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Abstract. The key hypothesis to anomaly detection assumes anomalous behav-

iors are suspicious from a normality point of view. This work provides a new 

perspective, network service, to model network activity for detecting anomalies. 

Past models often suffer from lacking of model normality verification, only in-

cluding particular behavior aspect, and focusing on individual model. To con-

front them, we propose a framework based on the perspective of multiple net-

work service models. For normality verification, we show how to construct un-

derlying protocol models by static and dynamic approach to guarantee the usa-

bility. For the latter two problems, we show how to construct composite service 

model with protocol interaction and correlation. Classes of attacks, such as 

worm and botnet, illustrate that our composite model detects the symptom of at-

tack that individual ones cannot. This work provides a promising perspective 

from network service and a new construction method for service modeling.  

Keywords: Intrusion Detection, Modeling, Computer Network Security, Net-

work Services, Principle Component Analysis. 

1   Introduction 

One of the important problems of network security is that we may not know what 

form of future attack would be. However, a careful study of hostile traffic reveals the 

existence of peculiar characteristics that could differentiate it from normal communi-

cations across the network [1]. Therefore, several works focus on defining the notion 

of normality in different ways to detect anomaly. Once the definition of normality is 

specified, the violation of the normality, or say anomaly, is determined. 

The notion of normality is usually provided by a formal model that describes the 

normal or expected behavioral operations or properties of a subject that we would like 

to protect. A model can be a description of a particular process or an essential or dis-

tinctive attribute or quality of a thing. For an anomaly detection system, the detection 

process is a measure that allows obtaining the deviation (or likeness) of a given activi-



ty with regard to the predefined model. For a model, false alarms may be introduced 

mainly by incorrect or imprecise modeling, and even unsuitable subject to model. 

In the past, user behavior is the initial subject to model, since malicious user is the 

main threat of computer system in early days (e.g., mainframe user). User behavior 

model [2] is used as a reference to detect abnormal activity and resource usage. How-

ever, user behavior can suddenly change and is usually not well predictable. Hence, 

program model then draws the attention because of its relatively fixed behavior. 

A program is considered harmful only after executing some unexpected system 

calls [3]. There are two research streams to model program behavior by using system 

calls: static and dynamic approach. Static model is built by referring to the given 

binary or source file of a program. All possible sequence of system calls that the bina-

ry or source file can produce are analyzed statically and recorded in the normal model 

(which is usually in a form of state machine [4] or database entry [3]). Any unex-

pected sequence of system calls that are not specified in the static model are viewed 

as an attack. Nevertheless, the notion of attack is beyond static analysis of system 

calls. For attacks such as brute force attack and stepping stone attack, which do not 

cause harm by executing unexpected system calls, are also security threats. Therefore, 

dynamic approach of model generating is adopted. Dynamic model is built by refer-

ring to a collection of runtime system call sequences that are produced by programs in 

a normal environment [3] or filter out non-normal execution. The accuracy of a dy-

namic model depends on the quality of the collected system call sequences, meaning 

how many it cover all possible normal execution sequences. In reality, it is difficult, 

through not impossible, to collect them, so that this approach may introduce false 

alarm due to not enabling to collect rare-seen normal execution. 

Rather focusing on programs, there are works looking into monitoring network ac-

tivities. They are differentiated by different network properties used in constructing 

their model. Network traffic is the most well studied subject. Traffic volume with 

attack propagation model [5], the variation of traffic entropy [6] [26], and network 

contact behavior studies [7] all belong to this category. Usually, statistics is served as 

a tool to model the normal usage of header field in network layer, transport layer and 

application layer. The outlier of the statistics model is considered as an anomaly, for 

example, worm propagation may cause entropy variation. Nevertheless, quantitative 

measures can be deliberately disguised by sophisticated attacker [8]. 

Since a network activity is governed by protocols it uses. Some works [9] - [11] 

construct their normal models based on network protocol specifications (e.g., RFCs). 

Such model can detect attacks or anomalies going along with protocol standard mis-

uses, such as undefined protocol message (e.g., a TCP packet with SYN and FIN both 

set) and undefined protocol process (e.g., login again after successfully login). Let’s 

make a metaphor to understand the weakness of this approach. We can view a net-

work activity as composing a paragraph, each sentence is a network protocol execu-

tion, and the grammar serves as network protocol standard. Such approach can only 

detect anomalies by "checking syntactic error" of individual sentence (i.e., protocol 

execution). The first shortcoming is that, we can make a sentence which is syntacti-

cally error-free but not actually accepted in the real world. We point out that purely 

relying on protocol specification is good but may not be practical. A protocol is usual-

ly well designed so that most of the misuses are already defined in specification with 

an error handling mechanism. Security expert must further specify which messages or 



executions in the specification are considered anomalous. Second, a paragraph is only 

meaningful and readable if all the sentences in it are correct and follow a context. 

Similarly, we point out that anomalies can be founded by considering viewing a 

communication activity as a whole to collectively examine the normality of the entire 

underlying protocol executions. Past works only examine the normality of individual 

network protocols rather than the entire context communication. 

There are several works [12] - [14] which derive specific legitimate network prop-

erties (commonly referred as behavior signature) by analyzing network activities and 

show they can detect certain attacks. These models are constructed by security experts 

with their experiences to known and popular attacks. The security experts extract and 

generalize the behavior of similar attacks and build a common model. Usually, find-

ing such high quality and useful models is difficult and time-consuming. Such model 

is suitable for well-studied attacks or attacks having popular behavior patterns. 

We now consider that a more robust network-based approach is needed and desired. 

Hence, we provide another perspective to model normal network activity that past 

works neglect before. Past normal models often suffer from three problems that limit 

their detection capability: lacking of model normality verification, only including 

particular behavior aspect, and focusing on individual model. To confront these prob-

lems, we propose a framework based on multiple network service models (and their 

underlying protocol models) to provide another viewpoint to reveal anomalies hidden 

in the network. For normality verification, we show how underlying protocol models 

are constructed by combining both static and dynamic approach to guarantee the nor-

mality that they describe. Also, the procedure of model construction is specified with-

out human tricks. And for the latter two problems, we propose a method to construct 

composite model by using multiple service and protocol models as a whole to de-

scribe the model of network activity. Like the metaphor of composing a paragraph, 

we can expect that more anomalies can be revealed by such composite approach. 

