is of type INFINITE. On the other hand,
each pair of a modified token symbol (on the left-hand-side of :=) and a used token symbol (on the right-

hand-side of :=); or each pair of a modified token symbol and the other modified token symbol; or each

pair of a used token symbol and the other used token symbol of the same array variable, causes one “type




variable | data-dependence vector token dependency

token vector type type relation
Afi, k] dy = (0,1,0) | INFINITE | input use-use
B[k, 7) ds = (1,0,0)" | INFINITE | input use-use

Cli, 7 ds = (0,0,1)* | INFINITE | output | modify-modify

Table 1: All three data-dependence vectors in the matrix multiplication algorithm are of type INFINITE.

ONE” data-dependence vector. This vector will be of either: modify-use dependency (flow dependence); or
use-modify dependency (anti-dependence}; or modify-modify dependency (output dependence); or use-use
dependency. Tokens with data-dependence vectors of type ZERO or of type INFINITE are input or output

variable tokens. Tokens with data-dependence vectors of type ONE are temporary variable tokens.

The ZERO-ONE-INFINITE classification can help understand whether tokens can be destroyed or not;

whether tokens can be pipelined or not; and whether a PE needs additional I/O ports or not. This

. classification is the key to formulating the necessary and sufficient conditions for mapping nested-loop

algorithms into the target systolic arrays.

Definition: The mathematical structure of a p-nested-loop algorithm Ag is a 5-tuple Ma, = (1P, Va4,
FAg, _DAg, DTAg), where:

1. I? is the loop index set;

2. Vag is the set of variables;

3. Fa, is the sequence of statements in the loop body;

4. Dy, is the sequence of data-dependence vectors;

5. DTa, is the sequence of types for each data-dependence vector.

We will say that a nested-loop algorithm is shift-invariant if the dependence relations corresponding to

i
all loop iterations in the index space are independent of their positions. We will also say that a nested-loop
algorithm is of uniform-dependence, if all of the data-dependence vectors are constant. In this paper, we

only consider shift-invariant uniform-dependence algorithms.
Example 1: The 3-nested-loop matrix multiplication algorithm

fori, j, k:=0ton do
Cli, il = C[Z:J] + Ali, k] + B{k:j];

has three different variable token symbols, which cause three data-dependence vectors and all of the three

data-dependence vectors are of type INFINITE as shown in Table 1. [

Example 2: The 3-nested-loop algorithm




variable data-dependence | vector token dependency

“token vector type type relation
< Alt, 7, k], Ali,7—1,k] > dy =(0,1,0) ONE | temporary modify-use
< Bli,j k], Bi— 1,7,kl > | d2=(1,0,0)* ONE | temporary | modify-use

(
< C[i,4,k, Cli,j,k—1] > dz =(0,0,1)* ONE | temporary modify-use
Alz, 7, k] dy =(0,0,0) | ZERO | output | modify-modify
Bli, j, k) ds = (0,0,0)* ZERO output modify-modify
C[i, 5, k} ds = (0,0, 0)* ZERO output modify-modify
Ali, 7 —1k] d7 = (0,0,0)* ZERO input use-use
Bli~ 1,7,k ds = (0,0,0)* ZERO input use-use
Cli,4,k—1] ds = (0,0,0)* | ZERO input use-use

Table 2: In Exarmple 2, six different variable token symbols cause nine data-dependence vectors.

fori, 7, k:=0ton do
Ald, j, k] == Al3,5 - 1, k);
Bli,j, k] := Bli — 1,5, k);
C[i, 4, k] := C[4, 5. k — 1] + A[i, j, k] * Bli, j, k;

has six different variable token symbols, which cause nine data-dependence vectors. Among them, three are

of type ONE and six are of type ZERO as shown in Table 2.

Note that, A1, j, k], B[4, 5, k], and C[i, j, k] are with data dependence vectors of type ZERO, and they are
generated only once. We probably should call their dependency relations “modify” ; however, for consistency
with the dependency relations of data dependence vectors of type INFINITE and of type ONE, we call their
dependency relations “modify-modify”, Similarly, A[¢,j — 1, k], B[i— 1,7, k], and C[4, 5, k— 1] are with data
dependence vectors of type ZERO, and they are used only once. Also, we call their dependency relations

“use-use” instead of “use” for consistency with the dependency relations of data dependence vectors of type

INFINITE &nd of type ONE. O

We now briefly state our ¢-D grid-connected systolic array model. A PE in the ¢-D grid-connected
systolic array is represented by the tuple (pi;, pia, ..., piy), where pl; < pi; < pu; for 1 < j < g, pl; and
Pu; are respectively the lower bound index and the upper bound index for each dimension j of the systolic
array. In addition, it has only two physical data links connected to the neighboring PEs in each dimension.
Therefore, there are in total 2¢ physical data links in each PE, or say, in each PE there are in total 2¢

interconnection primitives connected to 2¢ neighboring PEs. For convenience, we will say that F; is the ith

interconnection primitive, and Py = [1,0,. . 0lixgs Pa=[-1,0,..., 00 xgi Pai-1=1[0,...,0,1,0,...,0{,,




where the only non-zero entry in position i is I; Py = [0,...,0,-1,0, .. .,0]‘1xq, where the only non-zero

entry in pesition 7 is —1; Pog—y = [0,...,0, 1]ixq and Py ={0,...,0, —l]{xq.

We now explain how to relate nested-loop algorithms to systolic arrays. After finding and classifying all
of the data-dependence vectors, we associate a single dedicated virtual data link with each data-dependence
vector, which is with the corresponding set of data tokens. Note that, in the sequential algorithm there
is only one copy of data tokens in the shared memory. However, in the systolic array algorithm, since
dependent indices may be executed in different PEs, multiple copies of data tokens may be flowing through
the systolic array. In general, if there are w data-dependence vectors with a specific array variable, then w
copies of array variable tokens will be “traveling” through the systolic array, and each in a dedicated virtual
data link. If a data-dependence vector has the condition d; = 5,,, the corresponding virtual data link will
be fixed in PEs, and therefore, the corresponding array variable tokens will be fixed in PEs. The purpose of

classifying data-dependence vectors of type ZERO is to specify the requirements of local registers (or local

memory) for those tokens with these zero data-dependence vectors.

A virtual data link may consist of several physical data links, therefore, a virtual data link may change
its direction although each physical data link has only one direction. However, if a data token flows from
PEtpiy pia,...pig) 40 PE(p,-l+th,-2+j2'._,,p,-qﬂ-q), it must follow the following rule: it starts to flow along the

first dimension j; PEs, then it flows along the second dimension jo PEs, and so on.

