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Learning Boolean Functions Incrementally?

Yu-Fang Chen and Bow-Yaw Wang

Academia Sinica, Taiwan

Abstract. Classical learning algorithms for Boolean functions assume that un-
known targets are Boolean functions over fixed variables. The assumption pre-
cludes scenarios where indefinitely many variables are needed. It also induces
unnecessary queries when many variables are redundant. Based on a classical
learning algorithm for Boolean functions, we develop two learning algorithms
to infer Boolean functions over enlarging sets of ordered variables. We evaluate
their performance in the learning-based loop invariant generation framework.

1 Introduction

Algorithmic learning is a technique for inferring a representation of an unknown target
in a specified instance space. When designing a learning algorithm, one formalizes
intended scenarios as a learning model. In Boolean function learning, for instance, we
are interested in finding a representation (such as a Boolean formula [3]) of an unknown
target amongst Boolean functions over fixed variables. The goal of a learning algorithm
is to generate a representation of the unknown target under the learning model [1, 13].

Inferring unknown targets over fixed variables however is not realistic in applica-
tions such as loop invariant generation [11, 14, 12], or contextual assumption synthe-
sis [5, 4]. In loop invariant generation, one considers a loop annotated with pre- and
post-conditions. The instance space hence consists of quantifier-free formulae over a
given set of atomic predicates. We are interested in finding a quantifier-free formula
which establishes the pre- and post-conditions in the specified instance space [11, 14,
12]. Through predicate abstraction [17, 7], a quantifier-free formula over fixed atomic
predicates is associated with a Boolean function over fixed variables. A learning algo-
rithm for Boolean functions can thus be adopted to infer loop invariants over a fixed set
of atomic predicates. Note that the given set of atomic predicates may not be able to
express any loop invariant. If the current atomic predicates are not sufficiently expres-
sive, more atomic predicates will be added. Hence the set of atomic predicates is not
fixed but indefinite. Yet classical learning presumes a fixed set of variables for unknown
targets. It does not consider scenarios where new variables can be introduced on the fly.
The classical learning model therefore do not really fit the scenario of loop invariant
generation.

Another drawback in classical learning algorithms for Boolean functions is their
inefficiency in the presence of redundant variables. In contextual assumption genera-
tion, one considers the problem of verifying a system composed of two components.
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We would like to replace one of the components by a contextual assumption so as to
verify the system more efficiently. The instance space therefore consists of transition
relations over model variables. We are interested in finding the transition relation of a
contextual assumption that solves the verification problem [5, 4]. Recall that charac-
teristic functions of transition relations are Boolean functions. A learning algorithm for
Boolean functions hence can generate contextual assumptions in automated assume-
guarantee reasoning. Observe that a contextual assumption is synthesized for a specific
verification problem. If a model variable is not relevant to the problem, contextual as-
sumptions can safely ignore it. Thus we are looking for an unknown transition relation
over a subset of model variables. One would naturally expect a learning algorithm to
perform really well when many model variables are irrelevant. Yet the complexity of
classical learning algorithms depends on the number of given variables, not relevant
ones. Classical learning can be unexpectedly inefficient when many given variables are
redundant.

Both issues can be addressed by reformulating the learning problem for Boolean
functions. In the new formulation, we infer a representation of an unknown target
among Boolean functions over indefinitely many variables. Note that the new instance
space leaves the number of variables unspecified. The new formulation hence fits the
scenario of loop invariant generation. Moreover, the number of variables is no longer
a parameter to the learning problem. The complexity of learning algorithms under the
new formulation can only depend on the number of variables in the unknown target.
Such algorithms can be more efficient in contextual assumption generation.

We propose to infer Boolean functions over indefinitely many variables by incre-
mental learning. Instead of Boolean functions over a fixed number of variables, we infer
the unknown target by enlarging sets of ordered variables incrementally. At iteration `,
we try to infer the unknown target as a Boolean function over the first ` variables. Our
incremental learning algorithm terminates if it infers the target. Otherwise, it proceeds
to the next iteration and tries to infer the unknown target as a Boolean function over
the first ` + 1 variables. Since the unknown target is over finitely many variables, our
incremental learning algorithm will infer the target after finitely many iterations.

A naive approach to incremental learning is to apply the classical CDNF learning
algorithm for Boolean functions at each iteration. If the classical algorithm fails to infer
the unknown target as a Boolean function over the first ` variables, the naive incremental
algorithm instantiates the classical algorithm again to infer a Boolean function over the
first `+ 1 variables at the next iteration. The simple approach however does not work.
Note that the complexity of the CDNF algorithm depends on the formula size of the
unknown target. When targets are arbitrary, their formula sizes are exponential in the
number of variables. Since Ω(2`) queries are needed to infer an arbitrary target over `
variables in the worst case, the naive algorithm has to make as many queries before it
gives up the iteration `. Subsequently, the naive algorithm would require an exponential
number of queries for every unknown target and could not be efficient.