Classes of attacks, such as worm, fingerprinting and botnet, are shown as examples 

to illustrate that the composite model detects symptoms of attacks that individual 

model cannot. This work provides a promising perspective from network service and 

a new approach to combine models together as a whole for anomaly detection. 

The rest of the paper is organized as follows. The next section gives an overview of 

our approach. In Section 3, we present the construction of underlying protocol model 

using both protocol specification and real world traffic trace. In Section 4, we provide 

the method for connecting multiple protocol models to a service model as well as the 

method for correlating multiple services models to detect anomalies. In Section 5, we 

demonstrate the detection capability by real world attacks. Then, we discuss some 

issues of our works. In Section 7, the related work briefly overviews different ap-

proaches taken in the past. Finally, we conclude our work in the last section. 

2   System Overview 

This section provides an overview and the concept of our approach to generate net-

work-based anomaly detection models based on multiple network services with their 

underlying protocols.  



There are two stages of model construction: protocol model construction and com-

posite service model construction. In the first stage, the input is the protocol specifica-

tion and a collection of real world network traffic trace (raw packets), and the output 

is the normal protocol model. Our construction approach takes the advantages of both 

static and dynamic approach to reduce the incorrectness and imprecision problem of 

modeling. We also tackle the issue of model normality verification in this stage. 

In the second stage, a network service model is composed by multiple protocol 

models with two types of interaction model. Together they can describe the normal 

model of a service operation. Besides, we also observe that in the runtime a network 

activity is accomplished by several network services. Especially for an attack, multi-

ple network services could be involved to collaboratively accomplish an entire attack, 

such as host probing, vulnerability probing, service vulnerability exploitation, control 

and command channel establishment, file transferring. Hence, in addition to single 

service model, we further introduce correlation model combining multiple service 

models to describe a complex network activity. The correlation model specifies which 

instances of the service should be correlated in the runtime to reveal anomalies. Fig. 1 

depicts the relationships between each model in the second stage. 

Once we obtain the models, we examine our anomaly detection system by launch-

ing attacks collected from the Internet in a controlled environment. Then, we identify 

the deviated network behavior from our models. A deviation can be an undefined 

process of the model or an abnormal property of service execution. The deviated 

behavior is further extracted with the status of its related models. Afterwards, they are 

used to describe an attack scenario, called attack symptom. An attack symptom may 

consist of a deviation from sole protocol model or it can be a complex execution se-

quence from multiple service models and their correlation models. 

We point out some concepts of our approach in the following subsections, and the 

detail of notation, model construction and anomaly detection is in Section 3 and 4. 
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Fig. 1. The proposed composite service model scheme.  



2.1   Protocol Model Construction  

Protocol Specification and Finite State Machine. Due to several successful past 

works [9], [15] and the characteristics of network protocol asymmetry; we choose 

finite state machine (FSM) as a tool to model a network protocol. Each state of the 

FSM represents a temporal status of protocol execution, such as waiting for 

acknowledge, or sending packets. Events in the FSM could be a network event (e.g., 

receiving network messages) or a host event (e.g., timeout). The definition of states, 

events, and transitions of the FSM are statically based on the written documents, i.e., 

protocol specification and open source implementations. Certain specification, such as 

TCP RFC [16], provides an execution state diagram (the figure 6 in [16]) for 

reference. At this point, we can build a complete view of protocol execution as 

precisely as possible. If one state (in the document) has more than one semantic 

meaning, it should be clearly separated. Take TCP for example, at ESTABLISHED 

state, its connection could be either "just completing three way handshake" or "just 

finishing data transfer", which should be separated in the FSM. In our system we set 

counter of ACK to differentiate them. Similarly, one message having different 

meanings should be identified as different events. A protocol FSM is then populated. 

Execution Path. Network traffic traces are collected in campus network in terms of 

raw packets. Packets under same communication context (i.e., the same IP address 

pair, the same protocol number, and the same port number pair) are classified in 

advanced. The classified packets are then replayed, and populate the events defined in 

the corresponding FSM to trigger the transition of the FSM. Each instance can plot an 

execution path in its protocol FSM, and an execution path is considered as the 

behavior of the protocol execution. By repeating this, we can gather a large amount of 

execution paths for different protocols to represent the usage of these protocols in our 

collected traces. 

State Vector (SV) and Principle Component Analysis (PCA). Since we have no 

idea how the usage of a protocol would be like (e.g., all instances traverse only few 

paths or all go to different paths in the FSM), we take principle component analysis 

(PCA) as a tool to analyze the behavior of collected execution paths for building 

protocol model. We introduce the concept of state vector (SV) to transform an 

execution path (which is a sequence of state transition) to a state vector (which is an 

indexed vector with each element is either 1 or 0, and each element maps to a specific 

state in its FSM). The coded state vector can be used by PCA for cluster analysis. 

Execution paths (or say state vectors) with similar state transition are considered 

having similar execution behavior, and they are clustered into same groups by PCA. 

Then, we extract the characteristics of each behavior cluster (also in terms of state 

vector) to represent different types of protocol usage. In order to guarantee the 

accuracy of the model, we extract high enough state vectors in each cluster to build 

the protocol model (see Section 3 for details). The extracted state vectors then 

transformed back to execution paths and we form the model of protocol by overlaying 

these execution paths on the protocol FSM. With these steps, we can first understand 



how many behavior clusters are there in these mixed executions paths, and what they 

are. Second, we extract behavior characteristics from each cluster instead of from all 

execution paths, which is more considerable for describing rare-seen behavior. Third, 

we combine static and dynamic approach for a better description of the protocol 

model. Semantic meanings of the state from static specification can be preserved, and 

this model can also reflect the major protocol usage in the real world. Usually, the 

final protocol model is a subset of the original FSM obtained from the specification. 

