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ABSTRACT 

    Past experiences tell us that a disaster warning and response system can improve its 

surveillance coverage of the threatened area and situation awareness by supplementing 

in-situ and remote sensor data with human sensor data captured and sent by people in 

the area. This paper is concerned with fusion and processing methods with which the 

system can make use of human sensor data and physical sensor data synergistically to 

speed up the decision process and improve the quality of its decision. We formulate the 

problem in a statistical detection and estimation framework. Within this framework, 

value fusion and decision fusion of human sensor data and physical sensor data can be 

treated in a coherent way.  

 

Keywords: Crowdsourcing, Multiple sensor fusion, Statistical detection and estimation. 

 

 

Copyright @ December 2012 

                                                 
J. W. S. Liu is affiliated with Institute of Information Science and Center for Information Technology 

Innovation, Academia Sinica, Taiwan. Her email address is janeliu@iis.sinica.edu.tw   
E. T. H. Chou is affiliated with Computer Science Department, National Yunlin University of Science and 

Technology, Taiwan. His email address is edwardchu@yuntech.edu.tw 
P. H. Tsai is affiliated with Institute of Manufacturing Information System, National Cheng Kung University, 

Taiwan. Her email address is phtsai@mail.ncku.edu.tw  



 2

1  INTRODUCTION 

Recently, the tremendous growth in usages of smart mobile devices equipped with cameras, 

temperature and vibration sensors, etc. and social networking services have enabled a wide 

spectrum of applications and services to be more pervasive, location-aware and context-aware 

than feasible even a few short years ago. Examples of such applications and services, 

crowdsourcing projects worldwide, approaches to integrating social sensing with pervasive 

services, and overview of the state of the art and remaining challenges can be found in [1-9].  

It comes with no surprise that people with smart mobile devices and social networking 

services are playing an increasingly more essential role in disaster preparedness and response. 

Experiences from recent disasters (including the devastating oil spills, wildfires and floods 

worldwide) tell us that in-situ and remote physical sensors deployed by disaster surveillance, 

early warning and rapid response systems often cannot provide the system with adequate data 

for situation assessment purposes. When this happens, crowdsourcing human sensor data can 

be an effective solution. By a human sensor, we mean a person armed with one or more smart 

mobile devices and social networking services. By human sensor data, we mean observation 

(and measurement) data captured and contributed by human sensors.  

The platform CROSS (a CROwdsourcing Support system for disaster Surveillance) [10] 

was built to support the exploitation of human sensor data and physical sensor data 

synergistically for disaster surveillance and decision support purposes. When physical sensor 

coverage is inadequate, the system starts a crowdsourcing data collection (CDC) process by 

broadcasting a call for participation to a crowd of human sensors. During the process, 

participating human sensors make observation(s) at and around locations as requested by the 

system and send the data thus captured back to the system. The process completes when the 

system has acquired sufficient data about the threatened area to give it situation awareness and 

support its decisions and operations.  

The interactions and collaborations between the system and participants can be either 

crowd-driven or system-driven [11], and CROSS supports both types of strategies. When the 

system uses a crowd-driven strategy, it either does nothing other than collecting and processing 

reports from participants, relying solely on mobility and interactions of individual participants 

for coverage of the threatened area, or from time to time provides them as feedback with 

updates of the current condition of the threatened area based data collected and processed at the 

time. Working in this way, the system is similar to many crowdsourced sensing systems and 

applications (e.g., [1-7]). These applications have demonstrated the effectiveness of 

crowd-driven social and participatory sensing from massive crowd for a variety of usages, 
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including generation of fine-grain maps of weather radar, noise level, air quality, snow depth, 

radiation level, traffic and road conditions, litters in parks, and so on. 

For the purpose of collecting data to supplement physical sensor data prior to or during an 

emergency, the crowd-driven approach is not ideal, however: Oftentimes, the system should use 

as few participants as needed for each CDC process for many reasons including availability and 

costs of qualified participants. Without well-planned routes for participants to follow during a 

process, some locations may be visited by more participants than necessary while other 

locations are visited by too few. Consequently, the response time (i.e., the length of time from 

the start to the end of the process) of the process may be prolonged. In cases of emergencies 

such as wildfires and floods, the system also needs to help participants stay away from 

dangerous locations. System-driven strategies were motivated by these considerations. In this 

case, the system provides each participant with an exploration tour within his/her assigned 

region for him/her to follow during the current process and issues directives as needed to alter 

the tour. CROSS provides emergency managers with tools for selecting participants from 

human sensors who responded to its call for participation, assigning selected participants to 

explore regions of the threatened area and planning for each participant a tour.  

This paper focuses on data fusion and processing methods that can help the system to 

determine the amount of collected data (hence the time required to collect the data) needed for 

the system to acquire situation awareness. The underlying problem addressed here, called 

symbiotic data fusion and processing (SDFP) problem for short, is how to use human sensor 

data and physical sensor data synergistically to speed up the decision process and/or improve 

the quality of the decision. Related problems include how to use physical sensor data to help 

assess the credibility of human sensor data and how to use human sensor data for discovery of 

erroneous and failed physical sensors. Problems of assessing the credibility and discovering 

truth of information reported by participatory sensors have been the focal points of intense 

efforts in many research areas, including machine learning and data mining. We will compare 

their approaches with the approach presented here in the section on related work. 