To solve this problem, we develop a criterion to detect failures at each iteration
dynamically. At iteration `, our incremental algorithm checks whether the unknown
target is a Boolean function over the first ` variables during the course of inference. If
the incremental algorithm detects that the target needs more than the first ` variables,



the iteration ` is going to fail. Hence the incremental learning algorithm should abort
and proceed to the next iteration. We propose two incremental learning algorithms with
dynamic failure detection. In our simple incremental learning algorithm CDNF+, the
classical learning algorithm is initialized at each iteration. Information from previous it-
erations hence is lost. Our more sophisticated incremental learning algorithm CDNF++
retains such information and attains a better complexity bound. Under a generalized
learning model, both of our incremental algorithms require at most a polynomial num-
ber of queries in the formula size and the number of ordered variables in the target.
Incremental learning on certain Boolean functions is still feasible.

To attest the performance of our incremental learning algorithms for Boolean func-
tions, we compare with the classical algorithm in the learning-based loop invariant gen-
eration framework [11, 14, 12]. To evaluate the performance of incremental learning
in typical settings, we consider a simple heuristic variable ordering from the applica-
tion domain. Our incremental learning algorithms achieve up to 59.8% of speedup with
the heuristic ordering. To estimate the worst-case performance of incremental learn-
ing, we adopt random variable orderings instead of the heuristic ordering. Excluding
one extreme case, the incremental learning algorithms perform slightly better than the
classical algorithm with random orderings. Since a sensible variable ordering can often
be chosen by domain experts in most applications, the artificial worst-case scenario is
unlikely to happen. We therefore expect our new algorithms to prevail in practice.

In the classical CDNF learning algorithm for Boolean functions, unknown targets
are Boolean functions over fixed variables [3]. It is not applicable to scenarios where
unknown targets are over indefinitely many variables. Combining with predicate ab-
straction and decision procedures, the CDNF algorithm is used to generate invariants
for annotated loops [11, 14, 12], and transition invariants for termination analysis [16].
The classical algorithm is also deployed in assume-guarantee reasoning to infer con-
textual assumptions automatically [5, 4]. In these applications, the CDNF algorithm is
used as a black box. We propose a new learning model and develop incremental algo-
rithms under the new model. We do not know of any learning algorithm for Boolean
functions over indefinitely many variables. Abstraction techniques in regular language
learning are seemingly relevant [8, 2, 10]. Recall that the L∗ algorithm does not apply
when queries are answered nondeterministically. It is necessary to bring the learning
algorithm to consistent states upon nondeterministic answers induced by abstraction.
Incremental queries can introduce inconsistencies. We also have to bring the incre-
mental learning algorithms back to consistent states. Since this work is about learning
Boolean functions, it is related to [8, 2, 10] only in spirits. Many applications of the L∗

algorithm for regular languages have been proposed (see [9], for example).

This paper is organized as follows. After Introduction, preliminaries and notations
are given in Section 2. We then review the CDNF algorithm (Section 3). Section 4
presents our technical contribution. It is followed by experimental results in Section 5.
Finally, Section 6 concludes our presentation.



2 Preliminary

Let B = {⊥,>} be the Boolean domain and x = {x1, x2, . . . , xn, . . .} an infinite
set of ordered Boolean variables. We write x` for the subset {x1, x2, . . . , x`} of x. A
valuation over x` is a function from x` to B. The set of all valuations over x` is denoted
by Val `. For any valuation u ∈ Val `, x ∈ x`+1, and b ∈ B, define

u[x 7→ b](y) =

{
u(y) if y 6= x
b if y = x.

Note that u[x`+1 7→ b] ∈ Val `+1 for every u ∈ Val `. Let ⊥⊥` ∈ Val ` be the valuation
mapping every x ∈ x` to ⊥, and the valuation >>` ∈ Val ` mapping every x ∈ x` to >.
The projection of a valuation v on x` is the valuation u ∈ Val ` such that u(x) = v(x)
for every x ∈ x`. The symbol ⊕ stands for the component-wise exclusive-or operator.
Thus u⊕⊥⊥` = u for every u ∈ Val `. If R ⊆ Val ` is a set of valuations and u ∈ Val `,
we define R ⊕ u = {r ⊕ u : r ∈ R}. Thus R ⊕ ⊥⊥` = R for every R ⊆ Val `. A
Boolean function over x` is a mapping from Val ` to B. Let f be a Boolean function.
For any valuation u ∈ Val `, the notation f(u) denotes the Boolean function obtained
by assigning x to u(x) in f . Particularly, f(u) is the Boolean outcome of f on any
valuation u ∈ Val ` when f is a Boolean function over x`. Moreover, we say u is
a satisfying valuation of the Boolean function f if f(u) = >; it is an unsatisfying
valuation of f if f(u) = ⊥. When there is a satisfying valuation of a Boolean function
f , we say f is satisfiable. A Boolean formula F over x` represents a Boolean function
[[F ]]` defined as follows. On any valuation u ∈ Val `, [[F ]]`(u) is obtained by evaluating
F under the valuation u. For example, [[x1 =⇒ x2]]2(⊥⊥2) = >.