Certain states and paths are discarded by the PCA under a guaranteed coverage rate. 

Although it reduces the complexity of the final model, yet it introduces false alarms. 

(As the metaphor we mentioned, in this stage we can check to see if the sentences are 

syntactic-correct and meaningful.) 

2.2   Composite Service Model Construction 

Session and Connection. We define a session as an instance of transport layer 

protocol execution (e.g., TCP connection), and a connection as an instance of 

application layer protocol execution (e.g., HTTP session). Although sessions and 

connections are the basis of the network service, yet they are low level activities and 

do not interact with each others. 

Service Model and Interaction Model. We introduce a more complex concept 

named network service model, which is defined as a set of protocol models with an 

interaction model for accomplishing a network task. For example, FTP service is not 

merely executed by one single session. It may include one control session (usually at 

port 21), more than one data sessions (usually at port 20), as well as all their 

underlying TCP connections. To relate all these instances in a single service model, 

we identify two types of interaction models to describe the relationship: cross-session 

and cross-layer. First, a cross-session interaction model relates two or more sessions 

by referring to protocol specification. For example, in the FTP specification, the 

service data sessions are spawned by the control session (with PORT and PASV 

command). We can easily specify and relate them by packet content inspection 

technique. Take VoIP application as another example, Real-time Transport Protocol 

(RTP) carries media stream controlled by Session Initiation Protocol (SIP), and their 

instances will be related into one service. Second, a cross-layer interaction model 

relates two instances at different layers (i.e., transport layer and application layer). 

This idea inherits the design of network protocol stack. An execution of network 

service should not focus merely at one layer. Viewing them as a whole provides more 

information to describe the execution of a network service simultaneously at both 

layers. We point out that the service model can provide another perspective to 

collectively examine the execution of network service rather than individual protocols. 

The normality of individual instance does not imply the normality of them as a whole. 

Correlation Model. Besides, we also observe that in the runtime a network activity is 

accomplished by several network services. For an attack, multiple network services 



could be involved to collaboratively accomplish the entire attack. However, their 

relationship may not obvious from the understanding of protocol and service 

operation logic. We then further identify two correlation models for correlating 

service instances into a composite one. Correlation models are built according to two 

other dimensions: time and (cyberspace) location. Research works also notice the 

importance of finding time-related [17] [18] and location-related [13] [19] 

relationship of different traffic flows for traffic analysis. Service instances that are 

executed under certain time constrain are possibly related. We demonstrate two time-

related correlation models: execution time and execution duration. The (cyberspace) 

location in this paper does not indicate only IP address. The port number, protocol, 

and the role of service (e.g., client, server, and peer) can be served as a basis for the 

location model. The information can identify different location of a service instance. 

Once we obtain the instance of composite service, we than can detect anomalous 

behavior by using these instances. (As the metaphor we mentioned, from thousands of 

fragmentary sentences, we now understand which of them are actually in the same 

paragraph and they should be aligned together for checking its context.) 

2.3   Anomaly Detection and Attack Symptom 

Anomalies. For anomaly detection, network traffic is collected in terms of packets 

and they are used to detect anomalies to check against the models we constructed. 

Similar to protocol model construction, packets under same communication context 

(i.e., the same IP address pair, the same protocol number, and the same port number 

pair) are classified in advanced. Each instance is then transformed to an execution 

path. For a protocol model, anomalies are found if the execution path cannot 

successfully traverse the normal protocol model (an FSM) from the initial state to one 

of the final states (i.e., complete a normal execution). For a service model, anomalies 

may be found if the execution paths in it violate the interaction models. 

Take cross-layer interaction model for example in Fig. 2, if we view the execution 

of the service as a whole, the execution of the application layer protocol should be 

embraced by its execution of transport layer protocol (e.g., TCP in Fig. 2). The execu-

tion must be handover at TCP ESTAB (established) state; otherwise such execution is 

considered as an anomaly. Not only we examine the normality of individual protocols, 

we also check the interaction between them as a whole. For cross-session interaction 

model, we take similar approach of checking handover state for two or more applica-

tion layer protocols. The handover states are determined at model construction stage 

by referring to the collected network traffic traces. For correlation models, in addition 

to anomalies found by checking handover state, we can also detect anomalies by unu-

sual time or (cyberspace) location behavior. For example, compromised host that 

shows abnormal role change can be found, such role change method is usually used 

by worm attacker or botnet. 

Attack Symptom. The anomalies found by protocol models, interaction models and 

correlation models are then extracted to build the attack symptom. The anomalies are 



usually in a form of state machine transition that is not specified in normal FSM or an 

abnormal property of the execution. The entire service execution (including normal 

and non-normal) are extracted and aligned with time. Fig. 3 shows an example of an 

attack symptom (plotted with its underlying protocol FSMs), and it describes an 

attack scenario – Blaster attack does not normally accomplish the execution of 

Remote Procedure Call (RPC) service and its underlying TCP. The attack does not 

normally traverse the RPC FSM to the one of the final states; instead it handovers the 

execution back to TCP at a non-handover state. Such anomaly, called forced session 

termination, can only be revealed by viewing RPC and TCP as a whole. We 

demonstrate more examples in Section 5. 

3   Protocol Model Construction and Verification 

3.1   The Static Protocol Model and Specification 

As we mentioned, once we obtain the protocol specification (possibly a RFC or open 

source code), the temporal protocol execution status and network/host events are 

extracted as the states and events of its protocol FSM. A protocol FSM can be denot-

ed as Pi = <Σi, Si, inti, δi, Fi>, where Σi is the event occurred of the protocol; Si is a 

finite, non-empty set of protocol execution state; inti is an initial state of the protocol 

which is an element of Si; δi is the state-transition function: δi: Si × Σi → Si; Fi is the 

set of final states which is a subset of Si. Each event of the FSM usually maps to a 

specific value of header field or a binary/text string in the packet payload. Each state 

of the FSM represents a temporal status of protocol execution. In this step, we manu-

ally construct the model for different protocols in a customized BNF (Backus–Naur 

Form). Currently, the model of TCP, UDP, ICMP, HTTP, FTP, RPC, SIP, and TFTP 

are constructed in our system. 

