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- ABSTRACT

A parallel sorting method which requires déta partitioning
is presented. Thé ability to partition the data into equal size
ordered ‘subsets . is essential in the sorting process. We propoée
a data'partitioning method by sampling. The éomplexity and the
performance of the sorting and partitioning algorithm areé
analyzed. Storage bounds and the choice of parametérs which
détermine the sampling size are_also'discussed. The-analysis
is developed for parallel sdrting in local network environment |

with distributed data sets in secondary storage devices. .

Categories and Subject Descriptions. F2.2 [ Analysis of Algorifhms
and Preoblem Complexity] : Nonnumerical Algorithms and Problems
—_ éorting; G2.1:{ Discrete Mathematics] : Combinatorics ——

data partitioning.
General Terms: Algorithms, Theory, Design.

Additional Key Words and Phrases . : parallel sorting, data parti-
tioning by sampling, local network, quick sort, negative

hypergeometric distribution.



I. Introducation

Sorting is an essential operation in‘data prdcessing as well
as in many sScientifiec researches. The ;ecent advance in circuit
technology and computer architeéture has prompted several efforts
in ‘developing parallel scorting algqrithms and parallel sorting
architectures. 1In general, the parallel sorting algcrithms
depend heavily on the architecture of the Sorting maéhines.
Muller and Preparata [6] propose a network of O(Nz)'processing
elements to sort S numbers in O(log N) time. Hirschbefg [ 3] uses
N processors to sort N data and achieves the same O(log N) time,
complexity but wiszlarger space requirement. Whéreas'Nassimi-
and Sahni [7}qse cube and perfect shuffle array processor with

1+1/k processing elements, 1 <k = log N, which is capable of

N
sorting N_data items in O(k long)lcomputing time. However, all
of these approaches are too_limixéd since in generai the number
of processing elements (or computers) is limited and should not
depend on the size N of the data set; especially when N is large
the above methods become unrealizable. Another drawback of these
designs is the assumption that all data to be sorted are avail-
able simultaneocusly, i.e., the data accessing and input/output
are completely ignored.

A more realistic approach is considered by Winslow and Chow
[1031n=which parallelsorting is performed by using Parallel

Balanced Tree Sort in a conventional bus structured local computer

network. The sorting consists of three stages : the distribution



sample size to achieve the high probability of each component having

(or partitioning) of the data set into'brdered subsets, independent
parallel sorting of each subset, and the concatenation of tﬁe sorted
subsets. The performancé of'the sorting approach depends on héw
well the data set can be partitioned equaily. It is the emphasis
of this paper to develop the data partitioning sfrategy for parallel
sorting and to analyze the complexities of the partitioning procass.
Let a large data sef of size N be sorted on a mulfiple Processor
system with n processors, n < N, Chow and Winslow Eui}show that to
gain a sorting speed up factor of n when n processors are utilized, |
it is necessary to partition the data set into n equal size compo-
nents such that all of the data in the 3t component are less than
each data in the i + 1 St,compouent,swhere'i = 1, 2,';.., n - };
These n components_are then sorted independently and simultaneously
by the n processors. Finally, the eﬁiire sorted data set is
o%tained by concatenating the sorted components Which requires
little computation time. The key point of this sbrting method
lies in developing an efficient procedure for partitioning the
data set. However, in general, we do not know " the best way" to
partition the n. data into n equal size componenfs good for later
sorting. To overcome this difficult& we propose a partitioning

procedure by taking random samples for the data set and using the

order statistics of this sample to partition the N data. The proper

a

size less than a prespecified limit, is analyzed and computed. The
complexities of the sortiné and the partitioning procedure are
obtained. Another convenient method for the sample size problem

is also developed.



