
 TR-IIS-14-002

SIGNAL SEPARATION USING
RE-WEIGHTED AND ADAPTIVE
MORPHOLOGICAL COMPONENT ANALYSIS

GUAN-JU PENG AND WEN-LIANG HWANG

Feb. 24, 2014 || Technical Report No. TR-IIS-14-002

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2014/tr14.html

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2014/tr14.html

SIGNAL SEPARATION USING RE-WEIGHTED AND ADAPTIVE
MORPHOLOGICAL COMPONENT ANALYSIS

GUAN-JU PENG AND WEN-LIANG HWANG∗

Abstract. Morphological component analysis (MCA) for signal separation decomposes a signal
into a superposition of morphological subcomponents, each of which is approximately sparse in a
certain dictionary. Some of the dictionaries can also be modified to make them adaptive to local
structure in images. We show that signal separation performance can be improved over the previous
MCA approaches by replacing L1 norm optimization with “weighted” L1 norm optimization and
replacing their dictionary adaptation with regularized dictionary adaptation. The weight on an
atom for sparse coding is commonly derived from the corresponding coefficient’s value. In contrast,
the weight of an atom in a dictionary for signal separation is derived from the mutual coherence
between the atom and the atoms in the other dictionaries. The proposed solution for regularized
dictionary adaptation is an extension of the K-SVD method, where the dictionary and “weighted”
sparse coefficients are estimated simultaneously. We present a series of experiments demonstrating
the significant performance improvement of the proposed algorithm over the previous approaches for
signal separation.

Key words. Adaptive morphological component analysis, signal separation, image separation,
mutual coherence, re-weighted method.

AMS subject classifications. 62H35, 68U10, 94A12

1. Introduction. Signal separation is fundamental in noise removal (white noise,
reflection, rain, etc.), segmentation, inpainting, and compression. To achieve signal
separation, Morphological Component Analysis (MCA) has been shown to be very ef-
fective and has been deployed in numerous applications [24, 25, 12, 15, 14, 17]. MCA
facilitates the observation of morphological diversity in an image by modeling the
image as the superposition of subcomponents of different morphological hypotheses.
Morphological hypothesis means that the structure of a component can be sparsely or
nearly sparsely represented by a dictionary. For example, the wavelet and the curvelet
dictionary can be used to represent the morphological concepts of edges and smooth
contour respectively. Also, the local DCT or the learned patches are usually used to
represent the texture in a natural image [18, 4, 23]. In mathematics, MCA can be
formulated as to derive the solution yi of the following inverse problem:

y =
∑
i

yi + ϵ,(1.1)

where y is the input image and ϵ is the modeling noise. MCA assumes that each
subcomponent yi has a sparse or approximately sparse representation with respect to
the dictionary matrix Di. The nearly sparse representation of yi with respect to Di

can be derived using the following convex optimization problem (a.k.a., noisy Basic
Pursuit):

x⋆
i = argmin

xi

∥xi∥1 subject to ∥yi −Dixi∥2 ≤ ϵi,(1.2)

where ϵi is the error in representing yi with the dictionary Di.
According to theoretical analysis [26], the separation of mixing signals using MCA

is determined by the mutual coherence between dictionaries and the number of atoms

∗Institute of Information Science, Academia Sinica, Taipei, Taiwan. (whwang@iis.sinica.edu.tw).
Questions, comments, or corrections to this document may be directed to that email address.

1

2 G.J. PENG AND W.L. HWANG

used to approximate a subcomponent. Mutual coherence can be regarded as a method
to measure the similarity of patterns, represented as atoms, in dictionaries. High
mutual coherence can impair MCA. Intuitively, if two dictionaries contain highly
similar patterns, then some strcutre in the input image can belong to more than one
subcomponent, causing ambiguity in resolving the signal separation. This problem is
particularly serious in MCA because it imposes the sparseness assumption on the total
number of atoms to represent all subcomponents in the signal separation problem.
Specifically, if the atom d belongs to dictionaries Di and Dj and the atom is used to
represent the input image y, then MCA tends to pick the atom because using the atom
can achieve a sparse representation of both yi and yj . Meanwhile, the performance of
MCA can degrade if a subcomponent cannot be sparsely represented by a dictionary.
This usually occurs when MCA is used to retrieve a complicated image structure, such
as texture. In [23], an adaptive scheme, called adaptive MCA, was proposed to address
this concern by iteratively modifying the dictionaries during the separation process.
The approach modifies the dictionaries according to the reconstructed subcomponents
in the previous iteration, as a result of which, the dictionaries can be over-constrained
by the previous reconstruction. Hence, the error (due to the noise or the patterns of
another subcomponents) in a subcomponent can persist in the adaptation process.

In this paper, we improve MCA in two aspects. For the atoms having high mu-
tual coherence with the atoms in other dictionaries, we use the weighted approach by
assigning larger weights to the atoms to make them less likely to be selected for signal
representations. Therefore, the weight on an atom for signal separation is a function
of mutual coherence, in contrast to the common approaches in sparse coding where the
weight on an atom is a function of the corresponding coefficient’s value. The weighted
approach to achieve L1 norm optimization has been widely used and studied [8]. How-
ever, there seems to be little discussion of using the approach for signal separation
using MCA. Meanwhile, for dictionary adaptation, we modify adaptive MCA by im-
posing a regularization constraint on the dictionaries with which the newly derived
dictionaries become less constrained by the previously reconstructed subcomponents.
Because our weighting scheme is dependent on the mutual coherence of dictionaries,
and the dictionaries are updated at each iteration, the scheme constitutes iterative
re-weighting. For convenience, we refer to the proposed approach as re-weighted and
adaptive MCA because it uses the dictionary adaption and re-weighted optimization.

We present experimental results and demonstrate that weighted and adaptive
MCA can significantly improve performance over adaptive MCA. We also demonstrate
our method’s robustness in solving signal separation, by varying the parameters of
the proposed approach. The rest of the paper is organized as follows. Section 2
reviews the development of the MCA model for signal separation. Section 3 presents
the proposed method. Section 4 compares the experimental results with those for
adaptive MCA. Section 5 presents the concluding remarks.

2. The MCA Model for Signal Separation. This section briefly reviews the
methods and algorithms that use MCA for signal separation. MCA is formulated
in Equations (1.1) and (1.2). Equation (1.1) indicates that the input image is to be
decomposed into a superposition of morphologically different subcomponents, whereas
Equation (1.2) indicates that each subcomponent can be sparsely represented with an
appropriate chosen dictionary. Equation (1.2) is also called the sparse coding problem,
which has been widely studied and analyzed. One may choose a greedy method from
the family of matching pursuit algorithms [7, 20, 19, 22], or an L1-norm optimization
algorithm from the family of noisy Basic Pursuit algorithms [9, 21, 5, 10, 3].

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS3

The Lagrangian approach can be used to combine Equations (1.1) and (1.2),
thereby obtaining the following optimization problem:

min
{yi,xi}

1

2
∥y −

∑
i

yi∥22 + µ
∑
i

Ei(yi, xi, Di, λ),(2.1)

where µ and λ are the Lagrangian multipliers and Ei is the energy function of the
sparse coding for the i-th component, which can be written as

Ei(yi, xi, Di, λ) =
1

2
∥yi −Dixi∥22 + λ∥xi∥1.(2.2)

If the subcomponent yi is divided into m patches, denoted as Rk(yi) with k = 1 · · ·m,
then the energy function of the sparse coding Ei consists of the energy functions of
the patches:

Ei(yi, xi, Di, λ) =
m∑

k=1

1

2
∥Rk(yi)−Dix

k
i ∥22 + λ∥xk

i ∥1,(2.3)

where the sparse coefficient vector xk
i represents the k-th patch of the i-th component.