The number of virtual data links is usually more than the number of physical data links. In this case, the
time-slicing method is used to assign different data token streams using different time slots flowing through
the physical data links. As we will associate a _single dedicated virtual data link with each data-dependence
vector, we will say for cfpnvenience that data-d-ependence vector d; will correspond to virtual data link i and

data token stream i. A correct systolic array algorithm must manage the data token streams so that the

data tokens’ values are the same as those in the sequential algorithm.

To simplify the discussion, we assume throughout this paper that for each data-dependence vector
di = (di1, dia, .. ., dip)?, ged(din, diz, . . ., dip) = 1. The discussion for the general case when ged{d;y, dia, . . .,
dip) # 1, which requires additional virtual data links in order to avoid data collisions in the data links, is

the same as that of {11].

The main effort of mapping a p-nested-loop algorithm into a ¢-D systolic array is to find a feasible space
and time mapping, which maps an index iteration to be executed in a specific PE at a specific time. At

the end of this section, we present a linear systolic array algorithm which Lee and Kedem claimed incurs




data collisions in the data link [10}. Let H € Z!*® be the time mapping vector and S € Z!1*? be the space
mapping vector for mapping p-nested loop algorithms into linear systolic arrays. Then the computation

indexed by I is executed at time HF in PEg;.

Example 3: Consider the 3-nested-loop matrix multiplication algorithm in Example 1. The linear systolic
array implementation, where the time mapping H = (2, 1, 2)‘and the space mapping S = (1,1, —2) for the
problem size n = 3 will generate data collisions in data link 3 as mentioned in [10]. This is because C[0, 3]
collides with C([2,0] and C[1, 3] collides with Cf3,0] in data link 3 during the compitation. For instance,
in Fig. 1, there is only one shift register in data link 3. It is true that C[0, 3] is first used and generated in
index (0, 3,0)* in PEj at time step 3, and C[0, 3] will be used and generated next time in index (0, 3, 1)* in
PE, at time step 5. Therefore, at time step 4, C[0, 3] will be in PE,. However, at time step 4, C[2, 0] also
reaches PE, along data link 3. It is a data collision. 0

3 Synthesizing Grid-Connected Systolic array Algorithms un-
der a Restricted Model

In this section, we show conditions for mapping nested loop algorithms into grid-connected systolic arrays
with the constraint that at each time step, in each virtual data link between two neighboiing PEs there is
at most one data token which can flow through. Before introducing any conditions, we show an example of

data collisions in a mesh-connected systolic array.

Example 4: The 3-nested-loop algorithm

fori:=0to 15,7:=0t0 15, k:=0to 13 do
i
A[""l.’lk] = F]_(A[i,j—4,k— 3]1 C[""3.7+2k, "-'D:

has five different variable token symbols, which cause seven data-dependence vectors as shown in Table 3.
Note that Fy and Fy are two functions.

Let H=(1,1,1) and S = ( g (1} 2 ) Then H preserves data-dependence relations; in addition, H

and S satisfy the non-singularity condition. However, as shown in Table 4 and Figure 2: tokens A[0,5, 5]
(which is generated in index (0,5,5) in PEss at time 10 and will be used in index (0,9,8)! in PEyg at
time 17), A[0,6, 5], A[0,7,5], and A[0,8,5], are with the data-dependence vector dy = (0,4,3)t and will

pass through virtual data link 1 between PEgs and PEy 5 at time 13 simultaneously. Clearly, they cause




variable data-dependence token dependency
token vector type type relation
< Al j, k], Al 7 —4,k—3] > di = (0,4, 3)* ONE temporary modify-use
< Ali, 5, k), A= 1,7,k-2] > d = (1,0,2)° ONE temporary modify-use
Bl3i—j+k,3—] ds =(1,3,0)* INFINITE input use-use
C[—3j + 2k, 1] dy =(0,2,3) | INFINITE | output modify-modify
Ali, 7, k] ds = (0,0, 0)* ZERO output modify-modify
Al —4,k—3] ds = (0,0,0) ZERO input use-use
Ali—1,7,k=2] d7 = (0,0,0) ZERO input use-use

Table 3: In Example 4, there are seven data-dependence vectors.

data generated PEg; _ used PEgp _
token index i index Hr 5
A[0,5,5] | (0,5,5)) PEss 10 (0,9,8) PEes 17 :

A[0,86,5) (0,6,5)‘ PEss 11 (0,10,8)‘ PEppg 18
Af0,7,5] (0,7,_5)“ PErs 12 (0,11,8)‘ PEng 19
P A[0,8,5] (0,8,5)‘ PEgs 13 (0,12,8) PE;ps 20 |

data time step l‘
token 10 11 12 13 14 15 16 17 18 19 20 ’
Al0,5,5] | PEss PEss PEqs PE8,5 PE9’5 PEys PEgs7 FPEgg
A[0, 6, 5] PEgs PEqs PE8]5 PE9.5 PEys PFEwes FPEw,yr PEwng
Al0,7,8] PE;5 PE3'5 PE9'5 PEws PEus PEugs PEngy PEug
A[0,8,5] PE8!5 PE9.5 PE]_o,s PE11,5 PE12,5 PE12,6 PE12,7 PE12|3

Table 4: Tokens A[0,5,5], A[0,6,5], 4[0,7,5], and A[0,8,5] are with the data-dependence vector dy =
(0,4,3)* and will pass through virtual data link 1 between PEg,s and PEy5 at time 13 simultaneocusly.
They cause data collisions in virtual data link 1.




- data collisions in virtual data link 1. O

In the following, we show conditions for a correct mapping. Let H € Z1*? be the time mapping vector
and § € Z7%F be the space mapping matrix, where 1 < ¢ < p. Then the computation indexed by T is
executed at time HJ in PEgr. A correct ¢g-D systolic array algorithm (H, S) that maps a p-nested-loop
algorithm into a ¢-D grid-connected systolic array must preserve data-dependence relations, and the right
tokens must be in the right place at the right time, and in addition, data tokens must not collide in the

data links. We define sign(§) = 1, -1, or 0,if 6 > 0, § < 0, or § = 0, respectively.

Theorem 1 : Suppose that af each time siep, in each virtual data link between two neighboring PEs there
is at most one data token which can flow through. Then, a q-D sysiolic array algorithm (H,S) maps a p-
nested-loop algorithm correctly into a g-D grid-connecied sysiolic array if and only if it satisfies the following

four conditions.