For many likely scenarios, the system aims to detect from sensor data the occurrences of 

events and phenomena that warrant its actions. This is why we emphasize here statistical 

detection formulations [12-16] and solutions of the SDFP problem, rather than estimations of 

parameters that define the state of the area of interest. In terms of objective, our problem 

resembles the problems of improving the coverage of physical sensors such as the one studied 

by Xing, Tan, et al. [12]: Like them, our system also wants to improve its coverage, except that 

our system uses human sensor data to reduce the limitations of physical sensor coverage. Wang, 



 4

Abdelzaher, et al. [17] applied the expectation–maximization (EM) algorithm [18] to find 

maximum likelihood estimates that quantify the correctness of binary-valued human sensor 

data from unknown crowd. Our system can also use the EM algorithm to process data from 

unknown human sensors for which the statistical model contains unknown parameters.  

The work described here makes two contributions: First, our work is among the first, if not 

the first, to characterize and treat data from both physical sensors and human sensors used for 

surveillance and monitoring purposes in a coherent way. Our realistic, yet formal model of 

surveillance systems containing physical in-situ sensors and mobile human sensors enables us 

to build solutions of the problems in fusing physical and human sensor data on the rigorous 

foundation of stochastic detection and estimation theory. For many real-life scenarios, the 

solutions provide the system with not only quantitative assessment of its decision quality but 

also control over tradeoffs between conflicting quality criteria. The second contribution is the 

design of a fusion unit for processing data collected from all sensors and determining when to 

initiate and when to terminate CDC processes dynamically depending on whether the sensor 

coverage is sufficiently good. The design of this essential component is built on the solutions 

presented here. We will make the fusion unit a part of CROSS and thus make CROSS a 

full-function crowdsourcing support platform.  

Following this introduction, Section 2 presents our assumptions on the surveillance system 

and its physical sensors. It also presents models of disaster threatened areas, physical sensors 

and participants of the CDC process. Section 3 presents the design and implementation of a 

central fusion unit for processing sensor data and making decisions. We use it to explain how 

various fusion and statistical decision techniques may be used to help the system manage CDC 

processes, specifically, how the system decides when it has collected sufficient data and hence 

can terminate the current CDC process. Section 4 presents statistical detection and estimation 

formulations of the SDFP problem, variants of which are what the system needs to solve. 

Section 5 discusses related work. Section 6 summarizes the paper and discusses future work.  

2  SCENARIOS, ASSUMPTIONS AND MODELS 

Figure 1 shows four representative scenarios. We use them to support our assumptions and 

motivate our models and problem formulation. Only part (a) of the figure shows physical 

sensors: They are surveillance cameras. Physical sensors in other parts are omitted in order to 

keep the figure simple. Small circles in the figure represent locations where human sensor 

data are needed. It is convenient to think that there is a virtual sensor at each of these 

locations: During a CDC process, each virtual sensor provides the system with human sensor 

data sent by participants in a neighborhood of specified size around the sensor.  
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Figure 1 Representative scenarios 

Except for where it is stated otherwise, we use the term (α, β)-coverage [12] to state the 

desired quality of sensor coverage precisely: In a process to detect a specified condition, the 

system is said to make a false alarm when it declares the condition to be true when the condition 

is not true. It is said to have detected the condition when it declares the condition to be true 

when the condition is indeed true. We say that the system has achieved (α, β)-coverage when its   

false alarm probability is no larger than the threshold false alarm rate α (0   α < 0.5) and its 

detection probability is at least equal to the threshold detection rate β (0.5 < α   1). For given 

threshold rates α and β chosen by the system, sensor coverage is said to be sufficiently good 

when the system can achieve (α, β)-coverage of the threatened area by processing available data 

in some way(s). The system starts a CDC process when available physical sensor data must be 

supplemented by human sensor data to give it sufficiently good sensor coverage.  

2.1 Representative Scenarios 

The oil spill and wildfire scenarios in parts (a) and (b) of Figure 1 are from [10, 11]. Similar 

to the litters-in-park case study presented in [17], each human sensor in the oil spill scenario 

reports a binary value indicating the presence or absence of tar balls at his/her locations. Based 

on their reports and inputs from physical sensors (e.g., surveillance cameras) nearby, the system 

decides whether the section of the beach monitored by the sensors is threatened by oil spill and 

preventive clean up operations should be launched. 

In the park and street surveillance scenarios shown in (b) and (c), each human sensor is 
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asked to measure and report value(s) of some environment parameters. (Examples given by 

the figure are wind speed and direction, temperature and humidity at his/her campsite not far 

from a wildfire or depth of water on roadway(s) in front of him/her during a downpour). In 

these cases, human sensor data have arbitrary values. The system makes its determination of 

whether the campsite is threatened by the wildfire or whether the road will likely to become 

flooded and impassable, and hence should be closed immediately, based on data from physical 

sensors and human sensors.  

In the scenario illustrated by (d), human sensors are asked to report observed queue 

lengths in front of food stands in a popular night market. The system generates and displays 

estimated waiting times of the stands based on reported values and head counts from cameras 

at entrances of the market. We include this scenario as one of the case studies because we can 

use it to demonstrate how domain-specific enhancements (in this case, queuing analysis based 

on the routing matrix R that models the movements of customers in the market) can be 

incorporated with a general technique. This scenario occurs week after week and hence can 

give us a convenient, real-life setting for evaluation of ours techniques.  

2.2 Models of System, Threatened Area and Sensors 

Figure 2 shows the key elements of a symbiotic surveillance sensor system used by a 

disaster warning system that enhances the quality of its sensor coverage by crowdsourcing. As 

noted in [10, 11], ideally, the system would have a sufficient number of physical sensors of the 

right types at the right locations to give it sufficiently good coverage of the threatened area.  