2.1. Methods for Morphological Components Analysis. The first solution
for MCA was proposed by Starck, Elad, and Donoho [24]. Their algorithm is com-
prised of two steps in each iteration: updating the subcomponents {yi} and decreasing
the value of a threshold θ. The component yi is updated using the following formula:

yi ← Diδθ(D
−1
i (y −

∑
j ̸=i

yj)),(2.4)

where δθ(·) set the values of the input coefficients at zero if the values are less than
the threshold θ. The function D−1

i (y −
∑

j ̸=i yj) indicates the pursuit process with
respect to the dictionary Di, and the output of the function is the coefficients of
representing y−

∑
j ̸=i yj with Di. After all yi are modified, the value of the threshold

θ is decreased.
As indicated in [23], selecting appropriate dictionaries for the morphological com-

ponents can be considered the fundamental task of MCA. An effective dictionary
should be able to provide a sparse representation for the target component, through
the sparse coding algorithm. Some image features, such as edges and smooth contours,
can usually be represented in a sparse way by well-chosen dictionaries. Unfortunately,
many more features in natural images, such as texture, can have more complicated
structures and thus are hardly captured by fixed dictionaries. To address such cases,
the descriptive dictionary is usually built by applying learning algorithms that are
based on the concept of regression [13] or classification [1].

The adaptive MCA algorithm was proposed in [23], its main feature being to in-
clude a dictionary adaptation process in performing MCA. If the dictionary is fixed,
then the algorithm does not modify it. But if the dictionary is learned from the train-
ing data, the dictionary can be modified by the algorithm. Each iteration of adaptive
MCA is comprised of three steps: sparse coding; updating the subcomponents; and
adjusting the learned dictionaries using the subcomponents obtained from the second
step. In the first step, for each i, the sparse coefficient vector xi is calculated as

xi ← argmin
x

Ei(yi, x,Di, λ),(2.5)

4 G.J. PENG AND W.L. HWANG

where Ei(yi, x,Di, λ) is the energy function of the sparse coding detailed in Equation
(2.2) (for a fixed dictionary) or Equation (2.3) (for a learned dictionary).

In the second step, a sub-loop is used to update the subcomponents. The residual
ri is defined as ri := y−

∑
j ̸=i y

l−1
j , where yl−1

j is the estimation of the j-th component
in the l − 1-th iteration of the sub-loop. The subcomponent yi is updated as

yi ← argmin
f
∥ri − f∥22 + µ∥f −Dixi∥22(2.6)

for the fixed dictionary, or

yi ← argmin
f
∥ri − f∥22 + µ′

m∑
j=1

∥Rj(f)−Dix
j
i∥

2
2(2.7)

for the learned dictionary. In the third step, the learned dictionaries are updated as

Di ← argmin
D

Ei(yi, xi, D, λ).(2.8)

The details of the algorithm are shown in Table 1.

3. The Re-weighted and Adaptive MCA Approach . Our approach is
similar to adaptive MCA in that dictionaries are modified in solving MCA signal
separation. However, our approach differs from adaptive MCA in two aspects: using
a re-weighted scheme to solve the sparse coding problem, where the weights are derived
from the mutual coherence of dictionaries; and imposing a regularization constraint on
the learned dictionary for the dictionary adaption process. Section 3.1 explains why
weighted sparse coding is more appropriate than sparse coding, and we present the
method to derive the weights on atoms. Section 3.2 presents the regularization penalty
imposed on the dictionary adaption procedure. Section 3.3 presents the proposed
signal separation algorithm and analyzes its computational complexity.

3.1. Re-weighted Sparse Coding for Signal Separation. Mutual coherence
is the parameter that indicates whether a signal can be uniquely separated by MCA
into morphologically different subcomponents. Theoretical analysis shows that a suf-
ficient condition for the success of signal separation using MCA is the low mutual
coherence of atoms in different dictionaries [26]. If the column 2-norm of a dictionary
is normalized to 1, and if the inner product between atoms in dictionaries D1 and D2

exists, the mutual coherence of D1 and D2 is defined as

µm(D1, D2) := max
d1∈D1,d2∈D2

|dT1 d2|.(3.1)

In the extreme case, if there is an atom belonging to different dictionaries, imply-
ing that µm is 1 (the maximum), then any information encoded by the atom can
cause ambiguity in signal separation, because MCA cannot determine to which sub-
component the atom should contribute. Thus, similar atoms possessed by different
dictionaries incur ambiguity when calculating the corresponding coefficients through
sparse coding. An intuitive way to decrease the mutual coherence between dictionaries
is to remove their similar atoms. This reduces the number of atoms in a dictionary,
therefore increasing the number of nonzero coefficients in a signal’s representation.
Also, removing atoms can be prohibited, such as where the dictionary is a basis.

Our approach is motivated by iteratively re-weighted sparse recovery methods,
in which coefficients of smaller values are assigned heavier weights so that those co-
efficients are less likely to contribute to the spare signal representation in the next

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS5

iteration [8]. We assign heavier weights to atoms that have higher mutual coherence
with the other dictionaries, thereby causing those atoms to have smaller values when
solving the weighted sparse coding problem, and consequently making them less likely
to be selected.

3.1.1. Mutual Coherence of an Atom across Dictionaries. We use xF or
xL to indicate that x is an attribute of the fixed image dictionary or the learned patch
dictionary respectively. For example, given that D is a dictionary, DL is a learned
patch dictionary and DF is a fixed image dictionary. Another example: given that d is
an atom, dF is an atom from a fixed dictionary and dL is one from a learned dictionary.
The size of an atom in a fixed dictionary is equal to that of the whole image. If an
image is divided into patches, then the size of an atom in a learned dictionary is the
same as a patch in the image. Because the patches are allowed to overlap each other,
they are not necessarily a partition of an image. For convenience, we assume all the
patches in an image are represented with the same (patch) dictionary, even though
this assumption is not necessary.

Mutual coherence can be used as an indicator of whether the sparse approach
has produced a unique signal representation or separation. The objective of sparse
coding is to determine whether there is a unique representation of a signal involving
the atoms in a dictionary; therefore, mutual coherence is measured between atoms in
the dictionary. In contrast, for signal separation, mutual coherence between atoms
in the same dictionary is of no interest because the focus of the problem is not on
the unique representation of a subcomponent, but on the unique separation of the
signal into subcomponents; therefore, mutual coherence should be measured between
atoms in different dictionaries, but not in the same dictionary. Mutual coherence
is defined based on the inner product of two atoms. Because the sizes of atoms in
different dictionaries may not be the same, the definition of mutual coherence must
accommodate this.