1. Hd; > 0 for each non-zero data-dependence vectior d;.
2.V L, Lel, if; # I, then either HI; £ HI, or Sk # Sh.
9. If Sd; = (sdiy, sdyz, ..., sdig)t # 0, then Hd; = b; E;‘l':l |sdi;|, where b; is a positive integer.

4. Three cases must be true o avoid dota collisions in the data links.

Case 1: /* for type ONE data-dependence vector d;. */
If (1) the date-dependence vector d; is of type ONE,
(2) Sdi = (sdix, sdia, ..., sdig)! # O,
(3) H(Ig - Iz) >0, and -
(4) (L2 — I) = o sign(sdi;) Paj_1 # Oy, where & is a positive integer and 0 < & < [sd;],
then H(I, — L) # be.
Case 2: /* for type INFINITE data-dependence vector d; and Sd; = sdij Paj_y # 0'9. =/
If (1) the date-dependence vector d; is of type INFINITE,
(2) Sdi = sdijPaj—y # 0,
(3) Iy — I # vd; for all integers v,
(4) H(l ~ L) > 0, and
(5) 8{I2 — I) = a sign(sdi;) Py;—1 # 0,, where & is a positive integer,
then H(Iy — ;) # bic.

Case 3: /* for type INFINITE data-dependence vector d; and Sd; = (sdi1, sdia, ..., 8diy)t # (—)‘q. */




If (1) the date-dependence wvector d; is of iype INFINITE,
(2) Sd; = (sdi1, sdiz, ..., sdip)t # Oy,
(3) Sd; # sdij Paj_1, for every j,
(4) Ia — Iy # vd; for all integers v,
(6) H(I; — I;) > 0, and
(6) S(Ir — I1) = BSd; + ar sign(sd;;) Paj—1 # Oy,
where B is @ non-negative integer and —|sdij| < o < |sdyji,
then H(L —0L)#6(BY]_, |sdijl+a). O
Note that, formally, the PEs in the ¢-D systolic array should be numbered from (1,1,...,1) to (pu,
pua, - .., puy), and S should map the indices to {PE1,1,...1): - - -2 PE(puy,pua,...pu,)}. However, it will be

convenient to number the PE’s from min{SI;|]; € I?} to max{S5|f; € I?} in this presentation.

In the following, we describe the theorem instead of giving a formal proof. Condition 1 ensures that
data-dependence relations are preserved according to the original sequential algorithm. Condition 2 insists
that (H, S) is a non-singular mapping. That is, no two indices can be mapped to the same PE at the
same time. Condition 3 specifies that tokens flow through data links at a constant speed. A benefit of this
condition is that we can assign a constant amount of shift registers or data buffers for each of the virsual
data links in each PE so that data streams can flow at a constant speed. Therefore, data congestion can

be avoided. This condition also guarantees that data tokens will flow to the right place at the right time.

Suppose that a variable with the data-dependence vector d; is generated in index I and will be used
next time in index I + d;. Index [ is executed in PEg; at time HI, and the index I + d; will be executed
in PES(f-;-d‘-) at time H(I 4 d;). Suppose that Sd; # [_).q. Then the Manhattan distance between P Egy and
PES(I‘+d,-) is equal to E;?:l jsdij!, because Sd; = (sd;y, sdiz, ..., sdiy)’. Therefore, each token in virtual
data link 7 is delé‘yed by &; = Hd;/ 2?:1 [sdi;| units of time in each PE, where b; must be a positive integer.
Thus, if there are r; non-zero entries of sdi;, where 1 < j < ¢, we require in total b;r; shift registers for

virtuai data link 7 in each PE.

The purpose of Conditibn 4 is to avoid data collisions in the data links. If Sd; = (_J'q, the virtual data link
i is fixed in each PE and tokens with the data-dependence vector d; are stored in local registers (or local
memory). Therefore, in this case, tokens will not collide with each other in virtual data link i. If Sd; # f)-q,
there are three cases for data stream #, depending on the type of the data-dependence vector d; and the

value of Sd;.

Case 1: d; is of type ONE. The active life of each data token, which is with the data-dependence vector

d;, has only Hd; units of time, because a token is generated only once and will be used only once. Therefore,

10




after that token is used, it can be destroyed. Suppose that a token is generated in index [; at time HI;
in PESE and is used in index Ij + d; at time H(I; +d;) in PES(fl-}-d;)' As 8d; = (sdi1, sdia, ..., sdig),
the token starts to flow along the first dimension sd;; PEs in P, direction if sd;; > 0, or —sd;; PEs in P,
direction if sdj; < 0; then, it flows along the second dimension sd;s PEs in P direction if 5dja > 0, or —sdya
PEs in P4 direction if sd;2 < 0; and so on. Data collisions occur only if there are other tokens using part of

the path when the token flows through the path.

For instance, in Figure 2 of Example 4, token A[0,9,5], which is with the data-dependence vector
d1 = (0,4, 3)* of type ONE, is generated in index (0,9,5)! in PEg s, and will be used in index (0,13,8)! in
PE\3g. It may collide with tokens generated in PEs 5, PE7 5, PEsys, PEyos, PE11s, PEi35 PEgg3, PEy4,
PEyg, and PEy 7 which are ma.1:ked by blank circles. This is because all of these tokens will flow through
part of the path from PFEy5 to PEj3g. Similarly, token A[0,15,10], which. is with the data—dependeﬁce
vector dz = (1,0,2) of type ONE, is generated in index (0, 15,10) in PEy; 15, and will be used in index
(1,15,12)" in PE)5,12. It may collide with tokens generated in PEys and PEys 11 Which are marked by

dotted circles.

The constraint in Case 1 of Condition 4 allows us to avoid data collisions. That is, if two distinct indices
are executed in the same horizontal PEs, or in the same vertical PEs, or in the same perpendicular PEs
within a certain distance, and the direction of these two PEs (S(I» — I})) is consistent with one of the
basic directions sign(sd;;)Pa;j—1 of the data path, then the difference of the execution time steps between
these two indices cannot be equal to the time that a token flows from one PE to the other PE along the

interconnection primitive sign(sd;;)Psj-, at speed 1/b;.

-

Case 2: d; }s of type INFINITE and Sd; = sdj; P2;—1. If a token is with a data-dependence vector
of type INFINITE, this token will be generated or used periodically during the computation. Therefore,
throughout the computation, we cannot destroy this token. The data path in which tokens flow through has
only one di;:ection, sign(sd;; }Paj—y. For instance, in Figure 2, B{0,0], which is with the data-dependence
vector dg = (1,3,0)" of type INFINITE, is generated in index (0,0,0)* in PEg o, and will be used again in
all indices (v, 3v,0) in PE3, ¢ for integers v > 0. It may collide with other tokens generated in PE; g for
all # > 0 which are marked by netted circles. Note that if J; — I = yd;, where 4 is an integer, the same

token is generated or used, and therefore, it does not cause any data collision.

