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Abstract

Depth perception is a very important task for recovering three dimensional geom-
etry of the scenes. Pentland and other researchers had proposed several algorithms
for estimating depth by measuring the amount of defocus (blurring), caused by inexact
focusing. These algorithms could avoid correspondence problem, which had beenrec-
ognized as the most difficult problem in stereo vision. To estimate the depth of the
scenes from the amount of blurring, it is necessary to have knowledge about certain
intrinsic camera parameters, e.g., focal length, distance between image plane and lens
center, and aperture diameter, etc, which are difficult to be measured accurately.
Here, we propose a new method for estimating the depth map of the scenes without
measuring explicitly intringic parameters mentioned above. Instea-d, these parameters
are composed into two composite parameters which can be calibrated easily. Once
the composite camera parameters are calibrated off-line, the results can then be used
for the frequency-domain approach (e.g. by Subbarao [6]) and the image—domain ap-
proach (e.g. by Hwang [8]) to obtain the depth of the scene. Experiments with real
images show that these methods lead to good depth recovery.
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CHAPTER ONE
Introduction

1.1 Introduction

In the category of computer vision, depth perception is a very important task

for enabling a mobile robot system to understand the three-dimensional relationship
of the world space objects. There are many different methods to solve the depth per-
ception problem , e.g. stereo and shape from shading. Different methods have differ-
ent constraints and assumptions. Most of the research for recovering the scene geom-
~ etry isbased on a pin-hole camera model (e.g. : Ballard and Brown, 1982; Rosenfeld
.and Kak , 1982; Horn, 1986). But practical camera systems, including the human eyes,
are not pin-hole camera but consist of convex lens. Pentland [4] had derived an algo-
rithm to recover depths of the scene from defocused images (that is, objects in image
are not in focus) based on convex lens model. He noticed the fact that most biological
lens systems are exactly focused at only one distance along each radius from the lens
into the scene; as the distance between the imaged point and the surface of exact focus
increases or decreases, the imaged objécts become progressively more defocused,
and it was feasible tc; find the depth at given point in- the scene by measuring the
amount of blurring at the point in the image. Some researchers have used this phe-
nomenon to derive several algorithms for recovering depth informations. We collec-

tively call these techniques depth-from-defocus.

The depth along a given direction can also be obtained by some active ranging
devices such as a sonar and laser range finder. In these methods the scene is scanned
sequentially along different viewing directions to obtain a complete depth-map. In
comparison with active ranging techniques, depth-from~-defocus can obtain the depth

map of the entire scene at once, irrespective of whether any part of the image is in




focus or not, and the depth~map recovery process is parallel and involves only simple
local computations. In comparison with some shape recovery processes such as stereo
vision and motion analysis, depth—-from-defocus are direct in the sense that three-di-
mensional scene geometry is recovered directly from intensity images of the scene and

the correspondence problem does not arise.

To estimate the depth of the scenes by depth-from—defocus, it is necessary to
measure blurring parameter and camera intrinsic parameters; however, intrinsic pa-
rameters are difficult to be measured accurately. Here, we propose a new method for
estimating' the depth of the scenes without measuring these parameters directly.
Instead, these parameters are composed into two composite parameters which can be
calibrated easily. Once these parameters are calibrated, the results can then be used
for the frequency-domain approach (e.g. by subbarao [6]) and the image domain ap-
" proach (e.g. by Hwang [8]). The combined methods could lead to a good depth recov-

ery according to real experiments.

Depth-from-defocus is very different from the autofocusing technique.
Autofocusing technique search for the lens setting that gives the best focus at a particu-
lar point and use the lens setting to recover depth at this particular point in the scene.
The limitations of autofocusing method are that it estimates depth at only one point at
a time and it requires to change the lens setting in order to search for the setting that
yields the best focused image. In general, autofocusing method requires taking ten or
gven more images to'es'timate the depth at one point in the scene, while depth-from-
defocus method can estimate the depth of the whole scene by taking only two

defocused images.