2. Data Partitioning and Parallel Sorting

Let the data set to be sorted parallely on n processors be
denoted by X, and the size of X by N, where N>n. To partition
X we first take a2 random sample of size nf -~ 1 (the choice of g

will be discussed later), and order thisrsample'in:ascending order

to get order statistics

20, 0 S Tpeayg € o Fne-1

2} 22"
and form a bélanced binary tree having these n - 1 nodes. At the

Secondly, we use n -1 points Y Y ""-Y(n—l)z as pivoi nodes

bottom of fhis tree dre n buckets. Each data is steered to its!

correct bucket as it descends the tree (see Figure 1). Thus from

Figure 1/ : Binary Tree with n = 5 Buckets.




this binary tree we are able to partition X into n components

th component are less than each data

th .

such that all data in the i

in the i + 15% component, i = 1) 2, ..., n - 1. TLet the i

component.be denoted by Q., 1 =1, 2, ..., n. Then
i .

Q1={X7:'X,< Y,Q,} 5

={x : Y(i—1)2< X< Yii} , for 2< i< n-1,

O
|

Q. ={x : Y(n_1)2<: x}

Now we can use the sample sort method propoéed by Frazer and
McKellar { 1] to sort these n Qi‘s on n processors simultaneously.
To explain this more clearly, we note that thefe.are 2 - 1 sarnple
points between Y(i;l)l and Yili.Theseﬂ.— 1 sample points are again
used as random sample taken from Qi. Thus we can apply Frazer and
McKellar's procedure to sort each Qi on the ith processor.. Their
procedure is a variation of Quick Sort (éee Hoare [[2]). After
parallel sorting, we can easily insert these n pivot nodes into
Qi.and then concatenate all together with very little effort to
obtain the full sorted data set X. The entire sorting consists
of sampling and insertion of pivot points, parallel sorting on each

processor, and the final concatenation of the sorted components.

2
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3. Anslysis of the Sorting Method

let qi(j) be the probabilify that v = Xj where Vi is the ith

order statistic of the sample and Xj is the jth

elements of the sorted set of X. It is easy to sée

: j-1 N-J 7 N
q;(3) = (; ) ( _ ) ( )
i-1 ng -3 -1 ng{ -1/ .

Let Pi(j) be the probability that the number of elements in Qi is

j. Then we have

LEMMA 1. :
| N-j-1 \ . /3 N o
. f = 9 -1
P.(3) = ( ) ( ) ( ) » 1or J
\ (n-1)2 - 1 g -1 ng -1 -
: This probability is independent of i = 1, 2, ..., n.
. J n-3j-1 N
Proof. For i=1, Pl(j) = qz(j+1) = ( )(. ) ( .
' g -1/Mn-1)2 -1 ng -1

g | N-j-11\/3J //N |
F i=n, P_(Jj) = (N-3) = )( ) ( )
or i=n - J) q(n—l)l J ((n—l)i—l 2-1 ng-1/ "

For 2 < i = n—l,




N-(n-1)2-3

P;(J) = 2 Qego1yp(Blay, (EHjH IY(i—l)z =X )
t=(i-1)2% :
t -1 N -t AN -t -3 -1
N-(n~-i)&-j ( )( .)( )(
T T NGE-D -1 Mamie1)2-1 M-V Mneidi)e-e-1
B L N N -t
e (D)
ng - 1 (n-i+1)e- 1

N-j-1 '
((n—i)l— 1) (Eil)

(e )

éWhere qig(t+j+l| y(i—l)l = Xt) equals to the prgbability qz(jfl)

-

ﬁﬁor a sample of size (n-1i + 1) - 1 from a set of size N - f;gj.
From this lemma, we get the distribution function Pi(j), =1,
‘%, ..., N - (n - 1)L . In fact this distribution is called the
negative hypergeometric distribution (see Sarndal[g]). The mean

of this distribution, or the mean size of Qi is

N -n+1
E(j) = ———

-+

and the variance of this distribution is

(N - ng + 1)(n - 1)
Var(j) =

(ng + 1) n




T
" Thus an approximate 95% confidénce interval for the size of Q is

N+ 1 V//(N—n£+1)(n—1)
_ -1+ 3 .
n - (n2+1) + n

This holds fO? all i and alsb this formula sets an aéproximate
lower 1imit of the size of core storage of each processor for fast
uprbcessing without disk I/O délay. |
LetzE(Ci)'be tﬁe expected number of comparisons required to
sort the sample of size n¢ - 1 by using the migimum storage Quicksort,