A literal is a Boolean variable or its negation. A term is a conjunction of literals.
A clause is a disjunction of literals. A Boolean formula is in disjunctive normal form
(DNF) if it is a disjunction of terms. A Boolean formula is in conjunctive normal form
(CNF) if it is a conjunction of clauses. A formula in CNF (DNF) is a CNF (DNF,
respectively) formula. A Boolean formula is in conjunctive disjunctive normal form
(CDNF) if it is a conjunction of DNF formulae. A formula in CDNF is a CDNF formula.

3 The CDNF Algorithm

The CDNF algorithm is an exact learning algorithm for Boolean functions over xn [3].
Suppose f is an unknown target Boolean function over xn. The learning algorithm
infers a CDNF formula representing f by interacting with a teacher. The teacher is
responsible for answering two types of queries.

– Membership queries MEM n(v) with v ∈ Valn. If f(v) = >, the teacher answers
YES ; otherwise, she answers NO .

– Equivalence queries EQn(F ) with a Boolean formula F over xn as the conjecture.
If [[F ]]n = f , the teacher answers YES . Otherwise, the teacher returns a counterex-
ample v ∈ Valn such that [[F ]]n(v) 6= f(v).

Let v ∈ Valn be a valuation andF a Boolean formula over xn. We write MEM n(v)→
Y and EQn(F )→ Z to denote that Y and Z are the answers to the membership query
on v and equivalence query on F , respectively.



1 t← 0;
2 EQn(true)→ v;
3 if v is YES then return true;
4 t← t+ 1;
5 Ht, Rt, at ← false, ∅, v ; // assert MEM n(at)→ NO
6 EQn(∧t

i=1Hi)→ v;
7 if v is YES then return ∧t

i=1Hi;
8 I ← {i : [[Hi]]n(v) = ⊥};
9 if I = ∅ then goto 4;

10 foreach i ∈ I do
11 r ← walkTo(n, ai, v) ; // assert MEM n(r)→ YES
12 Ri ← Ri ∪ {r};
13 end
14 foreach i = 1, . . . , t do Hi ←MDNF(Ri ⊕ ai)(xn ⊕ ai);
15 goto 6;

Algorithm 1: The CDNF Algorithm

We reprint the CDNF algorithm in Algorithm 1. In the algorithm, conjectures in
equivalence queries are always CDNF formulae. The variable t maintains the number
of DNF formulae in the current conjecture. Initially, the variable t is set to 0. The con-
jecture is hence degenerated to true (line 2, Algorithm 1).

Three variables keep track of each DNF formula in the conjecture. For the i-th DNF
formula, the variable ai is a valuation over xn, the variableRi is a set of valuations over
xn, and the variable Hi is a DNF formula over xn. The i-th DNF formula Hi is derived
from ai and Ri by MDNF (line 14, Algorithm 1):

MDNF(s) =

{ ∧
s(xi)=>

xi if s 6= ⊥⊥n

true otherwise
MDNF(S) =

{ ∨
s∈S

MDNF(s) if S 6= ∅

false otherwise

For instance, MDNF({⊥⊥2,>>2}) =MDNF(⊥⊥2) ∨MDNF(>>2) = true ∨ (x1 ∧ x2).
When a new DNF formula is added to the conjecture, the variable Rt is the empty

set and the variable Ht is set to false accordingly (line 5, Algorithm 1). Conjectures in
equivalence queries are conjunctions of Hi’s.

In order to understand our extensions to the CDNF learning algorithm, we give
a new characterization of variables associated with the i-th DNF formulae in Algo-
rithm 1. Note that ai was defined when the i-th DNF formula was created and added
to the conjecture (line 5, Algorithm 1). It is not hard to see that ai is a valuation
with MEM n(ai) → NO . First, a1 was a counterexample to the equivalence query
EQn(true). We have MEM n(a1) → NO . For i > 1, observe that ai was the coun-
terexample to the equivalence query EQn(∧i−1j=1Hj) (line 6, Algorithm 1). Furthermore,
ai was added when the set {j < i : [[Hj ]]n(ai) = ⊥} was empty (line 9, Algorithm 1).
Since [[∧i−1j=1Hj ]]n(ai) = > and EQn(∧i−1j=1Hj)→ ai, we have MEM n(ai)→ NO .

The valuations in Ri can be characterized as easily. When the counterexample v
to the equivalence query EQn(∧ti=1Hi) is returned (line 6, Algorithm 1), the CDNF
algorithm checks if the set {i : [[Hi]]n(v) = ⊥} is empty (line 9, Algorithm 1). If not,



we have [[∧ti=1Hi]]n(v) = ⊥. Thus MEM n(v) → YES for v is a counterexample to
EQn(∧ti=1Hi). For each i such that [[Hi]]n(v) = ⊥, the result of walkTo(n, ai, v) is
added to Ri (line 12, Algorithm 1). Algorithm 2 gives the details of walkTo(`, a, v).