In the following, µn(d,D) denotes the mutual coherence of the atom d measured
against all atoms in the dictionary D. Recall that the function Rj takes the j-th patch
from an image and that the 2-norm of an atom in normalized to 1. First, we define
the mutual coherence of an image-sized atom dF against the learned patch dictionary
DL as

µn(d
F , DL) =

1

m

m∑
j=1

µj
n(d

F , DL),(3.2)

and

µj
n(d

F , DL) = max
dL∈DL

|Rj(d
F)T dL|

∥Rj(dF)∥2
.(3.3)

The definition indicates that µn(d
F , DL) is the average of the mutual coherence be-

tween all patches Rj(R
F) and the patch dictionary DL. The patch taken from the

atom dF is normalized to 1 in Equation (3.3).
Then, we define the mutual coherence of a patch-sized atom dL to measure against

an image dictionary DF . Because the patch-sized atom is used to represent a patch
in an image, say the j-th patch, the mutual coherence can be derived from the j-th
patch of all atoms in DF . We define

µj
n(d

L, DF) = max
dF∈DF

|Rj(d
F)T dL|

∥Rj(dF)∥2
.(3.4)

6 G.J. PENG AND W.L. HWANG

The definition of µj
n(d

L, DF) and µj
n(d

F , DL) is not symmetric by comparing Equa-
tions (3.3) and (3.4). Finally, the mutual coherence of an image-sized atom against an
image dictionary and of a patch-sized atom against a patch dictionary can be defined
respectively as

µn(d
F , DF) = max

d∈DF
|(dF)T d|,(3.5)

µn(d
L, DL) = max

d∈DL
|(dL)T d|.(3.6)

Let Ω, ΩF , and ΩL denote the set of all dictionaries, the set of fixed dictionaries
for an image, and the set of learned dictionaries for patches respectively. It follows
that Ω = ΩF ∪ΩL. The definitions can be extended to measure the mutual coherence
of an atom against a set of dictionaries where

µn(d
F ,ΩL) = max

DL∈ΩL
µn(d

F , DL),(3.7)

µj
n(d

L,ΩF) = max
DF∈ΩF

µj
n(d

L, DF) with j = 1, · · · ,m,(3.8)

µn(d
F ,ΩF) = max

DF∈ΩF /D
µn(d

F , DF) and dF ∈ D,(3.9)

µn(d
L,ΩL) = max

DL∈ΩL/D
µn(d

L, DL) and dL ∈ D,(3.10)

where the dictionary D that contains the atom dF (dL) is removed from ΩF (ΩL) in
calculating Equation (3.9) (Equation (3.10)).

In Equations (3.7), (3.8), (3.9), and (3.10), the mutual coherence of an atom is
calculated against all atoms in the other dictionaries. Because of the sparse model
assumption that each subcomponent can be represented with only few atoms in the
dictionary, the mutual coherence can be derived from the subset of atoms, called the
supports of dictionaries, that are used to represent the subcomponents. To compute
the mutual coherence of an atom with the atoms in the support of the other dic-
tionaries not only increases the computational speed, but prevents artifacts caused
by the out-of-support atoms. The atoms that are not supporting any subcomponent
presumably will not cause any ambiguity issue for signal separation, which implies
that removing them can avoid the over-estimation of mutual coherence. As will be
demonstrated in Section 4, if we can avoid over-estimating mutual coherence, our
method can achieve high signal separation performance.

Because the subcomponents and their supports are not known before signal sep-
aration, at the onset of our algorithm, the mutual coherence of an atom is derived
(as defined in this section) with all the atoms in other dictionaries. Then, the mutual
coherence is updated by using the supports of the subcomponents estimated from the
previous iteration.

3.1.2. Weighting Functions. Unlike the common approaches where the weight-
ing on an atom is a function of the value of the corresponding coefficient, our weighting
on an atom is a function of the mutual coherence of the atom against the dictionaries
that do not contain the atom. Without loss of generality, we use di[k]

a with a ∈ {L,F}
to denote the k-th atom in dictionary Da

i . We also use dji [k]
L to denote the k-th atom

in DL
i associated with the j-th patch of an image. The mutual coherence of dji [k]

L

and di[k]
F with respect to the dictionary set Ω are defined respectively as

vji [k] = max{µn(d
j
i [k]

L,ΩL), µj
n(d

j
i [k]

L,ΩF)} with j = 1, · · · ,m;(3.11)

vi[k] = max{µn(di[k]
F ,ΩF), µn(di[k]

F ,ΩL)}.(3.12)

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS7

In the following, to avoid overloading with notation, we use v[k] to denote vi[k]
or vji [k], provided that there is no confusing in contents. A weighting function must
be a non-negative and monotonically increasing function of v[k], and the range of the
function is confined to ensure that the function’s value does not become unbounded.
We choose the following weighting function on an atom in the dictionary D:

w(v[k]) = e
γ

v[k]
maxl v[l] = α

v[k]
maxl v[l] ,(3.13)

where maxl v[l] is the maximum mutual coherence of the atoms in D, and γ is the
parameter that depends on the image and the dictionaries. The range of the weighting
function is [1, α], and dividing v[k] by maxl v[l] can increase the variance on the values
of the weighting function. Let the number of atoms in D be |D|, and let v represent
the column vector of v[k] with k = 1, · · · , |D|; then, we define the k-th output element
of the mapping g(D) as

g(D)[k] := w(v[k]).(3.14)

3.1.3. Weighted Sparse Signal Separation. We now consider the derivation
of the representation coefficients for the case where the dictionaries are given. To
incorporate the weighting information into the MCA model in Equation (2.1), we can
modify the energy functions defined in Equations (2.2) and (2.3). This results in the
following formulation, where Di, λ, µ, and y are given:

min{1
2
∥y −

∑
i

yi∥22 +(3.15)

µ{
∑

Di∈ΩL

EL
W (yi, [x

1
i x2

i · · · xm
i], Di, λ) +

∑
Di∈ΩF

EF
W (yi, xi, Di, λ)}},

where EW
L and EW

F are the weighted energy functions for the learned and the fixed
dictionaries respectively and λ and µ are Lagrangian multipliers. The weighted energy
functions are defined as follows:

EF
W (y, x,D, λ) =

1

2
∥y −Dx∥2F + λ∥g(D)Tx∥1,(3.16)

EL
W (y, [x1 x2 · · · xm], D, λ) =

m∑
j=1

1

2
∥Rj(y)−Dxj∥2F + λ∥g(D)Txj∥1.(3.17)

Since the optimization problem in Equation (3.16) is convex with respect to the sub-
components {yi} and representation coefficients {xi}, we propose an iterative algo-
rithm to minimize the Lagrangian. Each iteration of the algorithm is comprised of
two steps: finding {xi}, and finding {yi}. In the first step, the coefficients xi of each
subcomponent are updated to the minimum of the weighted energy function:

[x1
i x2

i · · · xm
i]←

arg min
[u1 u2 ··· um]

EL
W (yi, [u

1 u2 · · · um], Di, λ), ∀ Di ∈ ΩL;

xi ← argmin
u

EF
W (yi, u,Di, λ), ∀ Di ∈ ΩF .

(3.18)

The minimization procedure for Equation (3.18) is usually referred to as the weighted
sparse coding, which has been widely studied [27, 16, 8, 5, 10, 2]. In the second
step, {yi} are updated to minimize the Lagrangian. If the other parameters are held

8 G.J. PENG AND W.L. HWANG

constant, the formulation of the minimization is exactly the same as those of adaptive
MCA, which are manifested in Equation (2.6) for the fixed dictionaries and Equation
(2.7) for the learned dictionaries. Because of the optimization of a convex function,
our procedure to derive {yi} and {xi} with given dictionaries is always convergent.