1.2 Mathematical model for Depth-from-defocus

A camera system can be thought of as a thin lens model. For a thin lens, as
shown in figure 1-1, we can obtain the following two equations according to the well~

known lens formula.
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where up, D are the distance between lens and the point source P2, P1, respectively ;
v is the distance between the lens and image plane, r isthe radius of the lens, and F

is the focal length of the lens; v is the distance between the lens and the position at

which P1 will focus.
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Figure 1-1: Geometry of Imaging




From the geometry of the Figure 1-1, we obtain

d

tanf = _ = 3
vV vV
Using equations (1), (2) and (3), we can obtain
Frvg
D=———"— > 4
wg-F(r + d) D= u @
Equation (4) can be rewritten as
F Vi
D= —F—— D= 5
o F—2d up ()
where f = % is the f~-number of the lens. If D < up, we can derive
Fro D < ug ©)

D= —rnm——
vo-F + 2df

The point P1 is not in focus so that it gives rise to a circular image called blur circle on
the image plane. According to geometric optics, the indensity within the blurred circle
is approximately constant and can be thought of as the point spread function A1(x,y)

y
i

P 2
MGy) = 1z TETY ST ™
0 otherwise

where I J h1(x,y) dxdy = 1. But due to diffraction, aberration effects and other

nomnideal conditions, the point spread function will not be of the form of equation (7) ;
the net effect is almost certainly best described by a two dimensional Gaussian func-

tion with a spatial constant o [1][4] (we call o the blurring parameter), i.e.,
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where 72 = 2 + y* . We assume thatkisthe proportionality constant between d and o, |

that is,

d = ko )

The actual value of k depends on the characteristic of a given camera and is deter-
mined by an appropriate calibration procedure. Equations (5), (6), therefore, can be

rewritten as

Fvy
D=—-2 _ D=y
vo- F - 2kaf (10)
vo— F + 2kof “o

We also assume defocusing process to be a linear shift-invariant process (Rosenfled
and Kak, 1982); therefore, a blurred (defocused) image acquired by this camera sys-
tem can be thought of as the result of convolving a focused image with a point spread

function. Let E(x,y) be a defocused local image patch. It can be expressed as

E(x.y) = G(r,0) ® Eox.y) (11)

-

where Eglx,y)is the corresponding focused image patch, G(r, 0) is the point spread
function which represents defocus operator, ® represents the convolution operator.
From equation (11), we see that the blurring parametero is covered in the defo-
cused E(x,y) . If we find the value ¢ from E(x,y) and measure the intrinsic parameter
F vy, f and k of the camera and then substitute these values into equation (10), we
can obtain the distance D between lens and the part of séene corresponding to the
image patch E(x,y) . Notice that the volumes of both#1(x,y) and G(r, 0) can be shown

to be unity (The volume of the point spread function of a non-absorbing lens is unity

irrespective of the form of point spread function).




1.3 Previous Work

Pentland [4] was perhaps the first researcher to investigate depth recovery
from the defocused images. Pentland assumed point spread function to be a two di-
mensional Gaussian function and proposed two methods for finding the depth-map of
ascene. The first method was based on measuring the blurring of edges which are step
discontinuities of intensity in the focused image. This method requires the knowledge
of locations and magnitudes of step edges in the focused image. This information is
rarely available in practical situations. As far as arbitrary scenes are concerned, Pent-
land proposed the second method which was based on comparing two different de-
grees of defocus of images caused by different known aperture diameter settings. He
employed the Fourier transform to estimate the blurring circle radius in his mathemat-
ical derivation, but he simplified his algorithm by using Laplacian of Gaussian filter to

estimate local high frequency contents in his implementation. He also assumed that
value k of equation (10) is constant 1, but it may not be the value for the practical

camera systems. Therefore he could only get very rough depth estimates.

Subbarao [6] proposed a general algorithm for depth recovery using defo-
cused information. The general algorithm was based on changing camera focal length,
- apernf're diameter and the distance between image plane and lens,then measuring the
blurring parameter to estimate depth of the scene. Pentland’s method can be thought
of as the special case of Subbarao’s method. But Subbarao could not measure the
distance between image plane and lens in his camera system, he didn’t provide actual

experiment results .

These methods mentioned above are based on the Fourier domain analysis of
an image. Hwang [8] derived an algorithm based on the spatial domain analysis. He
proposed a two—phase algorithm where the point spread function is also modeled as a

two dimensional Gaussian point spread function. In the first phase, a camera system



parameter k of equation (10), is calibrated. In the second phase, depth was estimated
by analyzing and comparing two image of the same scene but with a different amount
of defocus caused by changing the distance between image and lens. The algorithm

gives only relatively poor depth estimates.