Physical sensors

Locations of missing 
physical sensors

Human sensors Virtual sensors

X = {X1, X2, … , Xn }: Set of data types for all sensors

xi = (xi,1 , xi,2, … , xi,n ): A sample of Xi , for i = 1, 2, …, σ

xi (k) = (xi,1(k) , Xi,2(k),… , xi,n (k)): A sample reported by the k-th
human sensor of the virtual sensor Si, for i = 1, 2, …, ν

Xi = (Xi,1 , Xi,2, … , Xi,n ): Observation of sensor Si , for i = 1, 2, …, σ

 

Figure 2 Elements of a symbiotic surveillance sensor system 

We confine our attention to the case where the physical sensors at all locations are 
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functionally identical: Each of them provides the system with n types of data. (As an example, 

in the scenario in Figure 1(b), the sensor in every weather station in a national park provides 4 

types of data: wind speed, wind direction, temperature and humidity.) We denote the set of data 

types by X ={X1, X2, … , Xn} and view a observation xi = (xi,1, xi,2, … , xi,n) made by sensor Si as 

a sample value (or sample) of the random variable Xi = (Xi,1, Xi,2, … , Xi,n), an instance of the 

data type X. We assume here that the component random variables Xi,j and Xi,k , for j, k = 1, 2, … 

n and j k, are statistically independent for all sensors Si. 

For reasons including deployment costs, damages and poor operating conditions, v physical 

sensors are missing or broken. When existing physical sensors cannot provide the system with 

sufficiently good coverage, it starts a CDC process in order to acquire human sensor data on 

conditions around the location of each missing sensor. We assume that the system knows the 

identity and location of each missing physical sensor and solicit from human sensors the same 

data type X as that of the physical sensors. In short, the system has a virtual sensor at the 

location of each missing physical sensor. We use S1, S2 ,…, Sv to denote the virtual sensors, and 

denote existing physical sensors by Sv+1, Sv+2 ,…, Sσ  when the threatened area should be 

covered by a total of σ sensors. 

Without loss of generality, we assume that an observation xi is made by every physical 

sensor Si , for i = v +1, v +2, … , σ, immediately before each CDC process starts. The value xi is 

the sum of a vector of noise-free observed values plus an additive noise Θi = (Θi,1, Θi,2,…, Θi,n). 

The noise Θi,,j, for i = v+1, v+2, … , σ, in the j-th observed values of all physical sensors are 

statistically independent, identically distributed. We let Aj(t) denote the distribution function of 

Θi,,j (i.e., the probability of Θi,,j ≤ t) where t is from a scenario-specific set of values.  

Let xi (k) = (xi,1(k), xi,2(k), …, xi,n (k)) denote the (human sensor) sample reported by a k-th 

participant from a neighborhood around the virtual sensor Si during the current CDC process. 

The system computes for each virtual sensor Si, for i = 1, 2, …, v, the observation xi and 

distribution function of Xi of that virtual sensor from the human sensor samples xi (k) reported 

by participants around Si and distribution functions of the samples.  

2.3 Models of Participants  

The distribution functions of human sensor samples clearly depend on the participants who 

sent them. Previously, we have considered two types of participants: ideal and motivated ones, 

called type-I and type-M, respectively [10, 11]. A type-I human sensor is likely to be a 

government disaster responder or a volunteered responder. The person may have been trained. 

He/she is at least experienced as a human sensor. The system can rely on him/her to generate 

“ground truth” against which data from other participants can be measured. Upon request by the 
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system, a type-I participant can visit one or more suspicious physical sensors and calibrate and 

fix them. Hereafter, we will not consider type-I participants, but their presence gives us reason 

to assume that during a CDC process, all existing physical sensors are functional.  

Again, a type-M participant is a motivated individual. He/she may be a registered volunteer, 

a person affected by the disaster, and so on. The system knows him/her and knows that he/she 

will not lie and will make observations independently of other participants. However, the sensor 

data collected and reported by him/her may not be accurate. Consequently, the sample values 

reported by the k-th type-M human sensor at Si contains an additive error component denoted by 

Θi (k) = (Θi,1(k), Θi,2(k),…, Θi,n (k)). We ignore factors such as technical problems, mass panic, 

etc. and assume that errors of participants are statistically independent and identically 

distributed. Moreover, virtual sensors being functionally identical, Θi,j (k) is a random variable 

with distribution function Bj (t) for all virtual sensors and all participants.  

3  FUSION AND DECISION PROCEDURE 

Except for the presence of human sensor data which need to be treated differently from 

physical sensor data in some cases, our fusion problem is essentially that of a fusion center in a 

distributed multiple sensor system. The problem of centralized fusion for multiple physical 

sensors has been treated extensively since the late 1980’s. The centralized decision fusion 

(CDF) procedure described by the pseudo code in Figure 3 makes use of some of the principles, 

approaches and methods from literatures (e.g., [14-21]). We will present in the next section 

specifics on some of the techniques used by the procedure. Here, we use the CDF procedure to 

provide a context for statements of key assumptions and design rationales and explain some of 

the work a fusion center needs to do to fuse and process all sensor data during a CDC process. 

The prototype CROSS fusion unit is structured as the procedure. Hereafter, we also refer to the 

unit as the system when there is no need to be specific. 

3.1 Assumptions  

The version of CDF procedure in Figure 3 makes several assumptions. An implicit 

assumption is that the central fusion unit using the procedure is a decision module: Its mission 

is to decide whether an object is present, or a phenomenon has occurred, or a specified 

condition is true and so on. The system takes action according to the decision. Specifically, the 

procedure is presented in terms of binary hypothesis testing and uses (α, β)-coverage as the 

quality measure. They can be easily replaced by other commonly used methods (e.g., maximum 

a posterior (MAP) and maximum likelihood (ML) decisions and multiple hypothesis testing), 

and quality criteria (e.g., probability of error and Bayesian costs). A fusion unit in a 
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general-purpose disaster surveillance system that uses diverse physical sensors to monitor 

diverse disaster conditions will need to provide a library of these fusion methods, including 

codes that implement rules for multiple-hypothesis testing to minimize decision error and other 

optimization criteria.  