3.2. Distance-constrained Dictionary Adaptation. Images usually contain
complicated structure, such as texture, that cannot be simply captured with an image
dictionary. [23] proposed an extension of MCA by dividing the image into patches
and using a learning method to learn the dictionary for the patches. Because of
huge variations of image structure, the learned dictionary is then modified to make it
adaptive to the derived subcomponents from the previous iteration. This approach can
improve the separation performance of the MCA-based signal separation approach.
The dictionary adaptation method is to derive the patch dictionary for each texture
subcomponent:

D∗ ← argmin
D

m∑
j=1

∥Rj(yi)−Dxj
i∥

2
F ,(3.19)

where D∗ is the patch dictionary for subcomponent i. This approach might work
well for segmentation, where subcomponents are located at disjoint spatial areas in
an image, but would work less well for signal separation. The dictionary depends on
the subcomponents derived from the previous iteration, and the subcomponents may
contain noise or patterns from other subcomponents. Therefore, dictionary distortion
can persist is the adaptation process. In addition, several iterations of this approach
can result in a dictionary that is quite different from the original learned dictionary,
which usually capture certain desired structure of a subcomponent. We, thus, im-
pose a regularization penalty on the distance between the derived dictionary and the
original learned dictionary at each iteration. Hence, the dictionary derived from our
dictionary adaptive process is based on the information derived from the previous
iteration as well as the original learned dictionary.

In Equation (3.19), if Y were to denote the matrix [R1(yi), R2(yi), · · ·, Rm(yi)]
and X were to denote the matrix [x1

i , x
2
i , · · ·, xm

i], then the equation can be rewritten
as

D∗ ← argmin
D
∥Y −DX∥2F .(3.20)

Applying the regularization penalty to Equation (3.20) yields

D∗ ← argmin
D
∥Y −DX∥2F + λdict∥D −Dtrain∥2F .(3.21)

Equation (3.21) can be solved by standard matrix calculation technique. Because
X is sparse, we can use an alternative approach, motivated by the K-SVD algorithm
[1], to derive its solution with an additional constraint on the supports on nonzero
coefficients in X. Let supp(X) denote the positions of the nonzero coefficients in X,
and let supp(Xold) denote those of X derived from the previous iteration. The pro-
posed dictionary adaptation process requires that supp(Xold) is retained in supp(X).
Dictionary adaptation is an iterative process, formulated as follows for one iteration:

[D,X]← argmin
D,X
∥Yi −DX∥2F + λdict∥D −Dtrain∥2F(3.22)

with supp(X) ⊆ supp(Xold).

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS9

In Equation (3.22), both D and X are updated at each iteration. Also, if the La-
grangian λdict is set to zero, this optimization problem is identical to the K-SVD
problem. The optimization problem can be solved by using the SVD to update one
column of the dictionary and the corresponding matrix nonzero row coefficients one
at a time in sequence. The Appendix presents the detailed procedure to derive the
optimal D and X.

3.3. Proposed Signal Separation Algorithm. The re-weighted and adaptive
MCA approach intends to derive the subcomponents {yi}, the weighted sparse coding
coefficients {xi}, and the dictionaries {Di} that minimize the following optimization
function:

Eall({yi}, {xi}, {Di}) =(3.23)

1

2
∥y −

∑
i

yi∥2F +(3.24)

µ{
∑

Di∈ΩF

1

2
∥yi −Dixi∥2F +

∑
Di∈ΩL

m∑
j=1

1

2
∥Rj(yi)−Dix

j
i∥

2
F }+(3.25)

µλ{
∑

Di∈ΩF

∥g(Di)
Txi∥1 +

m∑
j=1

∑
Dj

i
∈ΩL

∥(g(Dj
i))

Txj
i∥1}+(3.26)

µλdict{
∑

Di∈ΩL

∥Di −Dtrain
i ∥2F },(3.27)

where {Dtrain
i } are the trained dictionaries. Recall that ΩF and ΩL are the set of fixed

image dictionaries and the set of learned patch dictionaries respectively; an image is
divided into m patches of equal size; and µ, λ, and λdict are Lagrangian multiplier
parameters. In Equation (3.26), the patch dictionary Dj

i as the input argument to the
weighting function g is location-dependent, because the supports for sparse represen-
tations with the patch dictionaries vary with the locations of patches. The proposed
method is an iterative algorithm, comprised of four steps at each iteration: estimat-
ing the weighted sparse coefficient vectors {xi}; updating the subcomponents {yi};
dictionary adaptation {Di}; and calculating the weights to each atom, {g(Di), g(D

j
i)}.

In the first step, a weighted L1 minimization algorithm is used to derive the
coefficient vectors that minimize the second and third terms of Eall (Equations (3.25)
and (3.26)). In the second step, the subcomponents are derived by minimizing the
first and second terms of Eall (Equations (3.24) and (3.25)). Details on the two steps
can be found in Section 3.1.3. In the third step, the patch dictionaries {Di ∈ ΩL} are
updated by minimizing the second and fourth terms of Eall (Equations (3.25) and
(3.27)) by using the method detailed in Section 3.2. In the fourth step, the weight to
each atom is updated according to the current supports of sparse coding coefficients,
as described in Section 3.1.2. The step-by-step procedure of the proposed algorithm
is presented in Table 2.

The following analyzes the computational complexity of our algorithm. The com-
putational complexity of the first and second steps is bounded by the weighted sparse
coding, which calculates the representing vectors for |Ω| dictionaries. We use different
algorithms to derive the weighted sparse coding solutions for image dictionaries versus
patch dictionaries. Because there are numerous atoms in an image dictionary, using
conventional proximal methods to solve L1 minimization is too computational inten-
sive. Therefore, we use fast wavelet/curvelet decomposition [18, 4] and “weighted”

10 G.J. PENG AND W.L. HWANG

soft thresholding to derive the coefficients. “Weighted” soft thresholding updates the
decomposition coefficients vector xi as

xi[k]←
{

sign(xi[k])(|xi[k]| − λg(Di)[k], if |xi(k)| > λg(Di)[k],
0, otherwise,

(3.28)

which can be obtained by modifying L1 optimization sparse coding methods straight-
forwardly [11]. The complexities of fast wavelet/curvelet analysis and soft threshold-
ing are O(Nlog(N)) and O(N) respectively, where N is the number of pixels in an
image. On the other hand, the weighted sparse coding for patch dictionaries can be
implemented using an algorithm in the block descent family [8, 21, 5, 10, 3, 6]. The
complexity of these algorithms depends on the required accuracy of the estimation
of coefficients. If the desired accuracy of the approximate solution is ϵsparse, i.e.,
||xi− x∗

i ||2 ≤ ϵsparse where x∗
i is the estimated and xi is the true coefficient, then the

number of the steps required to achieve that accuracy is O(1
ϵ2sparse

) for the Nestrov

algorithm [21]. Asif et al. proposed a method to solve the weighted sparse coding
method [2]. The method uses a guess of xi as the initial to speed up the convergence.
The method is suitable for solving the weighted sparse coding in our iterative algo-
rithm because the xi obtained in the previous iteration should be an ideal warm start
for the current iteration. We use their algorithm to derive the weighed sparse coding
coefficients for patch dictionaries.