then

Pk—l
E(C;) = 2mI = - 2(ni - 1) (1)
1

Now we can treat Y(i—i)l+l < Y(i—1)1+2 < e < Yig_lﬁ

% - 1 order statistics from a population of size j given that Qi

as

has sizé j. We can extend the sample sort proposed by Frazer and

McKellar to sort Qi‘ The expected number of comparisons required to

sort Qi given that Qi has isze j,'j 22 -1 is

ELC(Q; | )1 = B(Cy) + E(Cy)

whree C2 is the number of comparisons required to insert the sample,
and C3 is the number of comparisons to sort the segments of Qi'

Similarly with Frazer and McKellar's analysis, it can be shown
that

(3-%+1)logyt < E(Cy) < (§-2+1)[0.0861 + log,2] ,




TNl =P

_ . 1 . _
and E(CB) = 2(j+ 1) I+ = 2(3-2+ 1).

i=1

Thus the expected number of comparisons required to sort Qi is

ELC(Q)] = E ELCQ | 3)]

and therefore

E [C(Qi)] = E E(cz) + E E(CS).
After further derivdtion we obtain

N-nl+l 2 ' " N-nl+1

[0.0861 + logzﬂ.] (2)

and

. R S
N-(n-1)&/N--j -1 J [2(j+1) Z "1_@]
E E(Cy) = L. <'(n—1)z-1) (1-1) i=g
j=t-1 N .
(nﬂ - 1)
N—(n-1)2 (N‘jfl).( J )
- T (n-1)p-1 ‘\e-1/ | 505 44q)
j=2-1 ( N
nf - 1




To simplify the calculation we need the following genius L j

identity due to Knuth [41] .

LEMMA 2 (Knuth).

N-a i N+1y N , f
z (7 1)( D LCIORIES: S IR REC R
PRobﬁ. Nejo1 i i
( )(E 1)E2(J+1)zz 7 ]
J

= 2% Z‘, 'N I 1) (J+l) H.,q — Hg) where Hj' =§%,
,= 22% (N—'j ) (J ) ( - . :
0\ a-1 g 4 “Hy - Hp). | : | -

0o o a-1

Now %(a_l)zk = (_szF and
. . % ;
%(; )(HJ - HQ)ZJ = af)ﬂ:r 10%‘( ) ‘

Multiply these two power series together and look at the coefficient

of ZN;

a+Q-1 N+1 N

z Ay - E - H 7"

araT log(y) = L (a+1) (E a+2)
(1-z) S 0
- . N
and hence the given sum is 22(N+1) Lo - .
a+l a+l

By putting a = (n -~ 1)2 in Lemma 2, we have



N+1)
EE(Cy) = 2 [FEN=L yl( nely 1y :
3 n - N \nl i+1 -
(o
oa[g + XML 44 g 1 47 | 3
= R FESDEEE (3)
nf
) N - 1-
Since ;Z_TII‘S log(N/(n&-1)) - 1/ng + 2/(N+1) .
nﬂl -
2 . N+l 1 -
EE(C) = 28+ o+ = =(-1 - =5+ log(ge—g)) |

From the above 'results we have:

THEQREM 1. The expected number of compariso@; (or computing time),

E(C), on processing Q, is given by the sum oft Eqs.(1),(2),(3), which

is
ng-1 L _
ong & Lo ML oo . gy 2:§ Ly _ glog. g + 2(%-ng+l
n? 1 o (logyl - 1+1) — *log, -ng+1)
i ng
< E(C)
nt-1 . .
< 2n2 ¥ —— + ¥Mloe n - 1.9139 + 2 g Ly _ 2log.% + 1.9139¢
n T+1 n 089 . i+i’ T *98g '
i i ng
+ 2(1-nl),
. N+1 N ' 2 )
< —H—(zlog o1t log22 - 1,9139 - EE) + 2nflog(ng-1) - 210g22

+ 1.91392 + % + 6.
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CE(C) &

Now considering when N/n and 2 are large

N+1 (2 log N+1

— =) + 1og22) + 2n2lognfd - zlogzz - 2ng,

(2 log %ﬁ%) when N:>n222.