Centralized Decision Fusion Procedure:

// Check whether coverage of existing physical sensors is sufficiently good
1  do decision fusion for physical sensors using NP hypothesis testing: 

a. for i = v+1, v+2, … σ, acquire local decision ui , threshold false alarm rate fi and detection probability di from sensor Si ;
b. generate likelihood ratio from ui, fi and di for all i = v +1, … σ;

c. for an overall threshold false alarm probability F =α, compute decision thresholds ηp  η*p ;
c. compute overall decision U and detection probably D;

2. if D  β, go to take action according to decision U;            // Coverage sufficiently good; CDF procedure ends.
// Start a CDC process 
3. broadcast Call-For-Participation; wait for responses;

4. from responded human sensors, select participants and allocate them to v virtual sensors;

5. wait for Mi or more samples xi(k), for k = 1, 2, … Mi …sent by human sensors from vi , for all i = 1, 2, … v;

// Do fusions and then check whether coverage of all sensors is sufficiently good.
6. do value fusion for virtual sensors: for each virtual sensor Si, for i = 1, 2, … v, do the following

a. compute  from xi(k), for k = 1, 2, … Mi …, test statistics; 

b. compute local decision ui , false alarm rate fi and detection probability di ; 

7. do decision fusion for all sensors using NP hypothesis testing
a. compute likelihood ratio from ui, fi and di , for all i = 1, 2, … σ;

b. for threshold false alarm probability α, set detection thresholds η η*;

c. compute over all decision U and detection probability D;

8. if D is less than β, send updated instruction to human sensors; goto step 5;     // Continue to collect human sensor data.
9. terminate the current CDC process; go to  take action according to decision U;  // CDF procedure ends

 
Figure 3 Centralized Decision Fusion (CDF) Procedure 

Sometimes, the system makes situation assessment and decision on the basis of not only 

sensor data but also other information. In that case, the system wants to get from the fusion unit 

estimates of some specified parameters, and the unit needs to solve an estimation problem. We 

leave the discussions on the estimation problem, as well as solutions for multiple-hypothesis 

testing, to a future paper.  

Steps 1 and 2 in Figure 3 are based on an assumption stated earlier: Each time when a 

disaster warning system needs to acquire situation awareness and make a decision, it first 

checks whether it can make a decision of sufficiently good quality based on physical sensor 

data alone. It starts a CDC process only when it is not satisfied with the quality of the decision. 

The CDF procedure uses both value fusion and decision fusion. In Step 6, the system does 

for each virtual server value fusion of the observations (samples) reported by human sensors 

from a neighborhood around the sensor: The system makes a local decision on whether the 

specified condition is true based on the sample values. 

In contrast, the system does decision fusion in Step 1 and 7. The assumption is that value 

fusion is done by each physical sensor: Based on its own observation, the sensor makes a 

decision about the condition. The system acquires from the physical sensor Si its local decision 
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ui, false alarm probability fi and detection probability di, not sensor’s observation. The system 

generates the overall decision U and assesses the overall decision quality parameters F and D 

based on local decisions and false alarm and detection probabilities of physical sensors in Step 

1 and of all sensors in Step 7. If after Step 7, the system is not satisfied with the quality of the 

overall decision, it continues to collect human sensor data, using additional participants and/or 

redirecting existing participants if necessary.  

Finally, a restrictive assumption stated earlier is that observations of all sensors, physical 

and human, are statistically independent. This common assumption is made for sake of 

simplicity and cannot be easily removed. We will evaluate how decision quality degrades when 

observations and decisions of sensors are correlated via simulation as an important part of 

future work. We also leave the case of heterogeneous sensors to future work.  

3.2 Rationales  

The version of CDF procedure in Figure 3 uses the N-P test (i.e., Neyman-Pearson criterion 

for binary hypothesis test [19]) in decision fusion steps, and whenever applicable, also for value 

fusion. The next section will describe the test. A reason for using the test is that it does not 

require a priori probability of each hypothesis. This is important since in almost all cases 

considered here, the probability of whether a condition of interest is true is not known before 

observations are made. Another reason is that the N-P test is optimal (i.e., the most powerful 

test) in the sense that it maximizes the detection probability for a given acceptable false alarm 

probability. The test provides the system with control over the tradeoff between these 

conflicting quality measures. This is an also an important advantage for our application. 

We focus here primarily on the case where the distributions Bj (t)’s of sample errors are 

known for all human sensors. In other words, the system has acquired reasonable good 

estimates of quality parameters of each human sensor, including an upper bound and a lower 

bound of his/her false alarm and detection probabilities, respectively. This assumption is valid 

most of time: As stated earlier, CROSS uses as human sensors type-M participants. Their 

quality as human sensors can be assessed during disaster preparedness through means such as 

volunteer registration and training. In this case, the N-P test can also be used in Step 6. The 

system uses unknown participants only when available type-M participants are insufficient. In 

that case, the distributions of the noise components in their samples are unknown. Other 

methods, including the EM algorithm [18], are warranted to iteratively estimate the model 

parameters and then make local decisions.  