We conclude the condition in Case 2 (which is slightly different from the condition in Case 1): if

two distinct indices are executed in the same horizontal PEs, or in the same vertical PEs, or in the same

11




perpendicular PEs without any constraint of the distance between these two execution PEs, and the direction
of these two PEs is consistent with the direction sign(sdi; ) Paj—1 of the data path, then the difference of
the execution time steps between these two indices cannot be equal to the time that a token flows from one

PE to the other PE along the interconnection primitive sign(sd;;)Paj—1 at speed 1/b;.

Case 3: d; is of type INFINITE and Sd; = (sdi1, sdiz, ..., sdig)! # sdij Paj—1 for every j. Similar
to Case 2, if a token is with such a data-dependence vector of type INFINITE, then this token cﬁnnot
be destroyed during the computation. However, unlike Case 2, the data path in which the token flows
through zigzags. For instance, in Figure 2, C|[8,0], which is with the data-dependence vector dg = (0,2, 3y
of type INFINITE, is generated in index (0, 0,4)! in PEq 4, and will be used and generated again in indices
(0,0,4)" + Bd; in PES((0,0,4)*+,6d,-) for 8 > 0. The data path which token CI[8, 0] flows through has a zigzag
pattern. In addition, all tokens generated in the PEs marked by black circles will use part of the path, and

they may cause data collisions.

-

The constrai-nt in Case 3 of Condition 4 states that only the tokens, (which are generated or used in
index I» in PEg; that are loc-ate.d horizontally, vertically, or perpendicularly within a certain distance to
PES( FtBdi)? for # > 0, and the direction of PEgy, and PES( L4840 is consistent with one of the basic
directions sign(sdi;)Paj—1 of the data path), may collide with the token generated or used in index I
in PEg I in virtual data link i. Therefore, the difference of the execution time steps beiween indices I
and I, cannot be equal to the time that a token flows from PEg; to PEg;, along the composite data
path “3>.%_, sdipPan—1” 8 times and then along the interconnection primitive Paj_y or Py; at speed 1/b;
depending on the location of PEgy . _.

’
i

Corollary 2 : If the systolic array algorithm (H,S) satisfies Condition 1 through Condition 3, and the
data-dependence vector d; is of type ONE, and |sdi;| < 1 in Condition 3, then there is no data collision

along the direction sign(sdij)Paj—1 in virtual data link i.

Proof : If |sdi;| < 1 in Condition 3, then there does not exist any positive integer o such that 0 < e <

|sd;j| < 1 in Case 1 of Condition 4. Therefore, Condition 4 is satisfied _automa.tically. a
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4 Synthesizing Grid-Connected Systolic Array Algorithms un-
der a General Model

Condition 4 in the last section is over-restricted. It eliminates some solutions which allow more than one

data token flowing through a specific data link and can be handled by employing a cyclic shuffle of fraveling

010
0 01

of Theorem 1, this is because at each time step three tokens will reach each PE via virtual data link 1 from

tokens. For instance, in Example 4, the mapping H = (1,1,1) and S = ( ) violates Condition 4
south and four tokens will reach each PE via virtual data link 1 from west (left). However, these seven
tokens in effect are sent to seven distinct PEs. The first token from the southern neighboring PE will be
used to perform the iteration loop body; the second and the third tokens from the southern neighboring PE
will be sent to the northern neighboring PE; the fourth token from the western neighboring PE will be sent,
to the northern neighboring PE; and the remaining three tokens from the western neighboring PE will be
sent to the eastern neighboring PE ail via virtual data link 1. Therefore, a feasible sequence of microcodes

in PE(; ;) at time step i+ j + & for handling tokens traveling through virtual data link 1 can be as follows.

[y

. Get a token A[i, § — 4,k — 3] from the southern neighboring PE;
/* Ali, 5 — 4,k — 3] is used to compute the iteration loop body. */
. get a token A[7, j — 4, k — 2] from the southern neighboring PE and then send to the northern neighboring PE;
. get a token A[Z, § — 4,k — 1] from the southern neighboring PE and then send to the northern neighboring PE;
. get a token Al7, j — 4, k] from the western neighboring PE and then send to the northern neighboring PE;
. get a token A[¢, j — 3, k] from the western neighboring PE and then send to the eastern neighboring PE;
. get a token A[f, j ~ 2, k] from the western neighboring PE and then send to the eastern neighboring PE;
. get a token A[Z, 7 — 1, k] from the western neighboring PE and then send to the eastern neighboring PE;
. compute the iteration loop body;
. send a generated token A[4, j, &] which is with data dependence vector d; to the eastern neighboring PE. O

0 00 =1 O O Qo b

)

i
In general, for an arbitrary data stream ¢ which is with data dependence vector d;, the following algorithm

can be used to handle the cyclic shuffle of traveling tokens in virtual data link 4.

Algorithm for shuffling traveling tokens in virtual data link 7 :

Suppose that Sd; = (sdiy, sdia, ..., sdig)’ # 6q. Then the generated microcodes in PEgy at time

step HI for handling virtual data link 7 can be as follows.
Step 0: Starting from index j = q of sd;j, where ¢ > j > 1, and using a decreasing order,

Step 1: /* obtain a token which is used to compute the iteration loop body */

search the first non-zero entry of sdij;




get a token from PESf..sign(Jdij}sz—l.;

Step 2: /* transfer other tokens from PESE_ sign(sdi;)Paj—s *© PESf+sigﬂ(:dgj)};q,-_1 *f

for h = 2 to |sdj;| do
get a token from PEg;

end _for

and then send to PEgj +sign(sd

sign(sdij)Paj-1 =J')P‘2i—1;
Step 3: /* transfer remaining tokens between neighboring PEs */

let last = j and let j = 4 — I;

| while (j > 1) do
if (sd;; # 0) then
get a token from PESI_—sigﬂ(ad.',')ng-x and then send to PESI""-“-Q"(-’d

for h =2 to |sd;;| do

¥ laul)P‘_’lcn—l ;

get a token from PESf—sz'gn(sd.—j)Pg,-_l and then send to PESf+sign(ad

i end _for
i
i

i) Pajoy?

let last = j;

end._if

let i =7—1;

end_while

Step 4: after computing the iteration loop body, send a generated token with data-dependence vector d;

i
to PESf+3i9"(3di tart)Prart—1" D

Using the technique of shuffling traveling tokens, we can generalize Theorem 1 as the following theorem.