(a) The cross-layer interaction model.

(b) The cross-session interaction model. 

time
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Fig. 2. The example of anomaly found by interaction model.  



There is a benefit for modeling protocol rather than program. There might be doz-

ens of HTTP servers and clients implemented in the real world; however they are the 

variants of the reference model from HTTP specification. No matter how program-

mers implement their servers and clients, the observed behavior of the HTTP protocol 

should align with the reference model. Although we can expect that the protocol be-

havior of different implementations may not be exactly the same (proven by [20], [21] 

or some embedded light weight server/client), yet ideally all of them should still fol-

low (part of) the reference model to accomplish a protocol execution. That is, each 

implementation should be a subset of the specification. For the reason of efficiency, 

we model the protocol rather than individual programs. 

3.2   The Dynamic Protocol Model and PCA 

The model from previous step only serves as a reference that how an execution could 

be (from the perspective of the specification). Similar to static approach on program 

behavior [4], such model does not consider the real world usage of a protocol. It may 

introduce false positive if we take such model for anomaly detection, because allowed 

execution does not guarantee attack or anomaly free. Hence, we modify the static 

model by the dynamic approach with real world network traces. If we directly adopt 

dynamic approach without the static model, the constructed model would be complex 

as the exact DFA (deterministic finite automaton) in [17], which has high accuracy of 

describing a behavior but it may lost the human readable information. 

Raw IP packets are collected from network as data set D and are classified based 

on header fields: IP address pair, protocol number, and TCP/UDP port number pair. 

Protocol events are specified based on the element of Σi of the corresponding protocol 

FSM Pi. According to state transition function δi: Si × Σi → Si and observed protocol 

events in D, we output the execution path as a sequence of state transition <t1, t2, ..., 

tk>, where all transitions belong to δi, and for each transition tk: sk,x × ek,y → sk,z, we 

have sk-1,z = sk,x when k > 1, and s1,x is the initial state inti. 

As we mentioned, we analyze the behavior of protocol execution by using state 

vector rather than execution path. (Because we consider state vector is more suitable 

to characterize the protocol execution behavior. See next sub-section for more details.) 

We then transform an execution path to a state vector. In this step, multiple execution 
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Fig. 3. Attack symptom: Forced Session Termination.  



paths might map to the same state vector, and we consider their behaviors are similar. 

For Pi, the state vector is a vector having |Si| elements and the value of its element is 

either 1 or 0. Each element maps to a specific state of Si and the value indicates if the 

state is reached (1) or not reached (0) by the corresponding execution path. 

After collecting a set of state vector, we analyze the usage of protocol to build the 

normal model of this protocol. Briefly, the Principle Component Analysis can output 

a set of component from a set of features or variables. Let the state in Si of Pi be the 

variables we analyze. We input n state vectors (having |Si| elements or say |Si| features) 

to PCA. PCA outputs another |Si| principle components and each of them is the linear 

polynomials of the original variables. For example, let |Si| = 3 and the state vector is 

<X1, X2, X3>, by analyzing n state vectors, PCA outputs the result: <PC1, PC2, PC3> 

where PC1 = α*X1+β*X2+γ*X3. For a state vector instance <1, 0, 1>, its PC1 value 

would be (α*1 + β*0 + γ*1). The variance of PC1 of all the n instances, VPC1, is the 

largest (i.e., VPC1 ≧ VPC2 ≧ VPC3). And PC1 can be viewed as the most important 

characteristic to describe these n instances. (It is because that a variable with small 

variance is relatively difficult to distinguish between data points.) And we can expect 

Xi is an important component if it has significant factor to affect the value of PC1. 

The PCA can also classify different behavior in our case. Since Xi are binary varia-

bles (either 1 or 0), the number of possible value of PC1 (and also PC2 and PC3) is 

limited to 2
|Si|

. In the previous example, they are 0, α, β, γ, (α+β), (α+γ), (β+γ), and 

(α+β+γ). Hence, we can simply classify these n state vectors into 2
|Si|

 classes by using 

PC1. (The value of VPC1, VPC2 and VPC3 should be considered to decide how to perform 

classification. If VPC1 is large enough to distinguish the characteristic of different 

protocol behavior, using PC1 is good enough; otherwise we should consider using 

PC1 and PC2 to classify these n state vectors. See next sub-section for more details.) 

We note that, in real word, certain protocol states are mutually exclusive, so that the 

total number of possible classes might be less than 2
|Si|

. Another case occurs when, for 

example, there is a very small γ in PC1, so that the PC1 value of <1, 1, 0> and <1, 1, 

1> are quit close to (α+β). Since γ is small and X3 is considered insignificant, we say 

<1, 1, 0> and <1, 1, 1> are similar behavior and are classified in the same class. 