N+1
n

COROLLARY 1. If N > n222 and % is large, then the expected number

of cdmparisdns E(C) on processing Qi is approximately

N+1 N
—-E——(2 log-ﬁf).

The ébove procedure analyzes the complexity of parallel.
sorting of each Qi. The initial balanced binary tree with n-—i
nodes and n buckets on the terminals is used to partition the-
data set X and each data is steered to i%s cofrect bucket as it
descends the tree. The number of.operations,jsay CI; required is
(1) when n is a number of the form Zk:.r_ | ’

CI = (N - ng + l)logzn.

(2) when n is not of form 2k, by Lemma 2 of Frazer and McKellar,

(N - n2 +1)logyn < CI = (N - n2 +1)[ 0.0861 + log,n] (6)
In general if the data has to be accessed sequentially from a
large secondary storage.device, this partitioning time will over—
lap with the-data accessing operafion. However, if the data is
distributed in a multiple processor environment, the partitioning
¢f data can be performed parallelly with a speed gain of n. The

memory contention and the ‘communication overhead problems in such

a system are analyzed in Chow and Winslow's paper[lof.

11




T T e e SR e i Lk e em e L memam e e e e e =T e A ot e e e e -

Finally after partitioning and parallel sortiﬁg, merging’takes
almost no computing time. We summarize our analysis and discussion

in the following theorem,

Theorem 2. TFor our proposed method of parallel sorting by sampling,
the total comﬁutation time is given by the sum of equations (1),
(2), (3).and (6). 1If input/output of 'data are considered then a
maximum data transfer or communication overhead of O(N) should be

added.

12




4, Optimal Choice of g

The choice of % is critical to the success of our procedure,

L]

Randomness of the sample is also important, but it can be achieved

by artificial randomization (see Mendenhall [5])7 In_general,.
the system primary storage is limited and we desire to avoid
using the low speed second#ry stérage deviée unless we have to.
Thus we would like tq set aﬁ uppef limit for all sizes of Qi‘s
Thgt is, for a given specified X > 0 and a small positive number

a, say .05 or .10, we want to choose the smallest £ such that
Prob. (ol =K YVilz1-a (7)

where lQiI denotes the size of Qi' Now

. n
PLIG] = 317 19g] = dps woes 1G] = dp, Ty = Nene1 ]
- P‘EYQ = xj1+1’ Y22= Xj1+j2+2"“’ Y(n—l)z - Xj1+j2+..+jn_1+n—i]
=P[Yy=x, 1P(Y, =x. .. | Y = x.
SR TS| 22 Jitdgt2 2 Ji+1
PLY e 1yy = %y 5 | Tin-2)r = Fj41i1+j 2+n-2"1'
. n n-
( 1 N-j;-1 )( (N 31-35-2 (3 )
- (n-1)%-1 (n-2y2-1 / °
(_N ) N- Jl -1 ) (F—JléJ'.2 n+2)
g -1/X (n-1)2-1 N ag g

13
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' hj 3 fN=3 =dg...-F_ _,—(n=1) R
(63 T e
(L

-

where ji ='2— 1,-1,;.., N—{(n-1)2, for all i, and

n-1
E'.ji = N - 2% n + 2.

1

The probability distribution here is'(n_— 1) variate multinomal-
beta distrihution, or also called (n - 1) variate negative hyper-
geometric distribution (see Sibuya and Shimizu [¢°]). We are

interested in developiﬁg a computer program to evaluate the

' probability in Eq.(7) and to find the sﬁallest ¢ satisfying (7).