Theorem 3 : A ¢-D systolic array algorithm (H,S) maps a p-nested-loop algorithm correctly into a q-D

grid-connected systolic array if and only if il satisfies the following four conditions.

1. Hd; > 0 for each non-zero data-dependence vector d;.
2.Y I, Lel, ifl, # L, then either HI) # HIy or SI) # S.

3. If Sd; = (sdiy, sdia, ..., sdig) # (')'q, then Hd; = b; Z;___l |sdi;], where b; is a positive integer.
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4. [* for type INFINITE data-dependence vector d;. */
If (1) the data-dependence vector d; is of type INFINITE,

(2) Sd;s = (sdiy, sdia, ..., sdig)t # 0,

(3) L — I, # vd: for all integers v,

(4) H(I: - 1) > 0, and

(5) S(I — fl) = 38d;, where § is a positive integer,
then  H(l — ) # bi(8 X0, lodisl).

Proof: in Appendix. (O

Corollary 4 : If the systolic array algorithm (H,S) satisfies Condition 1 through Condition 3, and the
data-dependence vecior d; is of type ONE, and the algorithm for shuffling traveling lokens in virtual data

link i is used, then there is no date collision along virtual data link i.

Proof: Because the data-dependence vector d; is of type ONE, Condition 4 in Theorem 3 is satisfed

automatically,. O

A systolic array algorithm based on Theorem 3, which employs the technique of shuffing traveling
tokens, is more general than a systolic array algorithm based on Theorem 1, which restricts at most one
data token flowing from one PE to a neighboring PE in each virtual data linl at each time step. It is
easy to check that H = (2,1,2) and S = (1, 1,-2) in Example 3 and H = (1,1,1) and 8 = ( g {1] (1) )

in Example 4 are infeasible systolic array algorithms under Theorem 1; however, they are feasible systolic

array algorithms under Theorem 3.

Although systolic array algorithms based on Theorem 3 are more general than systolic array algorithms
based on Theorem 1, the former systolic array algorithms require more shift registers than the latter ones.
Suppose that Sdf = (sd;;, sdia, ..., sdig)t # 5q. A systolic array algorithm based on Theorem 3 requires
bi(33=1 |sdi;|) shift registers in virtual data link 7 in each PE. However, a systolic array algorithm based
on Theorem 1 only requires 4;»; shift registers in virtual data link 7 in each PE, where r; is the number of

non-zero entries of sdj;.

Therefore, when evaluating whether (H, S) is a feasible systolic array algorithm, we first check whether

data dependence vector d; satisfies Theorem 1; if it does not, then we check ':Nhether d; satisfies Theorem 3.

Algorithm for evaluating whether (H, S) is a feasible systolic array implementation :
Step 1: Check Conditions 1 through 3 in Theorem 1;

Step 2: for each data dependence vector d; do Steps 3 through 5:
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Step 3: if d; satisfies Condition 4 of Theorem 1, then as at each time step there is at most one data token
flowing from one PE to a neighboring PE via virtual data link 7, thus, virtual data link ¢ only requires

b;r; shift registers in each PE, where r; is the number of non-zero entries of sdy;;

Step 4: else if d; satisfies Condition 4 of Theorem 3, then because the technique of shuffling traveling

tokens is used, virtual data link { requires b,-(z;:l tsd;;|) shift registers in each PE;

Step 5: else data collisions occur in virtual data link i. O

4.1 Other Properties for Evaluating Feasible Systolic Array Implementations

In general, the four necessary and sufficient conditions in Theorem 3 are exclusive. That is, none of them
can be derived from other conditions. However, under certain constraints, either Condition 2 or Condition
4 would be redundant. In the following, we derive two theorems which allow us to reduce the computation
complexity of evaluating feasible systolic array implementations for some special cases. First, for the special

case when ¢ = p— 1, Condition 4 can be derived from Condition 2.

Theorem 5 : Let g =p—1. A g-D systolic array algorithm (H, 8) from a p-nested-loop algorithm Ag that

satisfies Conditions 1 through 3 maps Ag correctly into a q-D grid-connected systolic array.

Proof : We show that Condition 4 can be derived from Condition 1 through Condition 3. This is because
from Corollary 4, there is no data collision along virtual data link ¢ if the data dependence vector d; is
of type ONE. In the following we only consider the case when d; is a type INFINITE data dependence
vector. We warlt to show that if Sd; # {_)'q, and I; — I} # vd; for all integers 7, and H(L - fl) > 0, and
S(Iy — I,) = BSd; for some positive integer B, then H(y — I1) # b:(8 3.7, Isdij)-

Assume by contradiction thé.t H(I ~ I1) = b(8 Y ], |sdij}). Then, from Condition 3, because Hd; =
b Zg.—_-z lsdi;|, we have H(F; — I) = fHd;. Next, from the assumption, S(I» — 1) = ASd;. Thus, we have
H((I; — ) — Bd;) = 0 and S((f2 — L) — Bdi) = Op—1. That is, ( 1;1 ) (I — I} — Bd;) = Tp.

However, from Condition 2, H and S are non-singular, and in addition, H is of rank 1 and S is of rank
p—1 (beca.use.q = p—1). Therefore, ( I; ) is a basis. As a basis will not map a non-zero vector to a
zero vector, (fg - fl) — Bd; = 6,, must be true. Therefore, I — I; is equal to d;. From the assum;ﬁtion
that gcd(d;l, di2, ..., dip) = 1, where di = (di1, diz, . .., dip)*, it follows that B is an integer. However, this

contradicts our assumption that I —~ I} # vd; for all integers y. O
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Second, if there exists a type INFINITE data dependence vector d; such that Sd; # 6q, then Coendition

2 is implicitly satisfied by Condition 1, Condition 3, and Condition 4.

Lemma 6 : Suppose that (H,S) is o feasible systolic array algorithm which satisfies Theorem 3. Then,
for any type INFINITE deta dependence vector di, if Sdi # 0y, and Io — I) # vd; for all integers v, and
S(I; — I) = BSd; for some positive integer 3, we have H(I; — I,)Sd; # Hd;S(L — Iy).