Input: ` ∈ N : 1 ≤ `; a ∈ Val` : MEM `(a)→ NO ; v ∈ Val` : MEM `(v)→ YES
Output: r ∈ Val` : MEM `(r)→ YES

1 r ← v;
2 k ← 1;
3 while k ≤ ` do
4 if r(xk) = a(xk) then k ← k + 1;
5 else
6 r(xk)← a(xk);
7 if MEM `(r)→ NO then
8 r(xk)← ¬a(xk);
9 k ← k + 1;

10 else k ← 0;
11

12 end
13 return r;

Algorithm 2: walkTo(`, a, v)

The algorithm walkTo(`, a, v) finds an x ∈ x` with v(x) 6= a(x) and flips the value
of v(x). If the new valuation yields YES on a membership query, it continues flipping
other values of v different from a. Otherwise, the algorithm reverts to the old value of
v(x) and flips another value. Roughly, walkTo(`, a, v) computes a valuation r ∈ Valn
closest to a such that MEM n(r)→ YES . Define

N`(a, r) = {w ∈ Val ` : w = r[x 7→ a(x)] where x ∈ x` and r(x) 6= a(x)}.

Each valuation in N`(a, r) is obtained by flipping the value of exactly one x ∈ x` on r
with r(x) 6= a(x). Each valuation in N`(a, r) is thus closer to a than r. The following
lemma summaries Algorithm 2:

Lemma 1. Let a, v ∈ Val ` (1 ≤ `) be that MEM `(a) → NO and MEM `(v) →
YES . Assume r = walkTo(`, a, v) (Algorithm 2). Then MEM `(r) → YES , and
MEM `(w)→ NO for every w ∈ N`(a, r).

Proof. Note that k is set to 0 when flipping gets a YES from the membership query on
the valuation (line 10, Algorithm 2). Hence for each j ∈ {0, . . . , `− 1}, we have either

– r(xj) = a(xj); or
– r(xj) 6= a(xj) but flipping r(xj) would result in MEM `(r)→ NO .

Suppose w ∈ N`(a, r). Assume w(xk) = a(xk) 6= r(xk) for some k ∈ {0, . . . , `− 1}.
Then w is derived from r by flipping the value of r(xk). Hence MEM `(w) → NO by
line 7 Algorithm 2. ut



Recall that Ri consists of the result of walkTo(n, ai, v) where MEM n(ai)→ NO
and MEM n(v) → YES . Thus MEM n(r) → YES for every r ∈ R; MEM n(w) →
NO for every r ∈ R and w ∈ Nn(ai, r) (Lemma 1). We characterize the pairs (a,R)’s
maintained in the learning algorithm with the following definition:

Definition 1. For a ∈ Valn and R ⊆ Valn, define the property Γ (a,R) by

1. MEM n(a)→ NO;
2. MEM n(r)→ YES for every r ∈ R; and
3. MEM n(w)→ NO for every r ∈ R and w ∈ Nn(a, r).

Suppose [[¬x1 ∨ ¬x2]]2 is the target Boolean function over x2 as an example. Let
r(x1) = ⊥ and r(x2) = >. We have Γ (>>2, {r}) but not Γ (>>2, {⊥⊥2}).

The following lemma states that Γ (ai, Ri) holds for 1 ≤ i ≤ t in the CDNF algo-
rithm. We call (a,R) a speculative support when Γ (a,R) holds.

Lemma 2. At line 6 of Algorithm 1, Γ (ai, Ri) holds for every 1 ≤ i ≤ t.

Proof. When ai is added at line 5 Algorithm 1, the set

{Hj : j < i and [[Hj ]](ai) = ⊥}

is empty (line 9 Algorithm 1). Hence [[∧i−1j=1Hj ]](ai) = >. Recall that ai is a counterex-
ample to EQn(∧i−1j=1Hj). Thus MEM n(ai)→ NO .

By Lemma 1 and the fact that Ri consists of the outputs of Algorithm 2, we have
MEM n(r)→ YES for every r ∈ Ri. Moreover, MEM n(w)→ NO for every r ∈ Ri

and w ∈ Nn(a, r). ut

The size of a DNF formula is the number of terms in the formula; the size of a
CNF formula is the number of clauses in it. Let f be a Boolean function over xn.
The DNF size of f (denoted by |f |DNF) is the minimal size over all DNF formulae
representing f ; the CNF size of f (denoted by |f |CNF) is the minimal size of all CNF
formulae representing f . The number of speculative supports and the size of R in each
speculative support (a,R) give the following bounds.

Theorem 1 ([3]). Let f be an unknown target Boolean function over xn. The CDNF al-
gorithm (Algorithm 1) infers f withinO(n2|f |CNF|f |DNF) membership andO(|f |CNF|f |DNF)
equivalence queries.

Note that the complexity of the CDNF algorithm is a polynomial in the size of the
variable set xn. If all but one variables in xn are redundant, the learning algorithm still
requires O(n2) membership queries to infer the target.