Because of large N and its factoria, the computation needs high
precision so that each number occupies 400 digits. The program 
runs on a_PDP—11/7O ana requires twelve hours ﬁompufing time. The
ﬁrogram is given in Appendix where K = 1.2N/q,a = .10. Some
numerical examples are g = § for N = 40 and n = 4, 2 =20 for N = 100
and n =4, £ =40 for N = 200 and n = 4, £ = 6  for n = 40 and
n =6, £=12 for N = 100 and n = 6, ¢ = 25 for N = 200 and n = 6.
Another criterion to choose the optimal 2 is to chodse 4 such
that the uppef confidence bound (say 97.5% probability) of [Qil is
less than or eqhal to K. Recall that the mean size of Qi ié

i N+1
E(jJ) = T‘"l

14




and its variance is

Var(s) - ERLGE-1)

Thus the approximate 97.5% upper confidence bound for [Qi] is

—— -1 + 3 ar(j

and this bound is desired to be less than or equal to K. Thus

putting

‘-N:;—l-1+ 3 /Var(3) = K,

we get

g = 5 .-
[ N+1-n(E+1)1° + 9n(n-1)

9(N+2) (n-1) ' 1
n

Note that when n = 1, & becomes -1/n which is meaningless, and when
K= (N+1)/n-1, 2 is - (N+1)/n. This-is very interesting since the

sample size nf-1 is equal to N, i.e., total sampling.

V15
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“:: 5. Discussion

We have proposed a parallel sorting method by sampling. One
critical issue in the method is the parallel partitioning of data

into ordered subsets. Detail:. ¢omputational complexities of. the

partitioning‘end sorting are analyzed. Since the size of primary
memory is genereily iimited, its lower bouna without exceseive
¢I/O to secondary storage is established.' The ¢optimal choice of

% which determines the sempling size is also discussed. The
analysis_will-be-useful for parellel gsorting in local network

environment.
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subroutines ADD, MUL, DIV and DIS.
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Appendix: Computer Program for finding the Optimal £-

MAIN FROGRAM FOR MULTIVARIATE NEGATIOM HYPERGEOMETRICS DISTRIEBUTION

-

INTEGER#4 IaA, T1
IMTEGER#4 IN, INS
DIMEMSION MA{EED), MC(BGSG)
COMMON/OP /KPR, NDIM: NDG: FTR, NTR, F@, LUNG
DATA LUNB/4/ X

CALL ASSICN{LUNG, "MULTE. QUT’)

TYFE %, ¢ N=

ACCEPT #, N

TYFE %, ' NS=

ACCEPT %, NS

K=1 2#N/NS

TN=N

INS=NS

Ti=9# (IN+2) % {INS-1)
IA—(IN+1—INS%kH+l))**°+9%INQ%(TNS—1)
TL=T1/IA

TYPE #, ’. . Tl_=', IL, ‘K=’

TYFE+#, 'ACCEPT L’

ACCEFPT#: L

CALL ALLCHO{N, NS, L, K, MC)

NSL1=NS%L—1

DO B8O I=i,NSL1

CALLLL MUL (MC, MC, I)

NI=N-T+1

IF(NI. EQ. 8)NI=1

CaLL DIV(MC, MC, NID

CALL DIS{MC, 10)

STOP

END

SUEROUTINE NUMRAT (NS, L, J: MA)

COMFUTING NS FRODUCTC OF BINOMIAL COEFFICENTASE OF THE NUMEER

OF NEG-HYFERGEOMETRY

INTEGER J{NS), Ma(860)

Li={ ~1

CALL EQUN(MA, 1)

DO 3 I=1,NS

JTL=J{(T)—L+2

DO 30 IJ=J(I), JIL, -1

CALL MUL (Ma, Ma, T

DO 31 TJ=32,L1

Call. DIV {Ma, MA, TJ) ,
CONTINUE

RETURN

END

SUEROUTINE ALLCHO(M N, L, K, MC)
DIMENSION J{(48), MA(BE0), MC(BRG)
COMMON/OF /KPR, NDIM, NDG, FTR, NTR, F8, LUNS
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ra