Proof : Assume by contradiction that H(l» — [;)Sd; = Hd;S(L, — ). H(l — 1) and Hd; are integers,
S(I, — I1) and Sd; are g-tuple vectors. Because 8(Ir ~ ) = 8Sd;, H(I; ~ 1) = BHd; = B(b; 2oi=1 l5dii])
by Condition 3. However, this contradicts Condition 4 that H(l — [;) # 5;(8 Z§=1 [sdi;]). 0O

Theorem 7 : Suppose that (M, S) is a systolic array algorithm. If there exists at least one type INFINITE
data-dependence vector d; such that Sd; # 5q, then Condition 2 s implicitly satisfied by Condition 1
Condition 3, and Condition 4 in Theorem 3.

Proof : We want to show that for any two distinct indexes I and I either HI; # HI, or 8I) # Sh.

Consider two cases:

1. H]; = HI,.
If (I; — I1) = vd; for some integer v, then vHd; = HI, — H], = 0 which contradicts Condition 1.
if (fg - fl) # vd; for all integers -, then because Sd; # (i, and Hd; # 0, from Lemma 6, (-)'.1 =
H(l, — 1)8d; # Hd;S(I, — I) which implies ST, # Sl

-

If (I — flj = yd; for some integer «, then HI, — HI; = vHd; # 0 by Condition 1.

if (I—z—fl) # ;yd; for all iutegeﬁs 7, then because Sd; # 5q and Hd; # 0, from Lemma 6, H(fg—fi)Sd,- #
Hd;S(I; — I;) = 0, which implies HI; # H,. 0O

5 Comparisons with Related Works

As mentioned in Section 1, the problem of finding feasible or optimal mappings for systolic array implemen-
tations has a rich history with a large number of transformations proposed by various researchers. However,
most of them only considered the case when mapping p-nested-loop algorithms into {p — 1)-dimensional sys-

tolic arrays, in addition, they did not consider the cases when data might collide in the data links [4] [7]
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[13]-{17} {19] [23]. In effect, as shown in Theorem 5, when ¢ =p —1, f the non-singularity condition holds,

the condition for avoiding data collision also holds when the algorithm for shuffling traveling tokens is used.

‘However, the condition for avoiding data collision is still necessary, if we restrict at most one data token

flowing from one PE to a neighboring PE in each virtual data link at each time step, such as the case in

Example 4.

In the following, we compare our method with three related works published in the relevant literature.
Lee and Kedem first proposed a set of necessary and sufficient conditions for mapping nested-loop algorithms
into linear systolic arrays [10}. They then generalized their method for mapping nested-loop algorithms into
systolic arrays of arbitrary dimensions [11]. However, their model restricts each virtual data link to have
only one direction. Therefore, the systolic arrays they design may Tequire more physical data links than
ours. Certainly, their design may inecrease the complexity of the hardware and the fabrica.tion cost of the
target systolic arrays. Next, Lee and Kedem’s model only allows at most one data token flowing from one
PE to 2 neighboring PE in each virtual data link at each time si:ep. Therefore, some interesiing systolic
array algorithms which can be handled by shuffting traveling tokens are eliminated by their constraints,

such as the systolic array algorithm in Example 3.

Recently, Shang and Fortes [22] presented conditions for the space-time mapping. However, under our
systolic array model, their methods are not sufficient to avoid data collisions in the data links. Shang and

Fortes proposed conditions for mapping p-nested-loop algorithms into ¢-D systolic arrays, where 1 £ ¢4 <

. p—1. However, as we will show in Example 5, the linear array implementation for the matrix multiplication

they derived will generate data colisions in the data links.
}’
Example 5: Consider the 3-nested-loop matrix multiplication algerithm in Example 1 in Section 2. The

linear systolic array implementation, where the time mapping H = (1,2,2) and the space mapping S =
(1,1,—1) for the problem size n =3 are derived by [22], will generate data collisions in data link 2. This is

because H and S do not satisly Condition 4 in either Theorem 1 or Theorem 3.

In Figure 3, Bk, jl, which are with the data-dependence vector dp = (1,0,0)° of type INFINITE, are
input variables for 0 < j, k<3, and therefore, B[k, j] cannot be destroyed during the computation. We
now examine the behavior of two tokens B[0,3] and B{1,0]. B0, 3] is first used in index I = (0,3,0)
in PE; at time step 6; B{1,0] is first used in index I; = (0,0,1)" in PEy at time step 2. It is true
that I — I = (0,3,~1)! # vdz for all integers 7, Sdy = 1, by = 1, and S(2 — 1)) = 4 = o; however,

H(fg -I)=4=bo violates the constraint at Case 2 of Condition 4 in Theorem 1, or the constraint of
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Condition 4 in Theorem 3. Therefore, B[0, 3] must collide with B[1, 0] in virtual data link 2.

This is because B(0, 3] is an input token, and B[0, 3] enters into the linear array from PE_3. As Sdy = 1
and bs = Hd,/8dy = 1, there is only one shift register in virtual data link 2 in each PE. In addition, B[0, 3]
is delayed by only one unit of time in each PE. Therefore, if B[0, 3] is used in PE3 at time step 6, it is in
PE> at time step 5, in PE) at time step 4, in PE; at time step 3, and in PE_; at time step 2. However,
at these times, B[1,0] also passes through virtual data link 2, and therefore, B[0,3] collides with B[1, 0].
Similarly, B[1, 3] collides with B(2,0], and B[2, 3] collides with B([3,0] in virtual data link 2. [0

Example 6: Consider the 3-nested-loop algorithm in Example 2 in Section 2. Then, the linear array
implementation H = (1,2,2) and S = (1,1, —1) for the problem size n = 3 is feasible. This is because H
and 8 satisfy Conditions 1 through 3 of Theorem 1; all of the non-zero data-dependence vectors dy, ds, and
ds are of type ONE; and in addition, Sdy = 1, Sda = 1, and Sd; = —1. Thus, from Corollary 2 or from

Corollary 4, there is no data collision in virtual data links 1, 2, and 3. [

We have shown two examples in this section which illustrate that our necessary and sufficient conditions
are superior to the ones proposed by Shang and Fortes [22). In effect, the semantic meaning of the 3-nested-
loop matrix multiplication algorithm in Example 1 is different from that of the 3-nested-loop algorithm in
Example 2. In the former case, all data dependence vectors are of type INFINITE. Therefore, if Sd; # [_)'q,
input data tokens can be pipelined entering into the systolic arrays, output data tokens can be pipelined
extracted from the systolic arrays, the I/O time can be overlaid by the computation time, and in addition,
each processing element can contain only a constant number of shift registers for data link 7. On the other
hand, in the latter case, all data dependence vectors are of type ZERO and of type ONE. Therefore, input
data tokens with' data dependence vectors of type ZERO must be loaded into the systolic arrays before
the computation‘, and output data tokens with data dependence vectors of type ZERO must be unloaded
from the systolic array after the computation. The I/0 time and the computation time cannot be overlaid;
moreover, each processing element must contain a sufficiently large local memory for storing data tokens

with data dependence vectors of type ZERO.