Once we classify these state vectors into different classes, we then designate one or 

more representative state vectors (RSV) in each class as references to model the nor-
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mal usage of this class. State vectors in the same class are considered having similar 

execution behavior, and they can only be differentiated by states that are considered 

relatively insignificant. For each class, we first rank the state vectors by the number of 

execution path instances it presents. (As we mentioned, a state vector may represent 

multiple execution paths in the original data set). When we take the number of execu-

tion path into account, we can then make the judgment whether a state vector is a 

RSV or not in a class, or even we need to split the class into two sub-classes since the 

behavior in it is considered quite different. For each class, we examine the element of 

state vector one by one. If the values of PCi of all state vectors in a class are the same 

(all zeros or ones), then this element of RSV is assigned with this value. If the value 

of PCi of all state vectors are not the same (having both 0 and 1, such as PC3 of <1, 1, 

0> and <1, 1, 1>), we split this class into two sub-class if the none of each part domi-

nates the execution paths count (say exceeding r% of the total count, we set it to 95% 

in our experiment) and continue checking next PCi of each sub-class. Otherwise, if 

one of the parts has dominant count, we simply take its value as RSV's value and 

discard the state vectors less than 1 - r%. Iteratively, each (sub-)class has one RSV to 

present it usage. We then collect all selected RSVs of each (sub-)class and find out 

their corresponding execution paths in data set. The states and the transitions of these 

execution paths are then used to construct the normal model of Pi. As we can expect, 

the states and transitions from RSVs are less than Si and δi. However, these subset of 

states and subset of transitions represent the normal usage of protocol. Since some of 

the allowed execution paths are not seen in the real world and might even be an 

anomaly. We denote the normal protocol FSM as P
*
i = <Σ

*
i, S

*
i, inti, δ

*
i, F

*
i>, where 

Σ
*
i is the subset of Σi, which contains only events are considered normal. S

*
i, δ

*
i and 

F
*
i are the subset of 

*
i, δi and Fi, respectively. Without special notice, we simply use 

Pi to represent the normal model in the following sections. 

There is an important reason why we classify behavior before RSV selection. In 

this step, we would like to model the different behavior. If we select state vectors 

(according to their execution path count) without classification, state vectors that have 

small execution path count could possibly be discarded from the model. However, the 

aggregation of them may create a class of protocol execution that cannot be neglect. 

Hence, we classify behavior before RSV selection. 
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1. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → S_FIN_W1

→ S_LAST_ACK  → TIME_WAIT → CLOSE

2. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → S_FIN_W1

→ TIME_WAIT → CLOSE

3. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → S_FIN_W1

→ CLOSE

4. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → TIME_WAIT

→ CLOSE

5. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → C_FIN_W1

→ C_LAST_ACK  → TIME_WAIT → CLOSE

6. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → C_FIN_W1

→ TIME_WAIT → CLOSE

7. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → C_FIN_W1

→ TIME_WAIT → CLOSE

8. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → C_FIN_W1

→ CLOSE

 

Fig. 5. The cluster phenomena of TCP behavior 



3.3   PCA Verification Results 

From static analysis, we construct a TCP FSM based on the diagram in TCP RFC 

specification [16]. There are 19 states and 43 transitions in this static model. For con-

structing the protocol combining dynamic approach, we collect raw packets in cam-

pus network on a core router using Wireshark [22]. The total packet capture length is 

200 minutes and it contains 131,499 TCP execution paths. Within these execution 

paths, there are only 50 identical state vectors. The state vector with highest execution 

path count (75,230) passes the following states: LISTEN, SYN_SENT, SYN_RCVD, 

ESTAB, DATA, S_FIN_W1, S_LACK, TIME_WAIT, and CLOSE, which looks like 

a standard TCP execution written in the textbook. Due to loops in the FSM, there are 

actually 68 types of execution paths of this state vector. The execution path count of 

top five state vectors are 75,230, 19,359, 15,074, 14,368, and 3321. All the other 

counts of 45 state vectors are less than 1200. 

The result of PCA is that PC1 = 0.0002*SYN_RCVD + 0.4814*S_FIN_W1 + 

0.6011*S_LACK + 0.1387*TIME_WAIT - 0.4814*C_FIN_W1 - 0.3934*C_LACK + 

0.0004*RENEW - 0.0029*ERR_NS_S. The PC1 value of the state vector which has 

highest execution path count is 1.2212. The VPC1 is 0.4556 (58.76% of total variance), 

VPC2 is 0.2260 (29.14% of total variance), and VPC3 is 0.053 (6.89% of total variance). 

We plot all 50 state vectors with their value of PC1 and PC2 in Fig. 5. Although math-

ematically there could be 2
19

 distinct value of PCi, yet we can see that there exists 

only 50 distinct state vectors and they can be roughly classified into 5 classes by PC1: 

above 1.0, around 0.5, around 0.0, around -0.5, and between -0.5 and -1.0. (Actually, 

PC2 also classifies theses state vectors into the exact same 5 classes.) When we take 

PC1 and PC2 into account, the aggregate variance would be 87.90% (the total variance 

of all PCi is 100%), and we consider it is high enough using PC1 and PC2 to charac-

terize the behavior of TCP. We then perform the algorithm to find RSVs in each class. 

In the first class (PC1 value is above 1.0), there are 12 similar state vectors. Out of 

19 states, 14 states are all zeros or all ones among these 12 state vectors. While con-

sidering split these 12 state vectors into several sub-classes using the 5 contradictory 

states, we find that there is always a dominant count of execution paths (exceed 95% 

of total count) for a value of a state, so we do not split this class. For the second class, 

there 13 state vectors. For state TIME_WAIT, 43% of the execution paths pass it (i.e., 

the value of this element is 1) and the rest do not. Clearly, we split this class into two 

parts. For the fourth and fifth classes, similar situation exists. Finally, we have 8 

(sub)-classes and their corresponding RSVs. The 8 RSVs are then used for construct-

ing the final model of TCP which is shown in Fig. 4. The semantic meanings of these 

8 TCP behaviors can be restored by studying its execution path (also in Fig. 5). We 

feed the original data set to the final TCP protocol model, and it covers 98.47% of the 

total execution paths, which indicates the model can describe the behavior character-

istics quite well. 

Due to page limit, we only show another one of our supported protocols – HTTP – 

here. By using static analysis, the HTTP FSM has 9 states 18 transitions. In a traces 

having only HTTP traffic, 96,136 execution paths and 11 state vectors are identified. 

Among them, 11 (sub-)classes of HTTP behavior are specified. And the result of 

dynamic analysis reduces the FSM to a HTTP normal model with 6 states and 9 tran-

sitions. The final model covers 99.98% of the execution paths in the data set. 