4 Incremental Learning

The CDNF algorithm infers an unknown target among Boolean functions over a fixed
number of variables. It is not applicable to scenarios where targets are Boolean func-
tions over indefinitely many variables. Moreover, the complexity of the CDNF algo-
rithm is a polynomial in the number of given variables. It can be unexpectedly ineffi-
cient when many variables are redundant in the unknown target.



It appears that these issues could be resolved by invoking the CDNF algorithm itera-
tively. A naive incremental learning algorithm adopts the classical learning algorithm to
infer the unknown target as a Boolean function over x` at iteration `. If it succeeds, the
naive algorithm reports the inferred result. Otherwise, the naive algorithm increments
the number of variables and invokes the CDNF algorithm to infer the unknown target
as a Boolean function over x`+1. The naive approach however has two problems.

The first problem is to answer queries. Recall that the teacher knows a target Boolean
function over, say, xm. At iteration `, the naive incremental algorithm infers the un-
known target as a Boolean function over x`. It thus makes queries on valuations and
conjectures over x`. Yet the target Boolean function is over xm. It is unclear how the
teacher answers queries at iteration ` when ` 6= m. A new learning model where the
teacher answers such queries is necessary for learning Boolean functions incrementally.

The other problem of the naive approach is its inefficiency. Recall that the complex-
ity of the CDNF algorithm depends on the CNF and DNF sizes of the unknown target.
Since targets are arbitrary, Ω(2`) queries are needed to decide whether the learning al-
gorithm fails to infer the target at iteration `. Deciding failures of inference requires an
exponential number of queries at each iteration. Naively adopting the CDNF algorithm
would be very inefficient compared to the classical learning algorithm. A more sophis-
ticated mechanism to identify failures of inference at each iteration is indispensable.

For the first problem, we generalize the classical learning model to enable the
teacher answering queries at all iterations (Section 4.1). To address the second prob-
lem, we develop a criterion for determining failures of inference dynamically and use it
in our simple incremental learning algorithm (Section 4.2). A sophisticated incremental
algorithm with an economical management of information is presented in Section 4.3.

4.1 Incremental Teacher

Assume a target Boolean function f over a finite subset of x. In our incremental learning
model, an incremental teacher should answer the following queries:

– Incremental membership queries MEM `(u) with u ∈ Val `. If f(u) is satisfiable,
the incremental teacher answers YES ; otherwise, she answers NO .

– Incremental non-membership queries MEM `(u) with u ∈ Val `. If ¬f(u) is satis-
fiable, the incremental teacher answers YES ; otherwise, NO .

– Incremental equivalence queries EQ`(G) with a Boolean formula G over x`. If
[[G]]` = f , the incremental teacher answers YES . Otherwise, she returns the pro-
jection of a valuation v ∈ Valx on x` where [[G]]`(v) 6= f(v) ∈ B.

Example. Let f = x1 ⊕ x2. On incremental queries MEM 1(⊥⊥1) and MEM 1(⊥⊥1),
the incremental teacher answers YES . Similarly, the incremental teacher answers YES
on incremental queries MEM 1(>>1) and MEM 1(>>1). On incremental equivalence
queries EQ1(true) or EQ1(false), > is a counterexample.

Incremental queries allow a learning algorithm to acquire (incomplete) information
about the unknown target function. Intuitively, the answer to an incremental member-
ship query on a valuation reveals whether a completion of the valuation gives a satis-
fying valuation; the answer to an incremental non-membership query shows whether



a completion gives an unsatisfying valuation. Incremental equivalence queries check
whether the target is equivalent to a Boolean formula over specified variables. If not, a
valuation differentiates the conjecture and the target. The projection of such a valuation
on specified variables is returned as a counterexample. The following lemma is useful.

Lemma 3. Assume a target Boolean function over xm and 1 ≤ ` ≤ m.

1. For any valuation v ∈ Valm, MEMm(v)→ YES iff MEMm(v)→ NO .
2. For any Boolean formulaG and valuation u over x`, [[G]]`(u) = ⊥ and EQ`(G)→
u imply MEM `(u)→ YES .

3. For any Boolean formulaG and valuation u over x`, [[G]]`(u) = > and EQ`(G)→
u imply MEM `(u)→ YES .

4.2 The CDNF+ Algorithm

Suppose that the CDNF algorithm is inferring an unknown target as a Boolean function
over x` at iteration `. We check if the classical algorithm will fail at this iteration. If
so, we abort and re-instantiate the CDNF algorithm to infer the unknown target as a
Boolean function over x`+1 at the next iteration. To determine failures of inference,
recall that the CDNF algorithm is exact. If the unknown target is indeed a Boolean
function over x`, the classical algorithm will infer it. It suffices to check whether the
target is a Boolean function over x` to determine whether the iteration ` will fail.