Having physical sensors perform value fusion locally is a good design choice for sensors 

that generate large volumes of raw data. Take high resolution cameras as an example. By 
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deploying cameras along the coastline during a major oil spill, an early warning system aims to 

reliably detect tar balls on beach threatened by oil as illustrated by Figure 1(a). Rather than 

having the cameras send images periodically to the system to be processed there centrally, each 

camera has the capability of detecting conditions (including presence of tar balls) that warrant 

attention from the system. On a poor visibility day, when the system cannot achieve a high 

detection probability (say β = 0.99) for an acceptable false alarm probability (say α = 0.1) based 

on the decisions of the cameras, it starts a CDC process during which participants are divided 

into groups and each group is responsible for finding tar balls around a virtual sensor located 

between the cameras. For this and similar scenarios, the decision fusion steps (i.e., steps 1 and 7) 

can be significantly simplified if all physical and virtual sensors work with the same threshold 

false alarm rate α. Then the system can conclude that the specified (α, β)-coverage is achieved, 

hence the CDC process can be terminated, when with the help of human sensor data collected 

so far when the detection probabilities achieved by three or more sensors are at least equal to β. 

The next section will justify this statement.  

Oftentimes, physical sensors (e.g., sensors in weather stations and water level sensors on 

traffic light posts in scenarios shown parts (b) and (c) of Figure 1) produce only small amounts 

of data or have little or no processing power. In this case, centralized value fusion is the only 

alternative: The system does value fusion for physical sensors as it does for virtual sensors 

before decision fusion, or alternatively, value fuse sample values from all sensors together. Pure 

value fusion is known to have better performance (i.e., can achieve a lower overall false alarm 

probability and/or a higher detection probability) than decision fusion [15].  

4  SYMBIOTIC DATA FUSION AND PROCESSING 

This section presents variants of the statistical detection problem which the fusion unit must 

solve. To keep notations simple, we consider only the case of n = 1, that is, every sensor 

observes only one type of data. Extension to the case of n > 1 is straightforward because 

observations/decisions of different data types are statistical independent. 

To state the detection problem for both decision fusion and value fusion, we let the 

M-dimensional random vector Y = (Y1, Y2, …, YM) represent the inputs from M independent 

sources. The fusion unit receives a sample y = (y1, y2, …, yM) of Y containing a sample value yi 

of Yi for every i = 1, 2, …, M. In most cases of practical interest, yi’s are discrete valued.  

In the context of the CDF procedure, M is equal to the number σ – v of physical sensors and 

the number σ of all sensors in Steps 1 and 7, respectively. For these decision-fusion steps, yi’s 

are local decisions that are independently made by the sensors based on their observations. In 

Step 6, M is equal to the number of human sensors reporting from a virtual sensor. For each 
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value-fusion step, yi’s are the samples (i.e., observed values) reported by the human sensors. 

4.1 Binary Hypothesis Testing with Neyman-Pearson Criterion 

In case of binary hypothesis testing, the fusion unit decides whether a hypothesis H1 (e.g., 

tar balls on beach, campsite in danger of wildfire) is true or the alternative hypothesis H0 (e.g., 

no tar balls on beach, no wildfire danger) is true based on the received sample y. A false alarm 

occurs when the unit decides in favor of H1 when in fact H0 is true, and the unit successes in 

detection of H1when it decides on H1 when H1 is indeed true.  

As stated earlier, the a priori probabilities of the hypotheses are unknown typically. The 

fusion unit works with the conditional probability mass functions, which give the conditional 

probabilities of seeing y given H1 or H0 is true, respectively. These functions are known. 

P(y | H1) = P(y1, y2, …, yM | H1) ≡ Pr [Y = y | H1] = Π1 iM P(yi | H1)                    (1) 

P(y | H0) = P(y1, y2, …, yM | H0) ≡ Pr [Y = y | H0] = Π1 iM P(yi | H0) 

The last equality in each line follows from the fact that Yi’s are statistically independent.  

The CDP procedure aims to maximize the probability of detection for a given threshold 

false alarm probability α. It uses the N-P test for reasons stated earlier. The test statistics is the 

likelihood ratio L(y) defined in term of the conditional probabilities in (1) or equivalently, the 

log function of the likelihood ratio:  

L(y) = P(y1, y2, …, yM | H1) / P(y1, y2, …, yM | H0) 

= Π1 iM P(yi | H1) / P(yi | H0)                                                    (2) 

The N-P test has two commonly used decision rules, a deterministic rule and a randomized 

rule [14]. To state these rules, we let Λ denote the set of possible values of L(y) for all observed 

values of y, and let η and η* be two adjacent values in Λ which are such that η > η* and 

Pr [L(y)  η | H0] ≤ α                                                                  (3a) 

Pr [L(y)  η* | H0] > α                                                                 (3b) 

Figure 4 illustrate the relationship between η and η* as well as their relationship with other 

values in Λ. The dotted and dashed curves are envelopes of conditional probabilities Pr [L(y) | 

H0] and Pr [L(y) | H1], respectively, for all values of L(y). 

Deterministic Rule: The deterministic rule uses η as the detection threshold and selects  

H1, if L(y)  η                                                                        (4) 

H0, if L(y)  η   

The false alarm probability F and detection probability D achieved by rule (4) and detection 

threshold η are given by  

F = Pr [L(y)  η | H0 ] = Λ(y)  η P(y | H0)                                             (5a) 
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D = Pr [L(y)  η | H1] = Λ(y)  η P(y | H1)                                             (5b) 

Pr [L(y)  η | H0] ≤ α

L(y)

Pr [L(y) | H0]
Pr [L(y) | H1]

ηη*

Pr [L(y)  η* | H0] > α

 
Figure 4 An illustrative example 

Randomized Rule The randomized rule uses η and η* as detection thresholds together with 

a random selection probability p which is the solution of the equation  

p Pr [L(y)  η* | H0 ] + (1 – p) Pr [L(y)  η | H0 ] = α                                   (6a) 

The randomized rule selects 

H1, if L(y)  η                                                                        (6b) 

H1 with probability p and H0 with probability 1 – p, if L(y) = η* 

H0, if L(y)  η*  

The false alarm probability achieved by rule (6) is α by definition of the rule. The detection 

probability is given by 

D = p Pr [L(y)  η* | H1 ] + (1 – p) Pr [L(y)  η | H1 ]                                   (7) 

Optimality It has been shown in [14] that rule (4) is optimal among all deterministic rules. It 

is also optimal among all rules when y is continuous valued. However, it is not optimal when y 

and hence L(y) are discrete valued. The reason is that there may not be a threshold value in Λ for 

which the equality in (3a) holds. In that case, false alarm probability F achieved by rule (4) is 

less than α, and the detection probability D may not be the maximum possible under the 

constraint Fα.  