The Appendix analyzes the complexity for dictionary update (the third step of
our algorithm). If the number of atoms in each patch dictionary is bounded by
K, the number of patch dictionaries is |ΩL|, and N is the size of the image, then
the computational complexity is O(K2N |ΩL|). The fourth step of our algorithm
calculates the weight of each atom in the support of dictionaries, i.e., the atoms
whose coefficients are used in the weighted sparse representations of subcomponents.
The major computational cost is consumed in calculating the mutual coherence of
an atom with atoms in the supports of other dictionaries. Let S denote the largest
number of coefficients selected for weighted sparse representation of a subcomponent.
The number of atoms in a dictionary by wavelet/curvelet analysis is bounded by
N logN , where N is the size of an image, and the total number of dictionary is |Ω|.
To simplify the analysis, we assume that the atoms in all |Ω| dictionaries have size
N . To calculate the weight of an atom in a dictionary requires at most (|Ω| − 1)S
inner products. Each inner product takes O(N) multiplications. So, the weights can
be derived by O(|Ω|2SN).

Summarizing from the above complexity analysis, we obtain the cost O(N logN+
|Ω|2SN + K2N |ΩL|) for executing one iteration of our algorithm. The number of
atoms for a patch dictionary is K, of order O(Nm) with m = kN and the constant
k < 1. In our implementation, k is set at about 0.01. If S > logN , then the weight
update step (the fourth step) dominates the computational cost; otherwise, the fast
wavelet/curvelet decomposition in the first step dominates.

4. Experimental Results. We compared our results with those of adaptive
MCA [23] in solving the signal separation problem. Adaptive MCA is much more
complicated and computationally intensive than is MCA [24]. However, as shown in
[23], adaptive MCA outperforms MCA in retrieving the texture component from the
image. Therefore, we compared the results of our method only with those of adaptive
MCA. We implemented adaptive MCA using the algorithm shown in Table 1, and our
method’s algorithm is shown in Table 2. The maximum number of iterations was set
to 50. However, our experiments usually reached convergence earlier.

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS11

Our experiments used one-dimensional signals and two-dimensional images. Our
methods have four parameters: µ, λ, λdict, and α. µ reflects the noise level ϵ in
Equation (1.1) and was set to 0.1 in all experiments. λdict constrains the distance
from the trained dictionary in the dictionary adaptation and was set to 10 in all
experiments. The other two parameters were varied to demonstrate their effect on
separation performance. The parameter λ and µ are also in the adaptive MCA. For
our implementation of adaptive MCA, µ was set to 0.1 and λ was permitted to vary,
as with our method.

Both methods have two types of dictionaries: fixed image dictionary and learned
patch dictionary. We can therefore categorize the experiments according to the types
of dictionaries used to represent each subcomponent. In all experiments, we separated
an input signal into two subcomponents; hence, the experiments can be categorized
into “Fixed vs. Fixed,” “Fixed vs. Learned,” and “Learned vs. Learned.” Although
the image dictionary is fixed in the signal separation process, the learned patch dic-
tionary is constantly updated by both methods. We demonstrate the results of these
three categories as follows.

A. Fixed vs. Fixed

In the first experiment, two signals y⋆1 and y⋆2 were constructed to be sparse with
respect to the DCT and DWT basis respectively. The size of each signal was 128;
the sparsity of the signals, denoted by S, ranged from 4 to 32 with randomly selected
supports. The nonzero coefficients were sampled randomly from a Laplace (15, b)
distribution, with b adjusted so that the L2 norm of both signals is the same. The
input signal was y = y⋆1 + y⋆2 + n, where n was N (0, 1) noise.

For each value of S, we performed our algorithm and adaptive MCA on 200
trails of y. The results are shown in Figure 1. In the left sub-figure of Figure 1,
the SNR performance of both algorithms decreases when S increases. As shown in
the right sub-figure, this resulted from the mutual coherence increment caused by
the enlarged support of representing each signal. This result indicates that defined
mutual coherence is negatively correlated to separation performance. Also, as shown
in Figure 1, the SNR performance of our method is superior to that of adaptive MCA
for any value in the range of α, listed in the legend of the figure.

The second experiment was conducted on the superposition of two images, where
one can be sparsely represented by DCT and the other by DWT. Figure 2 shows and
compares the signal separation results. Both methods can separate the two images
quite well, with only slight perceptual difference. However, the methods’ PSNR values
indicate that our method had average gain of about 6 dB greater than that of adaptive
MCA. The PSNR gain of our method is due to better contrast recovery than adaptive
MCA.

B. Fixed vs. Learned

We performed separation on the superposition of two images y1 and y2, where y1
was approximately sparse by a fixed image dictionary and y2 by the learned patch
dictionary. The image size was 256 × 256, the size of a patch was 10 × 10, and
the overlap of the adjacent patches was 1 pixel. Image y1 was taken from the first
category, consisting of images at the top two rows of Figure 3. Image y2 was taken
from the second category, consisting of images at the bottom two rows of the figure.
The training patches to derive the learned patch dictionary for texture image y2 were
randomly picked from the image. Therefore, the learned patch dictionary well matches
the texture image. The dictionary was learned using the K-SVD algorithm.

The input signal was obtained as the linear combination of y1 and y2 with y =

12 G.J. PENG AND W.L. HWANG

(1 − β)y1 + βy2, where the value of β ranged from 0.2 to 0.8. The average PSNRs
obtained by adaptive MCA with different β and λ values for the image y are shown in
the subfigure at the top row of Figure 4. Because the dictionary adaptation of adaptive
MCA may result in a dictionary quite distant from the original learned dictionary, this
can degrade the separation performance. Thus, for each input image y, we executed
the algorithm twice: one with dictionary adaption and the other without. Then, the
better result of the two was taken to represent performance, at the top row of Figure
4. The PSNR gains of our method over adaptive MCA are shown in the subfigures at
the middle and bottom rows of Figure 4. Each measurement point in the subgraphs
is the average gain of separating 16 composite images, derived using the same β and
λ values in both methods. Because of how we obtained the performance of adaptive
MCA, our weighting scheme is the main factor contributing to the gain of our method.
The higher the gain of our method, the better our weighting scheme can resolve the
ambiguity of signal separation.

As shown in the middle and bottom rows of Figure 4, our method outperforms
adaptive MCA in all cases. Some interesting observations: (1) With fixed α and λ,
increasing β (the energy of the texture subcomponent) decreases the gain. Since the
learned patch dictionary can sparsely represent the texture subcomponent, ambiguity
is not serious for signal separation when β is large, where the input image is dominated
by the texture subcomponent. This is why the proposed weighting scheme achieves
only a slight improvement. (2) The gain at λ = 1 ranges from 0.5 to 2 dB, but at
other λ values, it ranges from 2 to 4 dB. Smaller λ implies the representation is not
sparse. This caused overestimating of the mutual coherence and the weighting values
on atoms (as is described in the last paragraph of Section 3.1.1). (3) The gain is quite
robust to changes in α.

The top row of Figure 5 demonstrates the separation results of the input image.
The visual quality of our reconstruction, in the right-hand column, is noticeably better
than that of the compared method, in the middle column. The average PSNR of our
reconstruction is about 4 dB higher than that of the compared method.

C. Learned vs. Learned

The setting of the experiments and the range of parameter values were the same
as that in part B of Section 4, except that the image y1 is also a texture image, taken
from the bottom two rows of Figure 3. The training procedure and training examples
for the dictionaries of y1 and y2 were obtained similarly to part B of Section 4.