18
1o0e

o~ o=

ra
)

11

o1

53

1

Li=l-1

DO 36 T=1, 889
MC{I)=3
MN1=pM-N+1

KK=1
ITF{MNi-N)4, 2, 1
DO 18 Ii=i, N
J(I1r=1

IF(J(IL1). LT. L1, OR. J{T1). GT. K)GOTO 4

CONTINUE

LCONTINUE

DO 12 Ii=1, BOO
MA{TI1)=08

CALL NUMRAT{N, L, J: MA)
Call ADD{MC, MC, MaA)
GOTO3

IF(N-114, 3, 6
JOL)Y=MML

GOTC1eee

KK=1

‘DO 2¢ Iil=2 N

JITI1y=1

JOL) =MNL—-(N=L) #L1
IF(J{1). CT. K) GOTO S2
IF(J(1). LT. L1} GOTO3
DO 13 Ii=1, 320
Ma(ILi=28

CALL NUMRAT (N, L, J, M4)
CALL ADDLMC, MC, MA)
Lea=Jd(1) ‘

=2

GOTOZ1

CIF(JJ. EQ. (N+1))GOTO3

Mu=JJ+1 .
LCJ=MMI-( -1y 1
TF(JJ EQ. NICOTO22
DO 2L Ii=NJi N
LEJ=LCJ—-J(TL)
TF(J(JI)-LC YT, 8, 7
Ju=JJ+ 1

GOTOSO
J{JD)=J{(JJdy+1

W= \J\J-‘l

DO 11 Ii=3, JJJ
J{T1)=L1
LER=LCJd—-(J (I -1
J(1)y=LC2

=2

GOTOS3 ,
J(2y=J(2)+1
JLy=Ji1)-1 i
DO 16 Ti=1, M

IF(JC(I1). LT. LA OR. J(T1), GT. KIGOTOS4

COMTINUE

DO 14 Ii=1, 880
MaA(TL)=0¢

CALL NUMRAT (M. L, J, M&)
CaLL ADDIMC, MC, MA)

-




=4

162

KK=KK+1
IF(J(2). GE. LC2) GOTOS8

"GOTOS1

COMTINUE

TYFPE®, 'LUNG: =, LUND

WRITE(LUN®, 182) KK

TYFE#, /' KK=', KK

FORMAT(1X, * TOTAL # OF CASES :’, I&)
RETURM -

END

-

e e T NI B S AT S E P U

C+
G

19
26

C+ .

»

1e
D

B
DEB

C+

BUBROUTINE ADD (MC, Ma, MB)

ARRAY MC = MA + ME

IMPLICIT INTEGER®#4 F

COMMON /OF/KFR, NDIM, NDG, FTR: NTR, FG, LUNS

INTEGER HMa{l), M(l), MC(L)

CICARRY = @

DC- 20 I1 = 1 , NDIM
MC(I1) = MA(T1) + MB(IL) + TCARRY
IF (MC(IL) .LT. NTR) GOTD i@
TCARRY = 1
MC(I1) = MC(TL) - NTR
GOTO 20
ICARRY = @

CONTINUE

IF {ICARRY . EQ. ©) RETURN
CAlLL ERR (1)

END

SUBROQUTINE BIT (BC, M NDG)

TRANSFORM TNTEGER M TO EIT_FORM BC

BYTE BG, BC(1)

DaTh BG/'8'/

ME = M

DO 16 I1 = 41, 4
‘M@ = MI / 1o
ME = MI — ME*1D
BC(I1l) = MR + E@©
MI. = MQ

CONTINUE

TYPEH#, M=,

TYFER®, (BC(IL), TL=NDG, 1, —1)

FORMAT (- BC= :;(NDC}AL)
END
SUBROUTINE DIS (MB: NDAF)