These methods mentioned above must first estimate blurring parameter o
and intrinsic camera parameters f, F, vpand &, and then find depth of the scenes
using equation (10). However, it is difficult to measure these intrinsic camera param-
eters accurately. Here, we proposed a new method for estimating the depth map of
scene without measuring explicitly intrinsic parameters f, F, voand k. Experiments
with real images show that our method leads to a good depth-map recovery of the
scene. Lai [14] also use similar calibration technique to avoid direct mearsuring of
intrinsic camera parameters. But, in their method, the objects projecting to image

must be of step edges. The condition is rarely met in practical situations.




CHAPTER TWO

Depth—from-Defocus Using frequency-domain and
Image—domain approaches

2.1 Introduction
Assume that a defocused local image patch E(x,y) is projected from a local

portion of the scene with a constant depth, it can be expressed as
1 x? + y?
Eix,y) = —sexp| -——— Eqx, 12
x,y) Y xp( 202 )® 0lx,y) (12)

where Ey(x,y)is the corresponding focused image patch, Eﬂ%ﬁexp(—xz%) is a
point spread function, o is the blurring parameter satisfying equation (10). The new
method consists of two phases, the calibration phase and the depth-recovery phase.
The first phase calibrate composite camera parameters by analyzing a simple known
picture at different camera settings. In the second phase, the depth recovery is mainly
based dn both Subbarao’s frequency-domain approach[6] and Hwang's image—db—
main approach[8]. Once we have determined thesg parameters off-line, we can then

start to recover the depth map of arbitrary scenes.

2.2 Composite parameters calibration for Depth-from-Defocus

Considering only the case D = ug, we can express equation (10) as

a

D=—_
b-o

(13)

L =]




where a =—F10— b=v0_F

2Kf 2f

Suppose the values of ¢ and b can be calibrated in advance, the depth D can be com-

puted using equation (13) after o is determined from the defocused image.
To calibrate the composite camera parameters @ and b , we first rearrange
equation (13) to
Db-a = Do

For a fixed camera setting (i.e., fixed a and b ), we can measure the blurring parame-

ter o;, i = 1,...,N, corresponding to different distance D; by placing, at different

D; ,- a piece of paper having a sharp black~to-white transition shown in Figure 2~1.

That is,
Dp-a = Di; i=1.. N
The matrix form of the above equation is
. Dy -1 Do
Dy -1 b Dyos
A R | N e
Dy -1 Dyon
This equation can be denoted by
Ax =B (14)
D1 -1 D]_Ul
D, -1 Doy b
where A = , B= ] L x=]
Dy -1 Dp,.rO‘N
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We can solve equation (14) by using pseudo inverse of A4, that is,

x = (ATA)4TB
For different camera settings (changing the distance vy between image plane and lens
center), we can determine the corresponding parameters ¢ and b by the same cali-

bration procedure.

The blurring parameter o;’s corresponding to different D;'s can be mea-

sured as follows. Suppose the vertical transition between the black region and the

white region is at xg. Under proper lighting conditions, the ideal projected image

(being in focus) is

g1, if x < Xp

EO(x’y) =
g, if x=x

By equation (12), the defocused image E(x,y) can be shown to be

‘ calibration plate at distance D

camera

R

black

white

D >

F 3

Figure 2-1: Calibration Setup
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E(x.y) = glN( (G 0)) +3N((x ng)) (15)

o
w27

Ideally, the blurring parameter ¢ canbe determined easily by equation (15) if g1, g2,

where N(x) is the standard Gaussian distribution function J d;

and x ~xg are known. In practice, the true edge location xq is not known, and we can
estimate it by finding the position of the maximum first directive along x-direction.
Since the observed intensity data E(x,y) always contains noise, we must use some

techniques to get a better estimate of .