The performance of adaptive MCA was measured as described in partB of Section
4 and is shown in the subgraph at the top of Figure 6. The average PSNR gains of
our method over that of adaptive MCA are demonstrated in the subfigures at the
middle and bottom rows of Figure 6. The weighting scheme is the main reason
for the gain of our method. Except in some cases when α = 64 (the weighting
parameter), our method outperformed the compared method. Compared to that in
part B of Section 4, the PSNR gain of separating two texture images was lower.
Some interesting points: (1) The gain with λ = 1 is the lowest, which is consistent
with the results obtained in part B of Section 4. For small λ, the representation
is not sparse. This causes overestimating the mutual coherence values. (2) Our
method’s performance was robust over a range of α values. (3) The gain was higher
when β was low or high. In the cases, one texture subcomponent dominated the
input. The dominating texture can be sparsely represented by its corresponding
dictionary. The representation coefficients of the other texture are spread out, yielding
the overestimation of the mutual coherence value.

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS13

Figure 7 demonstrates the separation results of the composite image, shown at
the top row of the figure. The visual quality of our reconstruction, in the right-hand
column, is obviously better than the compared method, in the middle column. The
average PSNR of our reconstruction is about 2 dB higher than that of the compared
method.

Summarizing from our experiments, we conclude that adopting the proposed
weighting scheme and dictionary adaptation in MCA can improve the signal sepa-
ration results. As demonstrated, the parameters used in our method are quite robust.
To achieve high performance, the following conditions must be satisfied: (1) the rep-
resentation is approximately sparse (or λ cannot be too small); and (2) the weighting
parameter, α, to derive the defined mutual coherence, cannot be too high.

5. Conclusion. We proposed a novel method, called re-weighted and adaptive
MCA, to facilitate the morphological diversity of the signals. To increase the diversity
of the resulting signals, we assigned “heavier” weights to atoms of a subcomponent
that are highly coherent with atoms of other subcomponents. In addition, we imposed
on dictionary adaptation the constraint that the adaptive dictionaries be preserved
inside a ball centered at the original trained dictionaries. Our experiments showed that
the proposed method significantly outperforms adaptive MCA in various MCA-based
applications. Our future work includes building dictionaries having great diversity
and investigating the properties of the weighting scheme introduced in this paper.

Appendix A. Appendix.
To solve the problem in (3.22), we update one column at a time in the dictionary

along with the corresponding nonzero row coefficients. Let dj and rTj denote the j-
th column in D and the j-th row in X respectively. Let pj(k) be the j-th nonzero
index in rTj , and let ||rTj ||0 be the number of nonzero coefficients. If we let Ψj be

an L × ∥rTk ∥0 matrix in which the entries (pj(k), k) are set at one and other entries
are set at zero, rTj Ψj is a 1× ||rTj ||0 row vector with nonzero entries. For example, if

rTj = [0 1 0 0 2], then rTj Ψj is [1 2].
Next, we consider the procedure used to update the j-th column dj in the dictio-

nary and the corresponding nonzero coefficients rTj Ψj . First, we have

||YiΨj −DXΨj ||2F = ||(Y −
∑
l ̸=j

dlr
T
l)Ψj − dlr

T
l Ψj ||2F(A.1)

= ||EjΨj − dlr
T
l Ψj ||2F ,(A.2)

= ||Ẽj − djx
T
j ||2F ,(A.3)

where Ej = Y −
∑

l ̸=j dlr
T
l , Ẽj = EjΨ, and xT

j = rTj Ψj . Equation (A.3) is the K-SVD

updating rule, which uses a rank 1 matrix, djx
T
j , to approximate the error matrix Ẽj .

Let dtrainj denote the j-th column in the dictionary Dtrain
i . Then, we have

||YΨj −DXΨj ||2F + λdict||D −Dtrain||2F(A.4)

= ||Ẽj − djx
T
j ||2F + λdict||dj − dtrainj ||2F + Cj ,

where Cj is a constant that is independent of dj and xT
j . Now, to obtain the optimal

solution of the problem in Equation (3.22), we have to solve the following subproblem:

min
dj ,xT

j

||Ẽj − djx
T
j ||2F + λdict||dj − dtrainj ||2F .(A.5)

14 G.J. PENG AND W.L. HWANG

Comparison of Equations (A.3) and (A.5) shows that our approach is a rank 1 ap-
proximation of Ẽj , like the K-SVD approach. However, our dj is penalized because

of its distance from dtrainj . Therefore, the optimal solution cannot be obtained by

the K-SVD method, which takes the SVD of Ẽj = U∆V T and then assigns dj = u1

(the first column of U) and xT
j = ∆(1, 1)vT1 (by multiplying the first row of V T by

the (1, 1) element of ∆).

Let f(dj , xj ; Ẽj , d
train
j) = ∥Ẽj − djx

T
j ∥2F + λdict∥dj − dtrainj ∥2F . After taking the

partial derivatives of the function f with respect to dj and xj and setting the results
to zero, we obtain the following equations for the optimal solution of Equation (A.5):

(||xj ||2 + λdict)dj = Ẽjxj + λdictd
train
j(A.6)

||dj ||2xj = ẼT
j dj ,(A.7)

where ||dj || = 1 because each column of the dictionary is normalized. Next, we derive
the solutions of dj and xj in (A.6) and (A.7). For convenience, we omit the subscript
indices in the following equations. Equation (A.6) can be rewritten as

||x||2d = Ẽx+ λdict(d
train − d).(A.8)

If we fix x to find d, Equation (A.8) can be formulated as a root-finding problem
and use Newton’s method to update the vector d. Let the root-finding problem be

g(d) := (||x||2 + λdict)d − Ẽx + λdictd
train, where the root of g(d) is the solution of

Equation (A.8). Then, based on Newton’s method, the vector d is updated by

d← do −
g(do)

g′(do)
= do −

(||x||2 + λdict)do − Ẽx+ λdictd
train

||x||2 + λdict
,(A.9)

where the subscript o indicates the current estimation, so that do is the current
estimation of d.

Assume that x is in the direction of an eigenvector of ẼT Ẽ; that is, x = ||x||x̂
and

µx̂ = ẼT Ẽx̂,(A.10)

where µ is the corresponding eigenvalue. Then, Equation (A.8) becomes

∥x∥3x̂ = µ∥x∥x̂+ λdictẼ
T (dtrain − d).(A.11)

Now we need only to derive the norm of x. From Equation (A.7), we have xTx =
∥x∥2 = dT ẼẼT d. In addition, we let the SVD of ẼẼT be

ẼẼT =
l∑

i=1

σ2
i viv

T
i .(A.12)

The norm of x can be written as

∥x∥2 =
l∑

i=1

σ2
i < d, vi >

2,(A.13)

where l is the rank of Ẽ and σ1 ≥ · · · ≥ σl. This equation gives the bounds of the
norm by

σl ≤ ||x|| ≤ σ1.(A.14)

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS15

Because of Equation (A.7), we can substitute x for ẼT d in Equation (A.11) and obtain

(∥x∥2 + λdict − µ)x = λdictẼ
T dtrain.(A.15)

Taking the norm on both sides of the above equation, we obtain

(∥x∥2 + λdict − µ)∥x∥ = λdict∥ET dtrain∥.(A.16)

To update the dictionary column (atom) d and the corresponding coefficient vector
x, we use the following procedure: (1) if λdict = 0, we return the result of the K-SVD
method; or (2) if λdict > 0, we substitute the current estimate d into Equation (A.13)
to derive the rough estimation of the norm, which is denoted by ∥xo∥ and used to
replace ∥x∥ in the expression ∥x∥2 + λdict − µ in Equation (A.16). Using rough
estimation, the norm of x is updated by by

∥x∥ ←

{
λdict∥ET dtrain∥
∥xo∥2+λdict−µ , if ∥xo∥2 + λdict − µ ̸= 0,

∥xo∥, otherwise.
(A.17)

The term ||xnew|| replaces ||xo|| in subsequent iterations until the norm does not
change. At that point, we substitute ||xnew|| for ||x|| in Equation (A.9) to derive the
new atom d. The process is repeated until convergence or some stopping condition
on the number of iterations is reached.