DISPLAY aARRAY ME WITH NDAP DIGITS AFTER DECIMAL

IMFLICIT INTEGER®*4 F

FOINT.
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COMMON /0OF /KPR, NDIM, NDG, FTR, NTR, F@, LUN®
INTEGER ME(1), NDAF
BYTE DIG(Z098)

" DATA NRSVY, NS/9, 3/

NFOS = NZR {(MB)
KPRM1B = KFR - 1@ .
TYFE+, ‘NEOS, KFRM19=", NFOS, KPRM10
TYFE#, (ME2(TI1), T1=NFO5, KFRML0, —1)
IF (NFOS . GT. @) GOTOD 2@
WRITE(LUNS, 18)

FORMAT(/* THE NUMEBER = @. ')
RETURN .

NMIN = MING (NDAF, NDG#KPR)

NDN = KPR — {NMIN-1)/NDG

NST = MAXO (NFOS, KPR+1)

CalLL FRST (M3, NST, KPR+1, DIG, NDIG)
NSET = NDIG / 50 ‘

IL = 58 % NSET

NR = NDIG - TIL

IF (NR . EQ @) GOTO D@

MESET = NBET + 1

IL = TL + 59

DG 3% I1 = NDIG+L , IL
DIG(IL) = ¢ 7

CONTINUE

WRITE{LUNG, 48)

FORMAT (/7 INTEGER FART OF THIE NUMEBER := 7)
DO 7@ T1 = NSET ,» 1, -1

IR = IL - 49
WRITE(LUNG, 68) (DIG(IR), I2=IL, IR, —1)
FORMAT(10(1X; Sall) '
It = IR - 1
CONTINUE
WRITE (LUK, 88)
FORMAT (/¢ DECIM&L FART OF THIZ MUMEER

Il
b
S

‘Cabl RST (M. KPR, MDN, DIG, MDIG)

Il = NDIG .

iIF {(IL . LE 9) RETURN

TR = MAXp (IL-49, 1)

WRITE(LUNG, 60) (DIG{I2), IE=IL, TR, —1)

I = IR - 1
GOTO %9
END

BUBROUTINE DIV (ME, Ma, MDIV)

AREAY ME = ARRAY MA / NUMBER MDILIV
WHERE. MDIV > O

ITHMPLICIT INTEGER#*#4 F

COMMON  /OR /KPR, NDIM: NDG, FTR, NTR, F&, LUND
INTEGER ME (1), MA(L), MDIV

TF (MDIV . LE. &) GOTQ 99

NFOS = NZIR {(MaA)

IF (NFOS . GT. @) GOTO 1@

Cabll EQUN ({MB., ©)

RETURN
IF {NFOS . GE. NDIM) GOTO 30
DO 29 I1 = MDIM » NPOS+1 , -1

ME(IL) = 0 p
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CONTINUE

FR = F@

FDIV = MDIV

DO 49 I1 = NPOS , 1, -1
FE MaA(I1)
FI FE + FR%FTR
F& FT / FDIV
FR FT — FE#FDIV
ME{I1) = F@

CONTINUE

RETURN

CALL ERR (4)

END

GUEROUTINE EQUa (MBE. Ma)

wnnu

ARRAY ME = ARRAY MA

IMPLICIT IMTEGER*4 F

COMMON /OF /KFFR, NDIM NDG, FTR, NTR, F@&, LUNO®
- INTEGER ME(1), MA{1)}

DO 18 I1 = 1 , KDIM
ME(TIL) = MA(TL)

CONTINUE

END |

SUBROUTINE EQUN. (MB. M)