Consider only one scan line of the image, we can rewrite equation (15) as

Be) = g1+ NE2) Ga-g) (16)

Assume that x; and & are the x-coordinates of the correct and estimated transition
(edge) positions, respectively. On the left side of estimated edge location (%o, y), we
select M points {(x1,y), ..., ®my)} asshown in figure 2-2. If X is the true edge

location, we can solve the following equation for the blurring parameter & :

) (&2-£1)

However, the true xg may not equal to X5. For the true xg, the true blurring

) “(g2-81)

Ekxi,y) =g +N (

parameter ¢; can be solved by

E(x,y) =g +N (

12




From the two equations mentioned above, we can obtain

Xj—X Xj-Xx
T2 =2 =y (17)
K o;

On the right side of -the estimated edge location (f5,y), we also select M points
{G1',y), o, (ar,y) } which are the mirror points of {(x1,y), ... , (tar,y) } with

respect to %y as shown in figure 2-2. Similarly, we have

Ex',y) =g +N(%@) "(g2-81)

Ex',y)=g +N ((x—f&_x—(])) "(g2-81)

t

From the two equations mentioned above, we can obtain

Xj' —fg _ x_;' -Xp

= = zf 18
& o zf . ( )
Combine equations (17) and (18), we have |z;| = | | = g ;xo, and then
!
/ lz;] + |z | = b -5
] j o

Finally, the true blurring parameter can be calculated by

" —x;]

T |zl + |z’

(19)

We can take the average of it over the selected points in order to obtaining a better

estimate of the blurring parameter, that is,

1 |xj—xj'|
g = - —' 20
M}=1Z"M ]Zjl + sz l ( )

13



where x;, j = 1...M are the points along x-direction near the black-and-white tran-

sition. By repeatedly compute equation (20) on each scan line and taking the average

over them, we can obtain an accurate blurring parameter o.

Eqfx,y)
A
(a)
o
' ‘l [ ]
: T
N R > x
X x XM ' X ox
Figure 2-2: A step edge (a), and its defocused intensity )
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2.3 Depth-from-Defocus using the frequency-domain approach

Let E(x,y) be a small defocused patch on the image. Fy(x,y)is the corre-

sponding focused patch on the image. From equation (11), we obtain

E(x,y) = G(x,y;0) @ Eglx,y) (21)

where ¢ is assumed to be a constant over the small patch. Notice that because differ-
ent patches in the image result from different local portions of the scene may be of

different depths, the parameter o’s of different image patches is usually different.

Now, we take two images I1(x,y) and I2(x,y) of the same scene with different
focus by adjusting two camera settings to composite camera parameter (al, bl) and

(a2, b2), respectively. For the corresponding image patches Ej(x,y) on Ii{x,y) and

Es(x,y) on Ixx,y), we can write down the following two equations :

Eix,y) = Glx,y; 01) ® Eglx,y) (22)

Exx,y) = G(x,y; 02 ® Eqfx,y) (23)
where Eg(x,y) is the exactly focused image patch of Ej(x,y) and Eafx,y).

Taking Fourier transform on two equations (22) and (23), we obtain

Eiw102) = ¢4 Ey(w,0,) @4
Ex(w10) = e130t+6) Eg(w,0,) @5)

where Ei(wy, w2), Ex(w1, wz) and Eg(w1, w2) are the Fourier transform of Ei(x,y),

Es(x,y) and Ey(x,y), respectively; w1, w2 are spatial frequencies in radius per unit

distance. The Fourier transform of G(x,y;0) is 27 @i+od,

15



Divide equation (24) by equation (25), we get

Ey(01,02) _  Ya3-ciXei+od
2 =g 2 2 71 1 26
Efw1,02) 26)

Taking the logrithm on either side of equation (26) and rearranging its terms, we have

_ 2 Eq(w1,02)
ki (0F + o)) m( Ez(wl,wz)) @n

From equation (27) (refer to Subbarao[6]), we can calculate % - 07 from the observed
images. Because 03,0, are constants, the right hand side of equation (27) is ideally

independent of frequency variable @1, wz and we assume it to be C. That s,

G-t = C | (28)

The discrete formulation of the right hand side of equation (27) is

_ 2 Fii)) \ _ [Ny 2 2 Fi.))
TS m(*“z@'sf)) (%) (é)z*(f)zm(Fz(i,f)) )

Vi, j=1.N

where the size of the FFT is N by N; F1(i.)) and Fa(i,j) are the magnitudes of the

FFT’s of E1(x,y) and Eax,y); Tx, T, are sampling intervals in the x, y directions,

Tx

respectively; ¢ is the ratio T
y

From equation (13) , we know that

Db1-

o = _—1]—)—“1 (30)

gy = Dng,D—az (31)
16




Substituting equations (30) and (31) into equation (28), and rearranging it, we can

obtain a quadratic equation

D¥p3-b3-C) + 2D(ah1-aby) +di-a2 =0

The roots of this equation are

D= axp-aib; + ‘/(a1b2—azbl)2 + C@3-ad)
(b3-b1-0)

(32)

One of the roots is close to F, the focal length. The other one is. the depth of the

scene that produces the image patch E1{x,y) and Esx,y).