In order to detect whether the unknown target is a Boolean function over x`, observe
that a function cannot have two different outcomes on one input. When the target is a
Boolean function over x`, MEM `(u) → YES if and only if MEM `(u) → NO for
every u ∈ Val ` (Lemma 3). Therefore, the unknown target is not a Boolean function
over x` if MEM `(u)→ YES and MEM `(u)→ YES for some u ∈ Val `. This simple
observation motivates the following definition:

Definition 2. A valuation u ∈ Val ` (1 ≤ `) is conflicting if MEM `(u) → YES and
MEM `(u)→ YES .

The following lemma follows immediately from Lemma 3.

Lemma 4. For any target Boolean function over a finite subset of x, the target Boolean
function is not over x` if there is a conflicting valuation over x`.

Example (continued). Recall that⊥ is a counterexample to both EQ1(false) and EQ1(true).
By Lemma 3, MEM 1(⊥) → YES and MEM 1(⊥) → YES . Hence the unknown tar-
get is not a Boolean function over x1.

Our first incremental learning algorithm is now clear. We parameterize the CDNF
algorithm by the number of ordered variables. At iteration `, we apply the parameter-
ized CDNF algorithm and infer the unknown target as a Boolean function over x`. If a
conflicting valuation is observed, we increment ` and move to the next iteration. Algo-
rithm 3 shows the parameterized CDNF algorithm. Note that incremental equivalence
queries are invoked in the parameterized algorithm. Similarly, incremental membership
queries are used in the algorithm walkTo(`, a, v) (Algorithm 2).

We give a parameterized generalization of Γ (a,R) in Definition 3.



Input: ` ∈ N : 1 ≤ `
1 t← 0;
2 EQ`(true)→ v;
3 if v is YES then return true;
4 t← t+ 1;
5 Ht, Rt, at ← false, ∅, v ; // assert MEM `(at)→ YES
6 EQ`(∧t

i=1Hi)→ v;
7 if v is YES then return ∧t

i=1Hi;
8 I ← {i : [[Hi]]`(v) = ⊥};
9 if I = ∅ then goto 4;

10 foreach i ∈ I do
11 r ← walkTo(`, ai, v) ; // assert MEM `(r)→ YES
12 if ai = r then raise conflict-found ;
13 Ri ← Ri ∪ {r};
14 end
15 foreach i = 1, . . . , t do Hi ←MDNF(Ri ⊕ ai)(x` ⊕ ai);
16 goto 6;

Algorithm 3: ℘CDNF (`)

Definition 3. For a ∈ Val ` (1 ≤ `) and R ⊆ Val `, define ∆`(a,R) by

1. MEM `(a)→ YES ;
2. MEM `(r)→ YES for every r ∈ R;
3. MEM `(w)→ NO for every r ∈ R and w ∈ N`(a, r).

The following lemma states that ∆`(ai, Ri) holds for 1 ≤ i ≤ t in the parameter-
ized CDNF algorithm. Its proof is a generalization of those in Lemma 2. We call (a,R)
a speculative support with parameter ` when ∆`(a,R) holds.

Lemma 5. At line 6 of Algorithm 3, ∆`(ai, Ri) holds for every 1 ≤ i ≤ t.

In order to decide conflicting valuations, recall that (ai, Ri)’s are speculative sup-
ports with parameter `. We have MEM `(ai)→ YES and MEM `(r)→ YES for every
r ∈ Ri (Lemma 5 and 1). If furthermore ai = r, ai is conflicting. By Lemma 4, the un-
known target is not a Boolean function over x`. We abort the parameterized algorithm
by raising an exception (line 12, Algorithm 3).

1 `← 1;
2 while > do
3 try
4 G = ℘CDNF(`)
5 with conflict-found =⇒ `← `+ 1;
6 end
7 return G;

Algorithm 4: The CDNF+ Algorithm



Algorithm 4 gives our simple incremental learning algorithm. The CDNF+ algo-
rithm starts from the variable ` equal to one. At iteration `, it invokes the parameterized
algorithm ℘CDNF with parameter ` to infer the unknown target as a Boolean function
over x`. If the parameterized algorithm infers the target, our simple algorithm termi-
nates successfully. If the parameterized learning algorithm raises the exception conflict-
found , the simple algorithm increments the variable ` and reiterates. The complexity
of the CDNF+ algorithm follows from Theorem 1 and the number of iterations.

Theorem 2. Let f be an unknown target Boolean function over a finite subset of x.
The CDNF+ algorithm (Algorithm 4) infers f inO(m3|f |CNF|f |DNF) incremental mem-
bership and O(m|f |CNF|f |DNF) incremental equivalence queries where m is the least
number such that f is a Boolean function over xm.

Proof. A conflict must be observed within O(n2|f |CNF |f |DNF ) membership queries
and O(|f |CNF |f |DNF ) equivalence queries at iteration ` < n. Hence the CDNF+ algo-
rithm requires at mostO(n3|f |CNF |f |DNF ) membership queries andO(n|f |CNF |f |DNF )
equivalence queries in total.