ARRAY ME = INTEGER M > ©

IMPLICIT INTEGER#4 F

COMMON /70 /KFR: NDIM, NDG, FTR: MTR. F&: LUNO

INTEGER ME(1), M
IF (M .LT. @) GOTO F1

DC 18 TI1 = 1 , NDIM
. MB{(Il1Y = &
CONTINUE
' NFOS = KFR

M2 = M

IF (M& . EQ. @) GDTO 3e
MI MQ

ME /7 NTR

MR ME — MQ#NTR

NFQS = NFOS + 1

IF (NFPOS . GT. NDIM) GOTO 90

ME(NFOS) = MR

GOTO 26

IF (NFOS . GE. NDRIM) RETURN
RETURN

caLlL ERR (1)

RETURN

CALLL ERR (2}

EMD

SUBROUTINE ERR (IERR)

QUTPUT ERROR MESSAGE WITH ERROR CODE=IERR

IMPLICIT INTEGER¥*4 F

COMMON  /OF/KFR, NDIM, NDG, FTR, MTR: F@, LUN®
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INTEGER ME{L), MA(L), MMUL 7

DATA KPR, NDIM, NDG, FTR, NTR, F&, LUN@/4049, B0O, 4, 18060, 10848, &, 5
baTaA ZERO/9. / o

IF {(IERR . EQ. 1) TYPE+# ‘DIMENSION TOO SMabLL. ”

IF (IERR . EQ. 2) TYPE#®, ‘ARGUMENT < 8.

IF {(IERR .EQ. 3 TYPE# "MULTIFLIER < 8. °

IF (IERR . EQ 4) TYPE%, 'DIVIDER <= @.°

IF (IERR . EQ. T) TYPE#, ‘MA-ME < 8.7

& = 1. / ZERO .

call EXIT
END .

SUBROUTINE MUL (ME, MaA, MMUL)

ARRAY MB = ARRAY MA # NUMBER MMUL
WHERE MMUL 2= ©

IMPLICIT INTEGER#4 F

COMMON /OF/KFR, NDIM. NDG, FTR, NTR, F@, LUN®
INTEGER ME(1), MA(L), MMUL

IF (MMUL .LT. @) GOTGQ 5@ _
NFOS = NZR (MA) , S !
IF (NFOS. GT. @ . AND. MMUL.GT. ®) GOTO =@ i
CALL EQUN (ME, @) '
RETURN

FQ = F®

FHUL = MMUL '
DO 3¢ I1 = 1, NPOS

1

FE = Ma(Il)

FX = F@ + FE=FMUL
F@ = FI / FTR

FB = FI - FQ#¥FTR

ME{ILl}) = FBE

CONTINUE .

IF (NPOS. EQ. NDIM . AMND. . FQ GT. F@) GOTO 71

MEB{NFOS+1) = F& )

IF (NPOS+1 . GE. NDIM) RETURN i

DO 40 Ii = NFOS+2 » NDIM
ME(I1) =@

CONTINUE

RETURN

call. ERR (3)

RETURN

CaLl ERR (1)

EnND

INTEGER FUNCTION NZR (MEBE)

NZR = THE POSITION OF THE FIRST NONIERO ELEMENT IN ARRAY ME

TMFLLICIT INTEGER®4 F
COMMON /OF /KPR, NDIM, N2G, FTR: MTR, FO: LUND
INTEGER MB({l1L}

DO 10 ITi = NDIM , L1 ., -1
IF (ME(I1) .NE. @) GGTO =@
CONTINUE
. NZR = @
RETURN

NZR = I1



EUBRQUTINE RET (MB, IL, IR, DIG, NDIG)

C+ :
c TRANSFORM INTERGER MB(IL...IR) TO BIT_FORM DIG WITH NDTGC DI
C— .
' IMPLICIT INTEGER#4 F : i
COMMON /GF/KFR, NDIM, NDG. FTR, NTR, FO, LUN®
INTEGER ME(1), TL, TR. NDIG ’
BYTE EC{16), DIG(L) .
"NDIG = @ :
DO 26 IL = IR , IL
CALL BIT (BC, ME{(IL), NDG)
DO 16 I2 = 1, NDG
MDIG = NDIG + 1
DIG{(NDIG) = EC(IZ)
10 CONTINUE |
20 CONTINUE

EMD
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