The randomized rule (6) is optimal: It maximizes the detection probability under the 

constraint of Fα. Complex rules using more than two detection thresholds do not work better.  

4.2 Binary Hypothesis Testing Based on Binary Valued Samples 

The special case of hypothesis testing based on binary-valued samples is of practical 

importance. In the multiple sensor fusion problem treated in [15], local decisions of individual 

sensors and overall decision of the fusion center are all binary valued. This is assumed by the 

CDF procedure. In scenarios similar to the one shown in Figure 1(a), observations from human 

sensors are naturally binary valued. In other disaster scenarios, the system can also use 

binary-valued observations. Take scenarios in Figure 1 (b) – (d) as examples. Rather than the 
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data types listed in the figure, the system can ask human sensors to send binary-valued reports 

indicating whether the condition “wind-is-from-direction-of-wildfire”, “water-is-over-curb”, or 

“queues-are-long” is true or not, respectively.  

To state of the problem of fusing binary decisions formally, we let yi = 1 when the sensor Si 

decides in favor of H1 and yi = 0 if it chooses H0. In addition to yi, the fusion unit also knows the 

associated detection probability and false alarm probability  

di =Pr [yi =1| H1] ,  fi  = Pr [yi =1| H0]                                                  (8) 

for all i = 1, 2, …, M sensors.  

Similarly, we let yi = 1 and yi = 0 be the possible sample values of the random parameter Yi 

reported by the i-th human sensor and say that H1 is true if Yi = 1 and H0 is true if Yi = 0. The 

conditional probabilities di and fi defined in (8) can be used as quality measures of the i-th 

human sensor. At risk of abusing the terms, we call them detection and false alarm probabilities 

of the human sensor, respectively. It is easy to see that the problem of fusing binary-valued 

observations from human sensors is the same as the problem of binary decision fusion when the 

quality measures di and fi are known for all human sensors.  

Similar Sensors of Good Quality A surveillance system is likely to use similar sensors, i.e., 

the sensors are functionally identical, operating at the same threshold false alarm probability fi = 

f and achieving detection probability di  d for all Si. In this case, it suffices for the fusion unit to 

compute the test statistics from the number K of 1’s among the M inputs yi’s. The conditional 

probability mass functions of K conditional on H0 and H1 are the binomial distributions B(M, f) 

and B(M, d), respectively. Let k be the sample value of K observed by the fusion unit. The 

likelihood ratio is given by  

L(k) = Pr [K = k | H1] / Pr [K = k | H0] 

= d k(1 – d)M-k / f k(1 – f)M-k                                                        (9) 

By working with log L(k), the randomized rule of the N-P test simplifies to the following: Let t 

be an integer in (0, M) which is such that   

Pr [ k  t | H0] ≤ α,  Pr [ k  t -1 | H0] > α                                              (10a) 

The simplified randomized rule is: select   

H1, if k  t                                                                          (10b) 

H1 with probability p and H0 with probability 1 – p, if k = t – 1  

H0, if k < t – 1 

where the selection probability p is given by p Pr [ k  t – 1 | H0] + (1 – p) Pr [ k  t | H0] = α. 

The following theorem states that the fusion center can conclude that it can achieve the 
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desired (α, β)-coverage if three or more sensors can achieve detection probability β or better 

with the threshold false alarm probability α: 

Theorem 1 In a system containing M  3 similar sensors all of which operate with 

threshold false alarm probability α, (α, β)-coverage can be achieved using the randomized 

N-P-test when the detection probability of 3 or more sensors is equal to or higher than β. 

The theorem is based on the theorem and its proof in [15].  

Similar Sensors of Poor Quality For our application, the acceptable false alarm rate is in 

order of 10% for some scenarios and much lower than 10 % for other scenarios. This quality 

criterion is not met by typical human sensors, and some physical sensors. It is well known that 

fusion center can achieve (α, β)-coverage using the randomized N-P-test even when the false 

alarm probability f of the individual sensors is larger than α [14]. A question of practical interest 

is how many sensors are required to get the overall false alarm probability F less than or equal 

to α. Similarly, we want to know the minimum number of similar sensors required to get an 

overall detection probability D  β when their individual detection probability d is less β.  