The CDNF+ algorithm does not presume a fixed set of variables. It is hence applica-
ble to scenarios where unknown targets are over indefinitely many variables. Moreover,
the complexity of the CDNF+ algorithm depends on the number of ordered variables in
the unknown target. If the target is a Boolean function over x1, the CDNF+ algorithm
will infer the target withinO(|f |CNF|f |DNF) incremental membership queries. The clas-
sical learning algorithm in contrast needs O(n2|f |CNF|f |DNF) membership queries if
it infers the unknown target as a Boolean function over xn. The performance of the
CDNF+ algorithm however depends on variable orderings and how incremental mem-
bership queries are resolved in practice. Section 5 evaluates these issues.

4.3 The CDNF++ Algorithm

We can actually do better than the CDNF+ algorithm. Observe that the simple incre-
mental learning algorithm restarts the learning process at each iteration. All information
from previous iterations known to the incremental algorithm is lost. The parameterized
CDNF+ algorithm has to infer the unknown target from scratch. This is apparently not
an economical management of information.

To retain the information obtained in previous iterations, we reuse parameterized
speculative supports in each iteration. Each speculative support (a,R) with parameter `
satisfies the property∆`(a,R) at iteration ` (Lemma 5). We compute a speculative sup-
port (a+, R+) with parameter `+1 from a speculative support (a,R) with parameter `.
After new parameterized speculative supports are constructed, we initiate the parame-
terized CDNF algorithm with the extended parameterized speculative supports and the
conjecture derived from them. Information from previous iterations is thus retained.

Consider a speculative support (a,R) with parameter ` and a speculative support
(a+, R+) with parameter ` + 1. We have a ∈ Val ` and a+ ∈ Val `+1. Similarly,
R ⊆ Val ` and R+ ⊆ Val `+1. Each valuation in a speculative support with parameter
` is only short of the Boolean assignment to the variable x`+1. To construct (a+, R+)



from (a,R), it suffices to extend the valuation a and every valuation over x` in R by an
assignment to x`+1. To simplify the notation, we use the shorthand u+b for u[x`+1 7→ b]
where u ∈ Val ` and b ∈ B. The following lemma follows from the definition.

Lemma 6. Let u ∈ Val ` (1 ≤ `) be a valuation over x`.

1. If MEM `(u)→ YES , MEM `+1(u
+⊥)→ YES or MEM `+1(u

+>)→ YES .
2. If MEM `(u)→ NO , MEM `+1(u

+⊥)→ NO and MEM `+1(u
+>)→ NO .

3. If MEM `(u)→ YES , MEM `+1(u
+⊥)→ YES or MEM `+1(u

+>)→ YES .

Algorithm 5 explicates the construction of (a+, R+) from (a,R) where ∆`(a,R)
holds. It starts by extending a. Recall that MEM `(a) → YES . We can always find an
extension a+ with MEM `+1(a

+) (Lemma 6). For the set R+ ⊆ Val `+1, the construc-
tion is not more difficult. We simply extend every valuation in R so that the extension
yields YES on an incremental membership query.

Input: ` ∈ N : 1 ≤ `; a ∈ Val` : MEM `(a)→ YES ; R ⊆ Val` : MEM `(r)→ YES
for every r ∈ R

Output: a+ ∈ Val`+1 : MEM `+1(a
+)→ YES ; R+ ⊆ Val`+1 :

MEM `+1(r
+)→ YES for every r+ ∈ R+

// assert ∆`(a,R)

1 b← if MEM `+1(a
+⊥)→ YES then ⊥ else >;

2 a+ ← a+b;
3 R+ ← ∅;
4 foreach r ∈ R do
5 c← if MEM `+1(r

+b)→ YES then b else ¬b;
6 R+ ← R+ ∪ {r+c};
7 end
// assert ∆`+1(a

+, R+)
8 return (a+, R+);

Algorithm 5: extendSupport(`, a,R)

The following lemma states that the construction in Algorithm 5 is indeed correct.
The only non-trivial part is to show that N`+1(a

+, r+) consists of valuations yielding
NO on incremental membership queries for every r+ ∈ R+.

Lemma 7. Let a ∈ Val ` (1 ≤ `), R ⊆ Val `, and (a+, R+) = extendSupport(`, a,R)
(Algorithm 5). If ∆`(a,R), then ∆`+1(a

+, R+).

Proof. MEM `(a)→ YES by assumption. Thus MEM `+1(a
+⊥)→ YES or MEM `+1(a

+>)→
YES (Lemma 6). By line 1, Algorithm 5, we have MEM `+1(a

+) → YES for a+ =
a+b.

MEM `(r) → YES for every r ∈ R by assumption. Hence MEM `+1(r
+⊥) →

YES or MEM `+1(r
+>)→ YES (Lemma 6). For every r+ ∈ R+, we have MEM `+1(r

+)→
YES by line 5 Algorithm 5 since r ∈ R and r+ = r+c.