The conditions proposed by Shang and Fortes can only deal with algorithms whose data-dependence
vectors are all of type ONE or of type ZERO. Therefore, their method, in general, is not sufficient to deal

with algorithms which include data-dependence vectors of type INFINITE, such as the matrix-multiplication

algorithm.

Ganapathy and Wah [6], who based their work on Li and Wah’s method [12], proposed the parameter-
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Figure 4: The relations among variant solution space.

based approach to map p-dimensional uniform recurrences to any ¢-dimensional processor arrays, where
g < p As mentioned in Section 1, in their model, tokens flowing through systolic arrays cannot change
directions as the case in [11]. In addition, their model does not classify the tokens’ behavior. And finally,
their method can only deal with algorithms whose data dependence vectors ‘are all of type INFINITE; they
do ot consider algorithms whose data dependence vectors are a.il of type ZERO and of type ONE such
as the 3-nested-loop algorithm In Example 2. However, they provided certain conditions for dealing with

shift-varying algorithms such as the reindexed transitive closure algorithm (8l

In Fig. 4, we show the relations among variant solution space based on published results by'tee and
Kedem [10] {11], Shang and Fortes [22], Ganapathy and Wah 6], and our two models: Theorem 1 and
Theorern 3. Note that, although the solution space by Shang and Fortes covers all other solut.idﬁ space,
their feasible systolic array implementations may incur data collisions in data links. Unlike them, feasible

systolic array implementations in all other solution space are collision-free.
f .
6 Conclusions and Future ‘Works

We have presented in this paper two sets of necessary and sufficient conditions for mapping nested-loop
algorithms with shift-invariant uniform-dependence relations into grid-connected systolic arrays of arbitrary
dimensions without data collisions in the data links. The first set of conditions is under the constraint that
at each time step, in each virtual data link between two neighboring PEs there is at most one data token
which can pass through. The second set of conditions is under a general model in which a cyclic shuffling
algorithm is used to handle traveling tokens, and therefore, more than one data token is allowed to flow
from one PE to a neighboring PE at each time step. These two sets of conditions, which are based on the

ZERO-ONE-INFINITE classification of tokens’ behavior, can be used to generate all feasible grid-connected
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systolic array implementations. In addition, when the size of the problem to be solved grows and the size of
the provided systolic array is less than the size which a space mapping needs, then the partition method due
to Moldovan and Fortes can be used to handle this case [15]. However, although systolic array algorithms
based on the second set of conditions are more general than systolic array algorithms based on the first set

of conditions, the formal systolic array algorithms require more shift registers than the latter ones.

The future research works will include two directions. First, it would be interesting to find optimal
systolic array implementations when provided some performance criteria. Although an ad-hoc method also
can find optimal systolic array implementations, it may use a lot of computation time. Therefore, fast
algorithms or heuristic algorithins for finding optimal systolic array implementations for a class of nested
loop algorithms may be of interest. Second, it would be interesting to extend our method to deal with shift-
varying uniform-dependence algorithms. Although our conditions are sufficient for mapping shift-varying
uniform-dependence algorithms into systolic arrays, the conditions are over-restricted, because some loop
iterations really do not have certain dependence relations. We may consider the specific indices where
dependence relations are variant. However, as different shift-varying algorithms may contain different sets
of indices whose dependence relations are variant, therefore, the problem of how to deal with general shift-

varying algorithms is still an open question. -
Appendix

Theorem 8 : A g-D systolic array algorithm (H, S) that maps correcily a p-nested-loop algorithm into a

g-D grid-connected systolic array must satisfy Conditions 1 through 4.

-

Proof: Conditioh 1 follows from Lamport’s result [9]. Condition 2 is related to the non-singularity condition
of Lee and Kedem [11], Moldovan and Fortes [15], and others. We now show that Condition 3 is necessary.
From the restriction of systolic arrays, tokens must flow through data links at a constant speed. Suppose
that a variable with the data-dependence vector d; is generated in index I and will be used next time in
index I+ d;. Index I is executed in PEgy at, time HI, and the index T+ d; will be executed in PEgr, 4.+
at time H(I 4-d;). Suppose that Sd; # 0,. Then the Manhattan distance from PEgyto PEgr 4, is equal
to Z;*.':l |sdi; |, because Sd; = (sd;y, sdia, ..., sdiy)'. Therefore, each token in virtual data link 7 is delayed

by b; = Hd;/ 371_, |sdi;| units of time in each PE, where b; must be a positive integer.

We now show that Condition 4 is necessary. Let z; and z; be two tokens of the variable X corresponding

to d; that is of type INFINITE, such that z, is the token generated in I} and z» is the token generated
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in Jo. Then, z, is in PESF; at time HI;, 2, is in PEg; at time H/ls, and they cannot be destroyed
during the computation. Since Iy — I; # vd; for all integers v, from Lemma 7 in [10], 21 # r2.! Since
S(I—11) = #8d; # 0y, BT1_, |sdi;| is the Manhattan distance from PEgy to PEg;, along the composite

interconnection primitives “)_7_, sdi; Paj 1" 8 times.

Since H(l» — [;) > 0, H]; < H7T,. Let ¢ be the index such that z, is in PFE, at time HI,. Then, from
Condition 3, and the assumption Sd; = 37 _; sdij Poj-1 # 0q, H(I2 — I;) = b; x (the Manhattan distance

from PEgy, to PE, along the composite interconnection primitives Sioy sdij Paj—1).

Assume by contradiction that H(f — L) = bi(83.7_; |sdi;|). Then, the Manhattan distance from
PEg; to PE. along the composite interconnection primitives 38y sdi; Pojy is equal to 8371, |sdj| (the
Manhattan distance from PEgy to PEg;, along the composite interconnection primitives z;?:l sd;; ng_l).
We have ¢ = SI,. Thus, the tokens z; and z, both use virtual data link 7, and appear in PEgjy, at time
HI,. And in additioﬁ, because 2 is a positi{re integer, even if we apply the algorithm for shuffling traveling
tokens in virtual data link 7, tokens z; and 22 both mist be handled by the first step of the algorithm. This
is a “data collision”, which is not allowed. Therefore, H(I2 — 1) # b:(8 iy lsdi;)). DO |

Theorem 9 : A g-D systolic array algorithm (H, S) from a p-nested-loop algorithm Ag that satisfies Con-

ditions 1 through 4 maps Ag correctly into a q-D grid-connected systolic array.