2.4 Depth-from-Defocus using the image-domain approach
Subbarao use Fourier transform to compute depth from defocus. T. L. Hwang

proposed a differential approach in the spatial domain. Let E{x,y) be a small proj-

ected patch centered at (xpyp) . Again we know that

-

’ Efx,y) = Gx.y;0) @ Eqlx.y) (33)

In typical imaging system, the F is fixed whereas the vy and f can be changed by turn-

ing the respective rings on the camera lens. Hwang fixed f in the camera system, and
vg was the only changeable parameter. He took derivatives with respect to vp on both

sides of equation (33) and get

dE(.y) _ o do

2 .
W, e VeGix,y; 0) @ Eglx,y) (34)

17



In our approach, we take derivatives with respect to b on both sides of equation (33)

dE(x, d
—éi%)- = cr:i;—r V2G(x,y; 0) @ Eolx.y) (35)

Taking V2 on both side of equation (33) and then divide equation (35) by itat (xoyo) if

V2E(xgyo) is not zero, we get

oy0) = e _ 02 VI{GG,y;0) ® Eoy)]
Y0) = VZE(x,y) (ey)=Croxo) VZ{G(x,y; 0)® Eo(x,y)] (xy)=Goo)
do
= g— 36
o (36)
-a Yo F2
From equation (13), we have ¢ = and a = F % = bF + % and hence
D-Fp-£ '
do_d|O-Po-9)| D-F
ab db| D D
Thus
Ufig _Db-a « D-F
! db D D
do D% -DQF + a) + aF
= = 37
T D? 47

By equating #(xg,yo) and right hand side of (37), we can obtain a quadratic equation
Db -1)-D@F + a) + aF =0

The roots of this equation are

_ (F + a)* £ [(F + a)*- 4@ -1)aF 38)
2(b-1)

18




Suppose we have two image patches Ei(x,y) and Ea(x,y) obtained from the

same scene but with a small different amount of defocus caused by changing the cam-

era settings (different system parameters a, b). Equaﬁon (36) can be approximated by

Ex(xoyo-E{xoys)

t(x0,yq) = brby (39)
%(VzEl(xo,Jm) + VzEz(xoyo))

The larger V2E1(xqyo) and V2Ex(xoyo) are, the more textured the image patch would
be, and the more reliable the recovered depth map would be. Substituting £(xp, yp) in
equation (39) into equation (38), we can obtain the depth of the scene at point (xq,yg) ,

where g = 0.5'(:11 + az), b= 0.5( + by).

The two roots in equation (38) are positive if ¢ is within a finite interval (- By, Bp) .
One of them is close to F, the focal length . The other root (the larger one) is the

scene depth corresponds to the pixel (xo,yo).

19



CHAPTER THREE
Verification of Depth—from-Defocus Model

3.1 Introduction

In the depth—from-defocus model, we assumed that a blurred (defocused)
image acquired by the camera system can be thought of as the result of convolving a
focused image with a Gaussian point spread function. That is, tﬁe defocus process is
considered as a linear shift-invariant process and the point spread function is a two
dimensional Gaussian function. Here, we use 2 method to verify these assumptions.
According to the experimental results, we find that the characteristic of our camera

close to the assumptions of depth-from-defocus model.

3.2 The method of verification

The main assumption of the depth—from—defocus is that the camera system is
a linear—shift-invariant system and the point spread function is 2 two dimensional
Gaussian function. We checked these assumptions by some experiments and found

that it is a good approximation to our FUJINON cameras.