We can find answers to these questions from the expressions of the overall quality measures 

F and D in terms individual quality measures f and d of M similar sensors. To illustrate, suppose 

that the fusion center uses the deterministic rule with a single detection threshold t. Then, the 

overall F and D are given by  

F = ∑ t≤ k ≤ M C (M, k) f k (1 – f)M-k                                                      (11) 

D = ∑ t≤ k ≤ M C (M, k) d k (1 – d)M-k 

where C(M, k) denotes the binomial coefficient M!/k!(M – k)!. Solving these equations for 

several likely values of F, D, f and d, we get Figure 5, which plots the minimum numbers of 

similar sensors required to achieve the overall (F, D)-coverage for several likely combinations 

of quality measures f and d of individual sensors.  
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Figure 5 Required numbers of sensors for different f, d, F and D 

The numbers of sensors shown Figure 5 are conservative estimates. The reason is that the 
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deterministic rule is sub-optimal. For some of the combinations of f and d, the fusion center can 

reduce the required numbers of sensors by 1 or 2 from the numbers shown here by using the 

probabilistic decision rule. Take the case of trying to achieve (0.01, 0.99)-coverage using 

sensors with f = 0.2 and d = 0.8 as an example. The figure shows that desired coverage quality is 

met using 13 sensors. With detection threshold t = 7, the actual quality (0.007, 0.9929) exceeds 

the desired quality. The fusion center can reduce the required number of sensors to 12 by using 

the probabilistic rule: With detection thresholds 6 and 7 and selection probability p = 0.8967, it 

gets F = 0.01 and D = 0.9945.  

The combinations of figures in Figure 5 tell us what intuition tells us all along: It is far better 

to use a relative small number of high quality participants (e.g., with (f, d) = (0.2, 0.8)) than a 

big crowd of participants of possibly poorer qualities. By better, we mean it takes the system 

less time to collect and processor human sensor data to reach a specified overall quality.  

4.3 Binary Decisions Based on Arbitrary-Valued Observations  

It is straightforward to apply N-P test rules to make optimum binary decisions based on 

arbitrary-valued observations when their joint distributions are known under both hypotheses. 

This is especially so when sample values are continuous, because the simple deterministic rule 

(4) is optimal. A special case of practical importance is when the data are jointly Gaussian under 

each hypothesis. This model has been widely used to characterize physical sensor data and has 

been treated extensively in literature, including [12-16, 20].  

The problem of making decisions based on human sensor data of arbitrary values is made 

more complex by two factors. First, errors (e.g., additive noises) in human sensor observations 

are typically not Gaussian. Uniform distribution and some beta distribution are closer models, 

especially for data from a few (e.g., <5) human sensors. This makes evaluation of performance 

of optimum decision rules more complicated. The N-P test rules nevertheless can be applied.  

Second, a more challenging complication is the fact that the system often does not know the 

values of noise-free components of observables from individual sensors and sometimes, not 

even their distributions. In other words, each of the M observables Yi = Vi + Θi presented to the 

fusion unit is the sum of a random noise-free component Vi and a random additive noise Θi. The 

distribution of Θi is known for reasons stated earlier. The distribution of Vi may not be fully 

known under each of the hypothesis.  

We would encounter this case in scenarios shown in Figure 1(b) and (c) when human 

sensors are asked to report wind direction with respect to the direction of wildfire or water 

depth instead of binary observations “wind-is-in-direction-of-fire” or “water-is-over-curb”. – 
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Due to the effect of microclimate, wind direction, ambient temperature, etc. at each virtual 

sensor may differ significantly from that of surrounding area. During a downpour, water may 

accumulate on some road segments due to poor local drainage but not elsewhere. In both cases, 

the system may not even be able to compute the expected value of the “signal” Vi contained in 

the sample value from readings of surrounding physical sensors and virtual sensors.  

We sometimes can formulate the problem of fusing such observations as a joint binary 

hypothesis testing and estimation problem treated in [20]: We are given the conditional 

distribution of the observables Y under each hypothesis P(y | H0) and P(y | H1, Φ), where Φ is a 

random parameter with a known probability density (or mass) function. The solution of the 

problem gives us a rule to decide in favor of H0 or H1, and if the decision is in favor of H1, 

compute an estimate of Φ. The schemes described in [20] combine the N-P test for binary 

detection with Bayesian parameter estimation. Both schemes start from a detection step 

followed by parameter estimation. One scheme repeats the detection step after parameter 

estimation while the other scheme does not. By choosing whether to repeat the detection step, 

the system can trade off between the detection probability and estimation accuracy.  

As an illustrative example, supposed that the human sensors in Figure 1(c) are asked to 

report water depth on a street in a small number of city blocks. Φ is the amount of local rainfall 

or actual water depth. Its probability density function can be derived/estimated from data on 

measured or forecast rainfall of the surrounding area and historical records. H0 is “no flooding 

danger” and H1 is “flooding possible” and the action to be taken by the system depends on the 

estimate of Φ. We will apply and evaluate the schemes for this and other scenarios and report 

the performance data in a future paper.    

5  RELATED WORK 

In recent years, platforms such as Sahana and Ushahidi [22, 23] have been used worldwide 

to support crowdsourcing the collection and dissemination of crisis management information 

during and after major emergencies. In contrast, typical state-of-the-art disaster surveillance 

and warning systems do not incorporate crowdsourcing social reports as an integral part of their 

standard operation procedures. Except for disasters (e.g., [24-26]) that take days, even months, 

to develop, disaster surveillance and warning applications must be able to acquire situation 

awareness and made critical decisions within hours, even minutes: To do so, they must be able 

to process social reports in real-time automatically using relatively simple decision rules and 

extract from the reports information of good and quantifiable quality. The solutions presented in 

previous sections aim to meet these needs.  

The problems in discovering, extracting, refining and validating the truth/information in 
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social reports contributed by crowds have been addressed by many research communities. 

Numerous techniques and tools (e.g., [27-40]) based on a wide range of technologies (including 

machine learning, fuzzy systems, data mining, information retrieval and natural language 

processing) are now available. During 2010 Haiti and Chile earthquakes, some heuristic 

combinations of technologies (e.g., [28, 35]) were effectiveness for processing social reports 

from general crowds, but they require an enormous amount of human effort. Many other tools 

support semiautomatic processing of social reports in order to reduce human efforts. Such tools 

can deal with many complicating factors which do not arise in scenarios assumed here and 

hence, are ignored by our solutions. They still incur manual efforts and time too high to be 

acceptable for our application. A common shortcoming of most existing solutions is that they 

cannot provide the system with quantitative quality measures of the extracted information.  