The computational complexity of the above procedure is bounded by the SVD
performed on the matrix EjΨj , where j indicates that Ej is the residual of the j-th
column. The average complexity of SVD is bounded by the size of the matrix EjΨj .
The size of the received signal is N , and the number of patches is m, which means that
the number of rows in EjΩj is N/m. The number of columns is the number of nonzero
coefficients in the j-th row of the coefficient matrix X of size K ×m, where K is the
number of atoms possessed by the dictionary. If each column of X contains at most S
nonzero coefficients, the number of nonzero coefficients in X is boundedby mS. If the
nonzero coefficients are distributed uniformly in X, the average nonzero coefficient in
each row is mS

K . Thus, the size of EjΩj is N
m ×

mS
K . Being that a dictionary has K

columns, the computing time consumed by each iteration of the dictionary’s update
procedure can be calculated as

O(K(Km
N

m
+ (

N

m
)2(

mS

K
) +

N

m
(
mS

K
)2 + (

mS

K
)3))(A.18)

= O(K(KN +
N2S

mK
+

NmS2

K2
+ (

mS

K
)3))

= O(K2N +
N2S

m
+

NmS2

K
+

(mS)3

K2
).

Usually, the number of atoms K is much larger than the size of the received signal N ,
the average sparsity S, and the number of patches m, meaning that each iteration of
the dictionary’s update procedure takes approximately O(K2N) time.

16 G.J. PENG AND W.L. HWANG

REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation, IEEE Transactions on Signal Processing, 54 (2006),
pp. 4311–4322.

[2] M.S. Asif and J. Romberg, Fast and accurate algorithms for re-weighted L1-norm minimiza-
tion, IEEE Transactions on Signal Processing, 61 (2013), pp. 5905–5916.

[3] T. Blumensath and M.E. Davies, Normalized iterative hard thresholding: Guaranteed stability
and performance, IEEE Journal of Selected Topics in Signal Processing, 4 (2010), pp. 298–
309.

[4] E.J. Candés, L. Demanet, D.L. Donoho, and L. Ying, Fast discrete curvelet transforms,
Multiscale Modeling and Simulation, 5 (2006), pp. 861–899.

[5] E.J. Candès and T. Tao, Decoding by linear programming, IEEE Transactions on Information
Theory, 51 (2005), pp. 4203–4215.

[6] S.S. Chen, D.L. Donoho, and M.A. Saunders, Atomic decomposition by basis pursuit, SIAM
Review, 43 (2001), pp. 129–159.

[7] S. Chen and J. Wigger, Fast orthogonal least squares algorithm for efficient subset model
selection, IEEE Transactions on Signal Processing, 43 (1995), pp. 1713 –1715.

[8] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for lin-
ear inverse problems with a sparsity constraint, Communications on Pure and Applied
Mathematics, 57 (2004), pp. 1413–1457.

[9] D.L. Donoho and M. Elad, Optimally sparse representation in general (non-orthogonal)
dictionaries via l1 minimization, Proceedings of the National Academy of Sciences of the
United States of America, 100 (2003), pp. 2197–2202.

[10] M. Elad, Why simple shrinkage is still relevant for redundant representations?, IEEE Trans-
actions on Information Theory, 52 (2006), pp. 5559–5569.

[11] , Sparse and Redundant Representations - From Theory to Applications in Signal and
Image Processing, Springer, 2010.

[12] M. Elad, J.-L. Starck, P. Querre, and D.L. Donoho, Simultaneous cartoon and texture
image inpainting using morphological component analysis (MCA), Applied and Computa-
tional Harmonic Analysis, 19 (2005), pp. 340–358.

[13] K. Engan, S. O. Aase, and J. Hakon Husoy, Method of optimal directions for frame design,
in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, 1999,
pp. 2443–2446.

[14] M.J. Fadili, J-L Starck, J. Bobin, and Y. Moudden, Image decomposition and separation
using sparse representations: An overview, Proceedings of the IEEE, 98 (2010), pp. 983–
994.

[15] M-J. Fadili, J-L. Starck, M. Elad, and D.L. Donoho, MCALab: Reproducible research in
signal and image decomposition and inpainting, Computing in Science and Engineering,
12 (2010), pp. 44–63.

[16] I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using
focuss: a re-weighted minimum norm algorithm, IEEE Transactions on Signal Processing,
45 (1997), pp. 600–616.

[17] L-W. Kang, C-W. Lin, and Y-H. Fu, Automatic single-image-based rain streaks removal via
image decomposition, IEEE Transactions on Image Processing, 21 (2012), pp. 1742–1755.

[18] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Elsevier Science, 2008.
[19] S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans-

actions on Signal Processing, 41 (1993), pp. 3397–3415.
[20] B. K. Natarajan, Sparse Approximate Solutions to Linear Systems, SIAM Journal on Com-

puting, 24 (1995), pp. 227–234.
[21] Y. Nesterov, Gradient Methods for Minimizing Composite Objective Function, CORE dis-

cussion paper: Center for Operations Research and Econometrics, CORE, 2007.
[22] Y. C. Pati, R. Rezaiifar, Y. C. Pati R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal

matching pursuit: Recursive function approximation with applications to wavelet decom-
position, in Proceedings of the 27 th Annual Asilomar Conference on Signals, Systems, and
Computers, 1993, pp. 40–44.

[23] G. Peyré, J. Fadili, and J-L. Starck, Learning the morphological diversity, SIAM Journal
on Imaging Sciences, 3 (2010), pp. 646–669.

[24] J.-L. Starck, M. Elad, and D.L. Donoho, Redundant multiscale transforms and their appli-
cation for morphological component analysis, Advances in Imaging and Electron Physics,
132 (2004).

[25] , Image decomposition via the combination of sparse representations and a variational

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS17

approach, IEEE Transactions on Image Processing, 14 (2005), pp. 1570–1582.
[26] C. Studer and R.G. Baraniuk, Stable restoration and separation of approximately sparse

signals, Applied and Computational Harmonic Analysis, (to appear 2014).
[27] R. Tibshirani, Regression shirnkage and selection via the lasso, Journal of the Royal Statistical

Society Seires B (Methodologocal), 58 (1996), pp. 267–288.

18 G.J. PENG AND W.L. HWANG

Table 1
The Adaptive MCA algorithm.

Input y: The input signal.
{Di}: The dictionaries describing the morphologies.
Imax: The maximal number of iterations allowed.