If Ei(x,y), Ea(x.y) are two images of the same scene taked by a camera at
different settings with system parameters (a1 ,b1 ) and (a2, b2), then the two images

must satisfy equations (22) to (28). Forsome (wy, @2), the right hand side of equation

2 Ey(01,02)
27), 1 1 : , wh Ei(w1, @ d Exwi,
(27), namely T H(F/; (12 where Ei(wi, 02) a# w1, wy) are the

Fourier transform of E1(x,y) and Ea(x,y). can be directly computed from the given

image pair. In principle, compute its value at a specific frequency (s, @) is suffi-

20




cient to obtain the value of &2 o2 , which should be a constant. But a more robust
estimate can be obtained by taking the average over some sample points in the

frequency space. Let the estimated average of 05~ 03 be C, thus

1 1 Ei(w1, w3)
C=— § 5 1n dl
. L a)l + a)z Ez((l)]_, a)g)

27
C = 1 j 1 lnEl(wl’wZ) rdo
2nr Jo 0t + 0} Exwg,wz)

1 & 1 Ey(w1, 0)
C=— 1 do 40
27 [ 0 ©F+ wl nEZ(wla w2) (40

where L is the perimeter of a circle with radius 7 in frequency domain.

From equation (29), the discrete formulation of equation (40) is given by

~ 2 q M 1([grcos ][rsmz;}") o
@) = ( ) Z ln o ronZE] | r=1..N (41)

where the size of FFT is N by N; Fi(i,j), F2(i,j) are the magnitudes of the FFT’s of
Ei(x,yY, Eax,y); Ty, Ty are sampling intervals in the x,y directions; ¢ is the ratio

T, . : . . :
=% . Mis the number of points locating at a circle of radius r; [n ] represents the

¥

integer nearest o n .

3.3 Experimental results
If equation (41) is constant in all r, we can make sure that the defocusing
process is linear shift-invariant process and the point spread function is a two dimen-

sional Gaussian function. We take the first image Ey,y) by usinga FUJINON cam-

21
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era with focal Jength 25mm as shown in figure 3-1a, then take the second image again
after changing vo arbitrarily as shown in figure 3-1b. The curve C(r) of equation (4 1)

is shown in figure 3-2. The size of FFT been used is 256 X 256.

From figure 3-2, we can se€ that C(r) is roughly constant in the period P1
and it descends gradually in P2. The main reason for this phenomenon is that the
higher the frequency is, the more severe the influence of the quantization noise is.
From figure 3-2, we see that the characteristics of our camera obey the assumptions,
thatis, the defocusing process is a linear shi A—invariant process and the point spread

function is a two dimensional Gaussian function.

-w&:s&:ﬁ"'
Efiﬂ!lﬁl
Siﬁtﬁ!!i
'lﬁi&iitl
g#i:ni!tk
3&[!1!&1!

Etamtﬁ&ﬁﬁ
TgxERBERE
fesBERpEE

(a) (b)

Figure 3-1 : Two defocused images taken by different Vo

22



0.0020

0.0015

LA g ohd

0.0005 . o

x : frequency

0 I
0 10 20 30 40 50 60 70 80

- P1 - P2 —

Figure 3-2 : The curve C(r); it is roughly éonstant in the period P1,
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CHAPTER FOUR

Experimental results of Depth—from-Defocus

4.1 Calibration for Depth-from-Defocus

In this section, some real experiments are presented. Allimagesare taken by
a vision system called IIS-head (see figure 4-1). Although the [[S-head is a binocular
vision system with two CCD camera on the top of it, we only use one of its camera in
the experiments. The CCD camera is 2 PULNiX TM~745E. The image grabber isan
ITI series 151. And the lens is an FUIINON lens 1:1.4/25mm.




We calibrated three different camera settings, with #p =110 cm, 130 cm, and

150 cm, to get three sets of system parameters . Table 1 show the calibration results.

4.2 The overlap problem in the frequency-domain approach

In the frequency—domain method, we divide an observed image into smaller
subimages within which the depths of the scene are nearly constant. If this assumption
is not valid inside a subimage, then this method gives an averaged depth of objects in

that subjimage which is still an useful piece of information.