Rather than general use cases assumed by previous efforts, our work makes two restrictive 

but realistic assumptions: First and foremost is that a disaster warning system uses only 

participants who do not lie, make observations independently, and report observed data as 

requested. Second, the system acquires the statistical characteristics of noises in human sensor 

data (at least conservative bounds of false alarm and detection probabilities) as one of its 

preparedness phase tasks, just as that it knows statistical distributions of noises in physical 

sensor data. The abstract model of symbiotic sensors in surveillance systems shown in Figure 2 

is based on these assumptions. The model treats data from human sensors used by the system to 

supplement data from in-situ physical sensors in a consistent way. Thus, it enables us to 

formulate the problem of fusing symbiotic data as stochastic detection problems and build 

solutions needed by the fusion unit on the rigorous foundation of classical stochastic detection 

and estimation, in particular, results on multi-sensor fusion [12-16, 18-21]. 

Our approach resembles the one taken by Wang, et al. [17, 41] who are among the first to 

apply statistical estimation and hypothesis testing techniques to processing social sensor data in 

order to discover and assess the truth carried by the data. Unlike our model, their models do not 

capture the symbiotic nature of sensors used by crowdsourcing enhanced disaster surveillance 

systems: Wang, et al. demonstrated via a case study that the EM algorithm [18] can out-perform 

the Bayesian interpretation scheme and Truth Finder [40, 41] for fusing binary-valued 

observations. For our application, a shortcoming of these schemes is that they do not give the 

fusion unit control over tradeoffs between quality measures (i.e., false alarm versus detection 

probabilities) that cannot be optimized at the same time. This is a reason that we treat the SDFP 

problem as a detection problem and use the N-P test whenever appropriate. The test is not only 

optimal when a priori probabilities are unknown but also simpler to implement than the EM 

algorithm. Comparing the performance figures in Figure 5 with simulation data on performance 
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of EM algorithm [17], we note that the N-P test can achieve sufficiently good performance (e.g., 

(F, D) = (0.01, 0.99)) using a comparable number of poor-quality participants (e.g., with (f, d) = 

(0.3, 0.6)) as the number indicated by their data. 

Recent studies (e.g., [3, 7-9]) on issues in integrating social sensing with pervasive and 

ubiquitous computing also consider fusion of data from mobile and ubiquitous sensors with 

data from social sensors. According to A. Rosi, et al. [8], the goals of these studies include 

extracting social information in order to enhance context-awareness of pervasive services and 

applications, exploiting social network tools and infrastructures to support some of the data 

organization and event notification functionalities of pervasive computing, and creating 

application-specific social-pervasive infrastructures for sensor integration. CROSS can be 

thought of as an application-specific infrastructure for integration of physical and human 

surveillance sensors. A difference between the SDFP problem and their fusion problems is that 

data provided to CROSS by physical and human sensors are of the same types, whereas they 

provide context-aware pervasive services and applications with data of complementary types. 

6  SUMMARY AND FUTURE WORK 

A crowdsourcing support system such as CROSS for disaster warning and response 

purposes not only provides mechanisms and tools for managing crowdsourcing human sensor 

data collection. It must also provide supports for fusion of data from multiple sensors. We 

described in the previous sections the work done by a central fusion unit to process and fuse 

inputs from physical surveillance sensors together with human sensor data collected from 

participants during a crowdsourcing process. It may use a combination of value fusion and 

decision fusion in ways exemplified by the CDF procedure, rather than relying solely on 

value fusion. The goal is to reach a decision of some specified quality or better on action(s) to 

be taken by the system, and to do so with the fewer human sensor reports, the better.  

We have taken a statistical detection and estimation approach. By doing so, we are able 

exploit well established principles and techniques for fusion in multiple physical sensor 

systems and focus our attention on incorporating the fusion of human sensor data within a 

coherent framework with fusion for physical sensors. In the immediate future, we will first 

evaluate via numerical computations and simulation experiments the alternative solutions 

based on this approach, including the ones described in the previous sections, for the types of 

physical and human sensors that are likely to be used in different disaster scenarios, including 

the ones used in scenarios shown in Figure 1. We will add to CROSS a prototype fusion unit 

using the CDF procedure and an extensible library of fusion methods as a starting point. After 
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thus enhancing the platform, we will use it for experimental evaluation of our techniques.  

The solutions presented in the previous section are merely the tip of an iceberg of sensor 

fusion methods based stochastic detection and estimation theory. Thus far, our effort has been 

focused on binary hypothesis testing. A natural next step is to provide the fusion unit with code 

that applies the maximum a posteriori (MAP) rule for multiple-hypothesis testing to minimize 

probability of error and rules for computing parameter estimates according to specified 

optimization criteria.  

A more urgent work, however, is to provide the system with the capability of making 

decisions and estimates based on data with incomplete models because the system does not 

know either the noise-free values of observables or the distributions of noises. The former 

arises in scenarios such as the ones in Figure 1(b) and (c) for reasons discussed in Section 4. We 

will exploit the optimum tests (e.g., combining N-P test and ML estimation) for joint detection 

and estimation proposed recently by Moustakides, et.al., [21] to build solutions for these 

scenarios. We have the latter case in scenarios when the system has no choice but to use 

unknown participants with unknown noise characteristics. Other methods, including the EM 

algorithm [18], are warranted to first estimate the model parameters and then make local 

decisions or estimations.  
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