4   Service Model Construction and Anomaly Detection 

4.1   The Construction of Interaction Model 

Once we have the model of individual protocols; we then consider the relationship 

between two protocols to see if they collaboratively accomplish a service. Two types 

of interaction models are shown in Fig. 1. The cross-layer interaction model is used 

by describing the relation between one transport layer protocol, PL4, and one applica-

tion layer protocol, PL7. Inheriting to network protocol stack, the execution of the PL7 

should be embraced by its execution of PL4. (See Fig. 2.) We introduce a concept of 

handover state to describe the embrace relationship between PL4 and PL7. A handover 

state sho in SL4 would continue looping while the execution handovers to its PL7. The 

execution of PL7 must start at its initial state intL7 and complete the operation at one of 

the final states FL7 of PL7. Then the execution would handover back to PL4 again and 

continues state transiting to next state from sho. The ESTAB state of TCP is one of 

such handover state. In order to specify how these handover occur, we mark an 

“OUT” at state sho indicating the execution can switch out to PL7. The state intL7 is 

marked as an “IN” state since it can continue the execution. Similar, all the states in 

FL7 are marked as an “OUT” state, and the state sho is also an “IN” state. The hando-

ver information can help us to judge if the execution between PL4 and PL7 follow the 

cross-layer interaction model. 

The mode of cross-session interaction is similar to cross-layer interaction model. It 

describes the relation of two related application protocols, such as SIP and RTP, and 

FTP command (TCP port 21) and FTP data (TCP port 20). The relationship may not 

as simple as TCP and the application layer protocol. Fig. 2 shows an example that the 

execution of PL7-1 and PL7-2 is interleaved and FTP command and data may quite fit 

this relationship. The “IN” and “OUT” state could be specified during static analysis 

by network expert (although most of the protocol specifications do not discuss such 

relationship), and dynamic analysis approach is another alternative. However, the data 

collection and techniques for specifying “IN” and “OUT” state by dynamic analysis 

may need further studies. In our paper, we simply look into the network traces and 

observe the handover situation of two application layer protocols that we consider 

they are related. 

With the help of handover state, we can conceptually connect two protocol FSMs 

as one, and use such model for anomaly detection. In our experiment, we find an 

anomalous protocol execution that handovers at non-“IN” or non-“OUT” state. 

4.2   The Construction of Correlation Model 

We notice that an intrusive activity may involve more than one network services that 

may be considered irrelative from the perspective of specification. However, for ex-

ample, attack may use PL7-1 to compromise a vulnerable victim and use PL7-2 to deliv-

er malware. Hence, we introduce two correlation models for correlating two network 

services from different perspectives: time-related model and location-related model. 



For the time-related model, we define two instances are related if | PL7-1.start_time – 

PL7-2.start_time | < TS and | PL7-1.duration – PL7-2.duration | < TD, where TS and TD are 

the predefined thresholds. The start_time is a timestamp that a PL7 starts exchanging 

the application layer message, and duration is the variable recording the total time 

spent while executing PL7. 

For the location-related model, we define two instances are related if one of the 

following constrains are satisfied: PL7-1.dstIP = PL7-2.dstIP (i.e., these two instances 

are running on the same host), or PL7-1.dstPort = PL7-2.dstPort (i.e., these two instanc-

es are connected by others using same destination port; they are probably network 

servers and provide same network service), or PL7-1.srcIP = PL7-2.dstIP & PL7-1.dstIP = 

PL7-2.srcIP (i.e., these two instances are running between two hosts and each host 

initiates one instance; they might provide peer to peer service or one of the service is 

spawn by another service). 

More rules can be added to describe different relationship model in time and loca-

tion domain. In Section 5, we will also demonstrate how these correlation models are 

used to detect anomalies on time and location domain. 

4.3   Finding Anomalies 

For single protocol FSM, an execution path is considered anomaly if the execution 

path does not accepted by its corresponding normal model (i.e., a deviation is found). 

Let Pi be the model constructed by static approach, and P
*
i is the normal model con-

structed by our dynamic approach. For an execution path <t1, t2, …, tk, …> of Pi (all tk 

are transitions that belong to δi), if there exists a transition tk: sk,x × ek,y → sk,z, where tk 

is in δi but not in δ
*
i (i.e., in the specification but not in our normal model), we con-

sider ek,y is an anomaly event, and sk,x and Sk,z are the anomaly states. Such anomaly 

states and event will be recorded for constructing attack symptom. 

Usually, there are three type of anomaly that causes such anomaly transition: event 

that is not unknown or cannot be identified in a packet, event that should not be sent 

at current state, and timeout event caused by unknown communication issue. 

For finding anomaly with the interaction model, we check if the execution hando-

vers between two protocols at state marked “IN” and “OUT” or not. If two protocol 

instances handover from inappropriate state sx to sz via event ey, these states and event 

are then used for attack symptom construction. For finding anomaly with correlation 

model, we can detect time and location anomalies, for example a host changes its role 

from a server to a client of its previous client. Usually, a network server (that does not 

run P2P service) does not act like a client. Take this example to be more specifically. 

In our experiment we detect such behavior with time and location information as 

follow. For two protocol instances, PL7-1 and PL7-2, that are considered time related 

(PL7-1.start_time < PL7-2.start_time, PL7-2.start_time - PL7-1.start_time < TS, and | PL7-

2.duration - PL7-1.duration | < TD.), if PL7-1.dstIP = PL7-2.srcIP and PL7-2.dstIP = PL7-

1.srcIP, then we say that the PL7-1.dstIP is the server of first instance and it then be-

comes the client of the second instance. We record the event of PL7-1 and PL7-2 (that 

can identify the role of server and client) for constructing attack symptom. 

Attacks such as botnet (establishing control and command channels), worm (ex-

ploiting procedure and downloading malware file), and stepping stone (a series of 



telnet connections) typically contain several protocol execution instances that have 

some sort of time and location relationships between them. We anticipate our ap-

proach can capture these behavior characteristics and use for anomaly detection. More 

experiment result on real world attacks are illustrate in Section 5. 