Dividing an image into subimages introduces some errors due to border ef-

fects. A subimage cannot be analyzed in isolation because, due to blurring, the inten-

setting 1: g = 110cm setting 2: up = 130cm  setting 3: up = 150cm

D o (pixels) D o (pixels) D o (pixels)
75 cm 37 90 cm -3.1 90 cm -3.7
65 ¢m -53 ) - 80 cm -4.1 80 cm -5.1
55 cm ~1.7 70 cm -5.5 70 cm -6.5
45 cm -11.1 60 cm -1.7 60 cm -8.5
a {cm) | 1322988 a (cm) | 1294038 a (cm) | 1.294000
b (cm® | 0.011996 b (cm? | 0.009864 b (cm? | 0.008623

Table 1: Three sets of system pafameters for three different camera setfings




sities near, and within the border of a subimage is affecfed by the intensities just out-
side the region. Subbarao calls it the image overlap problem. In the experiment in
séction 3-3, we painted the border of the images dark in order to avoid the overlap
problem. In this section, the image overlap problem may be reduced as follows. The
image intensity is multiplied by a suitable center weighted mask (e.g. a Gaussian func-
tion) centered at the region of interest. Because the weights are higher at the center
than at the periphery, this scheme gives a depth estimate which is approximately the
depth along the center of the field of view. Here, we choose the Hanning window to be

the weighting function.

Figure 4-2 shows two image patches and the size of each patch is 64 by 64.
Figure 4-3 shows the C(r) curve of the image patches without multiplying weighting
function. Figure 4-4 shows the C(r) curve of the image patches multiplied with Han-
ning window function. We can see that in Figure 4-4, C(r) is roughly constant over a

period.

image patch E1(xy) image patch E2(x,y)

Figure 4-2: Two defocused image patches EI1(x,y), E2(x,y)
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Figure 4-3: The curve C(r) of an image patbh without multiplying weighted function
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Figure 4—4: The curve C(r) of an image patch multiplied with weighted function
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4.3 Asymmetric Laplacian template in the image domain approach

The horizontal and the vertical sampling intervals of our camera system are
known to be Ty = 0.001569 cm and T, =0.0013 cm by static camera calibration.
Thus, the sampled points of our digital images are distributed on (x,y) =
(Ty" b, Ty ly) where I, and J, are integers. The image-domain approach involves the
Laplacian operator. Dueto the difference in the resolutions along the horizontal and
the vertical directions, the Laplacian template is not symmetric, namely

2

2 o2 2 ol

VZE (x 3y ) = axz ay

The Laplacian template been used is :

L ooo 0 10
?1-21+-—20—20
*lo o0} 7o 10

4.4 Experimental results
Figure 4-¥shows two defocused images of a same scene taken by the camera
with setting 1 and 3, respectively. The scene consists of a book and a sheet of newspa-

per. The book on the left side is 100 cm far from the camera while the newspaper on

the right side is 140 cm away. Figure 4-6 shows the resultant depth-map using the
frequency-domain approach. Figure 4-7 shows the depth-map of the scene in figure
4-5 generated by first finding the depth-map using the image-domain approach, then
averaging the depths of all pointsin each image patch. The size ofan image patchis 64

by 64.

Figure 4-8 shows another two defocused images taken by the camera with

settings 1 and 3. The scene of the image is an inclined plane covered with a sheet of
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newspaper which ranges from 105 cm to 145 cm away. Figure 4-9 is the depth-map of
this scene obtained by the frequency-domain approach and the size of the FFT is 64 by
64. Figure 4~10 is the smoothed depth-map of the scene in figure 4-8 obtained by the

image—domain apprpach.

The scene in figure 4-11 is also an inclined plane covered with a sheet of
newspaper which ranges from 105 cm to 145 cm away, but the two defocused images
are taken by the camera with settings 1 and 2, respectively. Figure 4-12 is the depth-
map of the scene in figure 4-11 obtained by the frequency-domain approach and the
size of the FFT is 64 by 64. Figure 4-13 is the depth-map obtained by the image-do-

main approach.

Figure 4-14 shows two defocused images taken by the camera with settings 1
and 2. The scene consists of two objects. The nearer object is a bottle which is 108 cm
from the camera. The farther object is a book which is 145 cm from the camera.
Figure 4-15 is the depth-map of the scene in figure 4-14 obtained by the frequency—
domain approach and the size of the FFT is 64 by 64. Figure 4-16 are the smoothed

depth-map obtained by the image-domain approach.