Proof: First, from Condition 1, H preserves the data-dependence ordering.

Second, we will show that the “needed” tokens will flow to the right place at the right time. Since all the
statements in Fq, can be handled in the same way, in the following we only consider a single representative
statement. Such statément can be rewritten so that it has m variables and each variable corresponds to a
data-dependence vector, this is because the p-nested-loop algorithm has m data-dependence vectors. Let
the single statement be F'Ag(pl,vg, .+.yUm), Where ﬁ'Ag is a statement in Fa, and v, which is with the
data-dependence vector d; and was generated in I (f, € IP), is an entry of variable ;. For simplicity, we
assume that only one time unit is needed to execute the loop body. We now show by induction on HI that
all tokens v; arriving at PEgy at time HI will have correct values.

Basic step: HI = min{HI;|I; € I?}. All tokens v; are initial input/output tokens (variables). From
Condition 3 and the.assumption that every variable enters into the systolic array at a correct time, vj,

which flows through virtual data link ¢, will reach PEgy at time HI. Thus, the systolic array algorithm

1Lemma 7 in {10]: Let ; and x2 be tokens of variable X in the data stream corresponding to d; that is of type INFINITE.
Let x; be used in some index [y and let z2 be used in some index L. Then, z1 # z2 if and only if I — I; is not an integer
multiple of d;.
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performs the same function as F‘Ag in I

Induction step: HI > min{HI,|]; € I?}. From the definition of the data-dependence vectors we have
I=h+di=h+di=...=In+dm, (1)

for appropriate I, Io, ..., I,. By induction, v was regenerated with the correct value in PESI.- at time
HI;. However, v; was not used (and was not modified) during the time instances HI; + 1, Hf, +2, ...,
H(I; + d;) — 1. Then from Condition 3, v;, which flows through virtual data link i, will reach PFEg F+Sd,
at time HI; + Hd;. But from (1), SI = S(I; + d;) and HI = H(f, + di). Therefore, all of the tokens
V1,%2,...,Vm arriving at PEgy at time HI will have correct values. The systolic array algorithm will thus

perform the same function as Fa, in 1.

Third, we will show that no two tokens (variables) collide in any data link. If Sd; = 69, the virtual data
link ¢ is fixed in each PE and tokens with the data-dependence vector d; are stored in local registers (or
local memor'y)'. Therefore, In this case, tokens will not collide with each other in virtual data link 7. In the
following we consider the case when Sai’,- # 5g. Assume by countradiction that virtual data link { has two
distinet tokens z, and z9 of the variable X that collide in PE, during the execution. (Thus, of course, d; is
with X.} Suppose that z; was just generated in index I; in PEgy at time HI; and z; was just generated
in index I in PEg 7, ab time H,. (If 21 or 2y was not generated before, then z, is then immediately used

in index I, or z is then immediately used in index I,.) Consider two cases:

1. HI} = HDE.
Our assumption is that at time instance HI; = HI, z; is in PEg I3 and z3 isin PEg I and then at
some time instance z; and z, collide in PE,. However, since all tokens of data stream # flow through

virbual data link ¢ at the same speed, we have PEg r, = PEgjy, which contradicts Condition 2.

2. HI # HE.
Without loss of generality, Hfl < HI;. Since z; and z, flow at the same speed, z, flowing from
PEg 7, at time HI; will reach PE, at some time instance ¢ and z2 flowing from PEg I, &t time HI
will reach PE, at the time instance t. Therefore, z; will reach PEgy, at time HI,. As all tokens flow

with non-zero velocity, SI) # SI. Consider two subcases:

2(a). I, — I} = vd; for some integer v.

Consider two cases:

i. d; is a type ONE data-dependence vector.

23




Since z; is generated in I, z1 is only used in I, + d;. However, since z; is generated in PEgy,
and I £ I, and Jo — I = vd; for some integer v, we have In = [ +d; and PE, = PESTQ' From
the definition of type ONE data-dependence vector, z) will not be used again after it is used in
5. Therefore, when x5 is generated in PEg (Fotd) = PEgy,, &1 is destroyed. Thus, no collisions

will occur.

ii. d; is a type INFINITE data-dependence vector.

From Lemma 7 in [10], #; = 2. However, this contradicts our assumption that z; # z.

2(b). I, — I # vd; for all integers 7.

Consider two cases:

i. 8(I» — I;) = BSd; for some integer §.
Sincé SI, # SI, and Sd; # 6q, 8 is non-zero. Suppose that 3 is a negative integer. Because
our assumption is that HI; < HI,, thus at time instance HI., the Manhattan distance between
tokens z; and z; is at least ﬁE;?:l |sdi;|. However, this contradicts our derivation result that

z1 will reach PEgy at time HIs.

Suppose that 8 is a positive integer. Consider two subcases:

i(a). d; is a type ONE data-dependence vector.
Since d; is a type ONE data-dependence vector, token 1, which is generated in PEgy, , can be
destroyed after it is used in PEgr 14- On the other hand, token 23 is generated in PEg 7, 144,
and is used in PES(f1+(ﬁ+1_1d;)’ where § > 1. Therefore, tokens z, and 23, which flow through

diﬂel;ent PEs, will not collide with each other in virtual data link <.

i(b). d; is a type INFINITE data-dependence vector.
Because d; is a type INFINITE data-dependence vector, tokens z; and z. cannot be destroyed
during the execution. Since 2, is in PEg n at time HJI; and is in PEST, at time HIa, and

therefore, H(ly — 1) = b:(8 27, lsdi;}). However, this contradicts Condition 4.

ii. S(I. — I) # BSd; for all integers B.

Although both 2y and z5 may be in the same PE at the same time, we can apply the algorithm for

shuffling traveling tokens. Then, tokens z; and 2 are handled at different steps of the algorithm. .

Thus, tokens z; and z2 will not collide with each other in virtual data link <.

We conclude that (¥, S) can be performed in parallel. 0
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Figure 1: In Example 3, the PE and the space-time.mapping during the computation with H = (2,1,2)
and S = (1,1,~2) for the matrix multiplication. Note that C03 collides with C20 and C'13 collides with
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Figure 3: In Example 5, the PE and the space-time mapping during the infeasible computation with

H = (12,2) and S

(1,1,-1) for the matrix multiplication. Note that B03 collides with B10, B13

collides with B20, and B23 collides with B30 in the virtual data link 2.