4.4   The Construction of Attack Symptom 

The deviations found in the FSM models, interaction models and correlation models 

are collected and aligned with the time they occur. The state and event that cause the 

deviation are connected together to describe a serious of changes when intrusive ac-

tivity occurs. An attack symptom is also represented in a form of state machine. Each 

state of the attack symptom represents a temporal status of intrusive activity. Its event 

is created by the change of underlying protocols. The transitions of an attack symp-

tom may lead the status of current protocol executions to an anomaly state. An attack 

symptom may contain several events and states of different protocols; hence we rec-

ord the relationship in a correlation matrix R. Let ASj be the attack symptom we cur-

rently focus on. The value of the matrix element Ri,j is either null or a two-tuple value 

<state s of Pi or event σ of Pi, a list of <event e of ASj>>, which indicates that the 

reach of state m of Pi or the occurrence of event σ would trigger the creation of (one 

or more) event e to the attack symptom ASj. This matrix records how attack symptoms 

transit based on the state change and event occurrence of underlying FSMs. In Fig. 3., 

an example of Ri,j is <state ”BINDING” of RPC FSM, event “RPC-BINDING” of 

attack symptom “Forced session termination”>), which means the reach of state 

“BINDING” of RPC will trigger the creation of an event “RPC-BINDING” to the 

“Forced session termination” attack symptom. 

Although the output of our constructed attack symptom can be used as a reference 

to characterize the attack behavior for rule-based intrusion detection system; however, 

providing fixed rules may limit the detection capability. Rather we provide several 

normal execution models including protocol execution, protocol interaction, and ser-

vice correlation for anomaly detection, which we believe is a promising alternative for 

detecting intrusion. 

5.   Experiment 

We collect several real word attacks and replay them in our system to demonstrate the 

abnormal behavior captured by our prototype system. Single attacks — Blaster, 

Sasser, Code Red, Code Red II, Nimda, Welchia, Slammer — are collected from the 

Internet and are used for evaluation, and we also use a well-known attack trace — 

DARPA 1999 Intrusion Detection Evaluation Data Set [23] — and a general trace 

collected in campus network for false positive analysis. Single attacks are launched in 

a private LAN with multiple hosts having unpatched operating systems. Network 

packets are monitored and analyzed for detecting any deviations. The campus trace is 

collected in the core router of a campus network lasting 7 hours. It is stored in a 378 

GB file containing 45 million TCP and UDP flows and 680 million packets. 



5.1   Attack Symptom Found by Protocol Model 

When examine the protocol execution of Sasser, we find a malicious TCP execution 

that is not aligned with our normal TCP model. Sasser would first initiate a TCP con-

nection (at port 445) to its victim. Only six TCP packets are exchanged between them: 

SYN, SYN-ACK, ACK, FIN, FIN-ACK, ACK. This TCP instance occurs before 

Sasser tries to attack SMB-RPC service, and we make a reasonable guess that it is a 

probing connection. Since normal application may not establish a TCP without send-

ing application layer message, our TCP normal model can detect such an anomaly. 

We notice that such behavior is allowed in TCP specification, but it is malicious while 

considering the TCP operation of real world practice. 

Similarly, the HTTP normal model can find that the attack Code Red II sends an 

HTTP packet with a non-existing event (a packet with 1 byte “\x00”). Attack Nimda 

replies an HTTP error message that does not in our HTTP model, but in the specifica-

tion. For another example, the attack Blaster has an execution path (sending messages 

with wrong order) that is not in our RPC normal model while preceding the vulnera-

bility exploitation. Even some fingerprinting tools, such as nmap and nessus, deliber-

ately send packets with abnormal headers or contents (e.g., Sending a TCP packet 

with SIN and FIN flags are both set, or sending a HTTP GET message to a HTTP 

client) to probe the information of the target. Such behavior can be detected by our 

protocol models. 

Although we understand that such approach of protocol model checking is not new, 

yet we demonstrate that using model built based on static approach (i.e., specification) 

may not suitable. With combining dynamic and static approach, we can truly under-

stand the behavior of protocol execution. 

5.2   Attack Symptom Found by Service (Interaction) Model 

The attack Blaster and it variants Welchia both encounter a problem of forced session 

termination. In order to successfully exploit the buffer overflow vulnerability of RPC 

service, their attacks would send a packet with a long message trying to overflow the 

buffer of RPC service. After receiving such long data, the execution right of the vic-

tim would be taken away by the attacker. The original RPC service hangs there and 

cannot response anymore, and the underlying TCP connection would timeout and 

sends a RST message to close the TCP session. Hence, the RPC service is forcedly 

terminated, which is not follow our cross-layer interaction model, and we consider it 

is an abnormal activity. In our normal model of RPC, a RPC instance should hando-

ver back to it TCP at one of the final states, such as RESPONSE. 

The attack Sasser has similar attack symptom that runs on SMB-RPC and TCP. 

The attack Code Red and Code Red II also have a hanged HTTP that is forced termi-

nated by TCP RST. These attacks all perform similar buffer overflow exploitation. 

Since the original service is buffer overflowed, even the attacker can now execute any 

program at the victim host, but the compromised service cannot be recovered, so that 

the attacker cannot avoid being detected by trying being normal. Such attack symp-

tom is not only occurs in TCP and its application layer protocol. For UDP connection, 



the attack Slammer also encounters similar timeout event after the attacker perform a 

SQL injection. 

All above attacks can be detected by checking the handover state of two protocol 

instances. We believe they can reveal more malicious behavior than single protocol 

models. 

5.3   Attack Symptom Found by Composite (Correlation) Model 

In the attacks that we collected, worm-like attack often initiates another channel for 

malware downing, such as, Blaster, Nimda, Sasser and Wehchia. Other attacks may 

initiate another communication channel back to the attackers, such as most of the 

botnet. Although such behavior is not part of service exploitation, yet most of the 

attackers want to do more than just service exploitation. They may setup a communi-

cation channel to control the victim to perform further attacks. Basically, this follow-

ing behavior performed by attacker does not align with the design of original service. 