Output {yi}: The morphological components.
1. Initialize the components:

For each subcomponent i,

yi ← 0⃗.

y
′

i ← 0⃗.
Loop 1: Loop k = 1 to Imax:

For each subcomponent i:
2. Update the coefficient vectors:

xi ← argmin
x

Ei(yi, x,Di).

(Ei is the energy function in Equation (2.2) for the fixed dictionary or
Equation (2.3) for the learned dictionary.)

Loop 2: Loop until {yi} converge:
For each subcomponent i, perform the following steps:
3. Calculate the i-th residual:

ri ← y −
∑

j ̸=i y
′

j .

4. Update the i-th component:
For the fixed dictionaries:
yi ← argmin

f
∥ri − f∥22 + µ∥f −Dixi∥22.

For the learned dictionaries:

yi ← argmin
f
∥ri − f∥22 + µ′

m∑
j=1

∥Rj(f)−Dix
j
i∥

2
2.

5. Store the components:

{y′

i} ← {yi}.
End Loop 2.
6. Update the learned dictionary:

For each learned dictionary Di,
Di ← argmin

D
Ei(yi, xi, D).

End Loop 1.

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS19

Table 2
The Proposed Algorithm.

Input y: The input signal.
{Di}: The dictionaries describing the morphologies.
Imax: The maximal number of iterations allowed.

Output {yi}: The morphological components.
1. Initialize the components:

For each subcomponent i;

let yi ← 0⃗; y
′

i ← 0⃗.
compute the weighting factors according to Equation (3.14).

Loop 1: Loop k = 1 to Imax:
Loop 2: Loop until {xi} and {yi} converge:
2. Update the coefficient vectors:

For each subcomponent i:

xi ← argmin
x

EW
i (yi, xi, Di). (E

W
i is defined in Equation (3.17).)

Loop 3: Loop until {yi} converge:
3. Update the components:

For each subcomponent i, perform the following:
If Di is the fixed dictionary:

yi ← argmin
f
∥y −

∑
j ̸=i

y
′

j − f∥22 + µ∥f −Dixi∥22.

If Di is the learned dictionary:

yi ← argmin
f
∥y −

∑
j ̸=i

y
′

j − f∥22 + µ

m∑
j=1

∥Rj(f)−Dix
j
i∥

2
2.

4. Store the components:

{y′

i} ← {yi}.
End Loop 3.

End Loop 2.
5. Update the learned dictionary:

For each learned dictionary Di, update Di and xi to satisfy Equation (3.21).
6. Update the coherence vectors:

Update the weighting factors according to Equation (3.14).
End Loop 1.

20 G.J. PENG AND W.L. HWANG

4 12 22 32
0

10

20

30

40

S

S
N

R
 (

d
B

)

SNR Values: Proposed vs. Adaptive MCA

Adaptive MCA
α = 2
α = 4
α = 8
α = 16

0.2 0.6 0.8
5

10

15

20

25

30

35

 Mutual Coherence

S
N

R
 (

d
B

)

SNR Values vs. Mutual Coherence

Adaptive MCA
α = 2
α = 4
α = 8
α = 16

Fig. 1. The average SNR values of the two components reconstructed using adaptive MCA
and our method. Left: The horizontal axis indicates the sparse level S of the subcomponents used
to synthesize the input signal. The size of each input signal is 128. At each value of S, 200 trails
of input signals are separated. Our method outperforms adaptive MCA in every case. Right: The
mutual coherence calculated with atoms in the supports of the two subcomponents is collected and
plotted against SNR. Each measurement point is the average SNR obtained with trails of similar
mutual coherence. SNR decreases when the mutual coherence increases.

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS21

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

Fig. 2. First row: The composite of a cartoon and a texture image. Second row: From left
to right, the cartoon image is approximately sparse with respect to the wavelets, the subcomponent
reconstructed using adaptive MCA (PSNR is 31.1929 dB), and that obtained by using the proposed
method (PSNR is 37.2473 dB). Third row: From left to right, the texture image is approximately
sparse to the DCT, the subcomponent reconstructed using adaptive MCA (PSNR is 31.7873 dB),
and that reconstructed by the proposed method (PSNR is 37.2473 dB).

22 G.J. PENG AND W.L. HWANG

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Fig. 3. The images used in our experiments. The images in the top two rows are approximately
sparse to the wavelets. The dictionaries of the texture images in the bottom two rows were learned
using K-SVD.

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS23

0.2 0.3 0.4 0.5 0.6 0.7 0.8
18

20

22

24

26

28

P
S

N
R

 (
d

B
)

Adaptive MCA: Average PSNR

λ = 1
λ = 3
λ = 5
λ = 7
λ = 9
λ = 11

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

P
S

N
R

 G
ai

n
(d

B
)

 λ=1

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

P
S

N
R

 G
ai

n
(d

B
)

 λ=3

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

P
S

N
R

 G
ai

n
(d

B
)

 λ=5

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

P
S

N
R

 G
ai

n
(d

B
)

 λ=7

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

P
S

N
R

 G
ai

n
(d

B
)

 λ=9

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

P
S

N
R

 G
ai

n
(d

B
)

 λ=11

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

Fig. 4. Horizontal axis: β value. Top: The performance of adaptive MCA. The second and
third rows show the average PSNR gain of our method over adaptive MCA.

24 G.J. PENG AND W.L. HWANG

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Fig. 5. Comparison of the visual quality of the reconstructed subcomponents. First row: The
composite image. Second row: From left to right, the original image, the subcomponents recon-
structed by adaptive MCA (PSNR is 24.8149 dB), and that obtained by the proposed method (PSNR
is 28.8784 dB). Third row: From left to right, the original texture image, the subcomponents recon-
structed by adaptive MCA (PSNR is 24.8146 dB), and that reconstructed by the proposed method
(PSNR is 28.8795 dB).

SIGNAL SEPARATION USING RE-WEIGHTED ANDADAPTIVEMORPHOLOGICAL COMPONENT ANALYSIS25

0.2 0.3 0.4 0.5 0.6 0.7 0.8
19

20

21

22

23

24

25

P
S

N
R

 (
d

B
)

Adaptive MCA: Average PSNR

λ = 1
λ = 3
λ = 5
λ = 7
λ = 9
λ = 11

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

P
S

N
R

 G
ai

n
(d

B
)

 λ=1

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

P
S

N
R

 G
ai

n
(d

B
)

 λ=3

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

P
S

N
R

 G
ai

n
(d

B
)

 λ=5

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.5

0

0.5

1

1.5

2

2.5

P
S

N
R

 G
ai

n(
dB

)

 λ=7

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.5

0

0.5

1

1.5

2

2.5

P
S

N
R

 G
ai

n(
dB

)

 λ=9

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

0

1

2

3

P
S

N
R

 G
ai

n(
dB

)

 λ=11

α = 2
α = 4
α = 8
α = 16
α = 32
α = 64

Fig. 6. Horizontal axis: β value. Top: The performance of adaptive MCA. The second and
third rows show the average PSNR gain of our method over adaptive MCA.

26 G.J. PENG AND W.L. HWANG

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

Fig. 7. First Row: The composite of two texture images. Second row: From left to right, the
original texture image, the subcomponent reconstructed using adaptive MCA (PSNR is 18.6648 dB),
and that obtained by the proposed method (PSRN is 20.8336 dB). Third row: From left to right,
the fingerprint image, the subcomponent reconstructed using adaptive MCA (21.3252 dB), and that
reconstructed by the proposed method (23.6710 dB).