Experimental results show that the errors of the estimated depth for both the
ﬁequenéy—domain and the image-domain approach are about 10 percent. The fre-
quency-domain approach is time-consuming because Fourier transform must be
applied twice for each image patch; whereas the image-domain approach involves
only simple Laplacian operator in the spatial domain. Thus, the image-domain ap-

proach is faster than the frequency-domain approach.

Also, we found that the estimated depth of a near object is more accurate than
that of a far object. The reason is that the farther the object is, the larger the depth of
fieldis. The depth of field is the range of distance over which objects are focused suffi-

ciently well in the sense that the diameter of the blurred circle is smaller than the spa-

28




(==

tial sampling period of the imaging device. That is, the resolution of the imaging de-
vice is not higher enough to distinguish a sharply focused point from its blurred image.
Hence, when we calibrate the composite camera parameters @ and b, we choose to
use the aperture diameter aslarge as possible such that the depth of field of the camera

is as small as possible.

Since the depth recovery of autofocusing algorithm {3] is quite accurate (27.5
percent precision), our combined approaches can be used as a preprocessing stage of
the autofocusing algorithm in choosing the initial search interval.of the criterion func-
tion. They can also provide an initial depth to guide a binocular stereo matching pro-

cess. see [15].

30



CHAPTER FIVE

Conclusion

We have introduced two new depth recovery methods by measuring the
amount of defocus (blurring) in the image without calibrating the intrinsic camera pa-
rameters. These methods is comprised of two phase. The first phase is calibration
phase. In this phase, two composite parameters are calibrated, instead of focal length

F, f-number f, vp, and k. The second phase is depth recovery phase. The depth

recovery algorithm used in this phase can be either a modified version of Subbarao’s
frequency-domain approach or Hwang’s image-domain approach. Once we have cal-
ibrated the composite camera parameters off-line, we can start to recover the depth of

arbitrary scene.

The assumptions in our proposed methods is that the defocusing process is
linear shift-invariant process and the point spread function is a two dimensional
Gaussian function. We have run some experiments to check these requirements and

found that our camera chatacteristics obey these assumptions.

4
?

Experimental results indicate that the estimation errors are about 10 pércent
for our proposed methods when the object is within the digtance of 1.5 meters from the
camera. But, our methods do not have any assumption about the scene and involve no
correspondence problem which has been recognized as the most difficult problem in
stereo vision. Our methods fail for "smooth” or "textureless” objects because the fre-
quency-domain approach must have the spatial frequency contents and the image-do-
main approach involves Laplacian operator. However, we can introduce “texture” by
projecting an arbitrary light pattern (e.g. a random dot pattern) onto the surface of the

objects.
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Our methods can also be used to provide an initial depth to guide a binocular
stereo matching process. In addition, they can provide global depth estimates so that

the traditional autofocusing algorithms can use these estimates to reduce the time for

focusing at some specific point in the scene.




Figure 4-5: Two defocused images taken by the camera with setting 1
and 3. The scene consists of a book of 140 cm and a sheet
of newspaper 100 cm away.
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Figure 4-7: The smoothed depth—-map of the scene in figure 4-5 using
the image-domain approach.
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Figure 4-8: Two defocused images taken by the camera with settings 1
and 3. The scene is an inclined plane covered with a sheet
of newspaper, distance from 105 cm to 150 cm away.
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Figure 4-9 : The depth—map of the scene in figure 4-8 obtained using
the frequency domain approach.
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Figure 4-10 : The smoothed depth-map of the scene in figure 4-8 using
the image-domain approach.
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Figure 4-11: Two defocused images taken by the camera with settings
| 1 and 2, The scene is an incline plane covered with a
sheet of newspaper, which ranges from 95 cm to 130 cm.
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Figure 4-12: The depth-map of the scene in figure 4-11 obtained using
the frequency-domain approach.
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Figure 4-13: The smoothed depth-map of the scene in figure 4-11 using

the image-domain approach.
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Figure 4-14: Two defocus images taken by the camera with settings
1 and 2. The scene consists of a bottle 108 cm from
the camera and a book 145 cm from the camera.
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Figure 4-15: The depth-map of the scene in figure 4-14 obtained using
the frequency-domain approach.

43




050 — 030

Figure 4-16 : The smoothed depth-map of the scene in figure 4-14
' | using the image—domain approach.
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