For example, a RPC service would not act like a FTP or TFPT client of its pervious 

RPC client, but Welchia, Sasser and Blaster do so in order to communicate with the 

attacker. The botnet client also establishes C&C channel (control and command chan-

nel) to the bot master to obtain instructions. 

For a stepping stone attack, the attacker may connect to a host and then connect to 

another host via the first host. In order to hide itself from be detected, the attacker 

may take several hops to its final target and launch the attack so that back tracking is 

difficult. However, if we can obtain these network traces, with the help of time rela-

tionship (the staring time of the previous instance and the latter instance should be no 

longer than 10 seconds) and IP connected (one host is the destination of one instance 

and is the source of another instance), we can correlate instances that are related for 

detecting anomaly. We can than generate a path all the way from the victim to the 

attacker, such as [19]. 

These attack symptoms rely on the correlation in time and location dimension to 

figure out the abnormal relationship between each network service. We believe that 

such design is suitable to confront the complex network environment. We anticipate 

that the time and space relationship can be more complicated to confront sophisticated 

attacks. For stealth attack that possess incubation time can possibly not correlated 

with the related instances. Such studies could be the future works for this research. 

5.4   False Alarm Analysis 

The DARPA 1999 dataset is used in this subsection. We build our normal protocol 

models (only for HTTP and TCP) with the training dataset (lasting one week long) in 

DARPA dataset. Then the DARPA testing data (also one week long) is fed into our 

system with these normal protocol models. Within the testing data, there are 80 at-

tacks but 18 of them are console-based attacks (telnet or SSH) and 46 of them are 

attacks that not target on networks. In these “network” attacks, the network is simply 

a carrier to deliver their attack. The network or the network services are not the target 

so that they are not our focus. (We will discuss these types of attack in the discussion 



section.) There are 16 attacks in DARPA’s trace that fall into the category that we 

focus to detect. Within these 16 attacks, ten of them have at least one protocol execu-

tion deviation on HTTP or TCP operations that relate to its attack procedure. And the 

other six are attacks the target on SMTP and IMAP. Unlink signature-based IDS, we 

do not need to generate attack signature for each attack and its variants. Although 

some research has been studied the vulnerability-based signature [15] [25], yet they 

still need time to collect attacks, generated efficient vulnerability-based signature and 

deliver them. We focus on the network service operation and their relationships for 

detecting anomaly. In total 323, 841 execution paths in the dataset, we have 464 alerts 

that are actually not belong to an attack. Hence, the false positive rate is about 0.14%, 

which is considered acceptable. 

In the campus trace, there are total 1,008,534 attack symptoms are identified. Spe-

cifically, 289,476 of them are TCP port sweep and 717,170 of them are TCP SYN 

flooding. Both of them are quite common in today’s network; however it still needs 

further study to understand why and what applications send these traffic. The rest of 

the attack symptoms are mainly the errors occurred at application layer (~81%), and 

~14% deviations are caused by TCP. The rest of the attack symptoms are found by 

interaction models and correlation models (~4%). Application layer errors could be 

sending out of order messages or error messages. 

We notice that sometimes bad or incorrect implementation of software may also 

cause sending error messages or a crash program may not be able to complete the 

entire protocol execution. They could possible one of the reasons that we observe 

such attack symptom. P2P programs may also send lots of TCP SYN packets for 

finding files. These applications are the possible false positives. 

6.   Discussion 

Network service model proposed in this paper is not used to replace all the other 

models (such as user model, program model, or traffic model). Every model has its 

pros and cons, and can collaboratively form the defense alliance to detect anomalous 

from different perspective. Here, we provide a promising perspective from network 

service to detect anomalies that may neglect by other models. 

As we discuss in the previous section, several types of attacks do reveal anomalies 

when we examine the execution of network services. However, there are still certain 

type of attack does not fall into these categories, such as Cross Site Script (XSS), 

Cross Site Request Forgery (CSRF), malicious programs executed by human (e.g., 

Trajan in e-mail), and exchanging malicious files via instance message software or 

P2P software. Their infection mechanism does not involve network service operation. 

Network itself if merely a carrier to deliver the malicious intention of the attackers. 

They infect victims by malicious content carrying in normal network service execu-

tion. Research works that focus on malicious content analysis could possibly deal 

with these attacks. Our proposed approach can detect them only after infected host 

acts abnormally from the perspective of network service operation. However, this 

type of attacks is beyond our research focus. 



There are works, such as [27] [28], that focus on event correlation approach to de-

tect intrusions; especially data mining techniques are widely used. The benefit of this 

approach can decrease the time and effort of human involvement and can automatical-

ly capture the behavior of intrusion. However, we anticipate that a large amount of 

mining data is needed, and most of them focus on misuse detection system rather than 

anomaly detection system. 

7.   Conclusion 

In this paper, we demonstrate the feasibility of using protocol execution model to 

reveal even more anomalies that past may not find. The combination of static and 

dynamic approach for constructing protocol models is more appropriate to describe 

the real world usage of protocols than models built based on protocol specification. 

The Principle Component Analysis can help us to classify different protocol execution 

behaviors and figure out the important states in the traces. We also demonstrate that 

the interaction models and correlation models can provide more delicate descriptions 

between multiple protocol instances. The proposed composite service model can 

reveal anomalies in classes of real world attacks with reasonable false positive rate. 

Unlike rule-based intrusion detection systems that only rely on signatures, we provide 

an alternative for anomaly detection that focuses on the essential part of network 

communication—network services. We anticipate that future attacks would be more 

and more sophisticated, and the involved protocol instances would be diverse. From 

the perspective of service execution and considering the relationships between them 

would be a promising approach to describe the characteristics of malicious behavior. 

In this paper, we propose a method using a more formal way to solve the problem of 

constructing normal models and correlating their relationships. 
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