Finally, assume a+ = a+b and r+ = r+c ∈ R+. Let w+ ∈ N`+1(a
+, r+). In

the remaining of the proof, we write w for w+ ↓x`
. We show MEM `+1(w

+) → NO .
There are two cases.

– b = c. Since w+ ∈ N`+1(a
+, r+) and r+(x`+1) = a+(x`+1), w ∈ N`(a, r). We

have MEM `+1(w
+)→ NO for MEM `(w)→ NO (Lemma 6).

– b 6= c. There are two subcases.

• w+(x`+1) = r+(x`+1). Hence w ∈ N`(a, r) and MEM `(w) → NO . We
have MEM `+1(w

+)→ NO (Lemma 6);
• w+(x`+1) 6= r+(x`+1). Hence w = r and w+ = w+b = r+b. By line 5

Algorithm 5, we have MEM `+1(r
+b)→ NO as required.

ut

With extended parameterized speculative supports, it is now straightforward to de-
sign our incremental learning algorithm (Algorithm 6). Similar to the simple incremen-
tal algorithm, the CDNF++ algorithm infers unknown target Boolean functions itera-
tively. At each iteration, it first proceeds as the parameterized CDNF algorithm. If the
parameterized algorithm is able to infer the unknown target at iteration `, our incremen-
tal algorithm terminates successfully and reports the result.

When the CDNF++ algorithm detects a conflicting valuation, it constructs extended
parameterized speculative supports with Algorithm 5 (line 14, Algorithm 6). After ex-
tended parameterized speculative supports are obtained, the CDNF++ algorithm derives
a new conjecture from them and enters the next iteration (line 19, Algorithm 6). The
following theorem is proved by bounding the number of parameterized speculative sup-
ports and the size of R in each parameterized speculative support (a,R).

Theorem 3. Let f be an unknown target Boolean function over a finite subset of x. The
CDNF++ algorithm (Algorithm 6) infers f in O(m2|f |CNF|f |DNF) incremental mem-
bership, O(m|f |CNF) incremental non-membership, and O(|f |CNF|f |DNF) incremental
equivalence queries where m is the least number that f is a Boolean function over xm.

Proof. Let F =
t∧

i=0

Hi be the CDNF formula inferred by the CDNF algorithm on f . t

is bounded above by |f |CNF. There are at most |f |DNF terms in all DNF formulae Hi’s.
Moreover, O(1) membership queries are needed to extend a speculative support. Hence
the CDNF++ algorithm needs additional O(n(|f |CNF + |f |DNF)) membership queries
for there are n iterations.

Compared with the simple incremental learning algorithm, the CDNF++ algorithm
improves linearly in the numbers of incremental membership and equivalence queries.
In exchange, the sophisticated algorithm makes non-membership queries to extend pa-
rameterized speculative supports. Again, the performance of the CDNF++ algorithm
depends on the order of variables and the efficiency of incremental query resolution.
We give an assessment in the next section.



1 `← 1;
2 t← 0;
3 EQ`(true)→ v;
4 if v is YES then return true;
5 t← t+ 1;
6 Ht, Rt, at ← false, ∅, v ; // assert MEM `(at)→ YES
7 EQ`(∧t

i=1Hi)→ v;
8 if v is YES then return ∧t

i=1Hi;
9 I ← {i : [[Hi]]`(v) = ⊥};

10 if I = ∅ then goto 5;
11 foreach i ∈ I do
12 r ← walkTo(`, ai, v) ; // assert MEM `(r)→ YES
13 if ai = r then
14 foreach i = 1, . . . , t do (ai, Ri)← extendSupport(ai, Ri);
15 `← `+ 1;
16 goto 19
17 Ri ← Ri ∪ {r};
18 end
19 foreach i = 1, . . . , t do Hi ←MDNF(Ri ⊕ ai)(x` ⊕ ai);
20 goto 7;

Algorithm 6: The CDNF++ Algorithm

5 Experiments

We apply our incremental learning algorithms to the learning-based framework for loop
invariant generation [11]. Let { δ } while κ do S { ε } be an annotated loop with the
pre-condition δ, the post-condition ε, and the loop guard κ. A loop invariant ι verifying
the annotated loop is a quantifier-free formula such that δ =⇒ ι, ι =⇒ ε ∨ κ, and
ι ∧ κ =⇒ wp(S, ι), where wp(S, ι) denotes the weakest precondition of ι for S.

The learning-based framework for loop invariant generation applies predicate ab-
straction [17, 7] and adopts the CDNF algorithm [3] to infer the abstraction of a loop in-
variant for a given annotated loop. Using an SMT solver [6, 15], a randomized mechan-
ical teacher is devised to answer queries from the learning algorithm. Suppose n atomic
predicates are used in the abstraction. Consider a membership query MEM n(v) with
v ∈ Valn. If the quantifier-free formula corresponding to the valuation v is stronger
than δ, it must be stronger than any loop invariant ι for δ =⇒ ι. The mechanical
teacher hence answers YES to the membership query MEM n(v). Similarly, if the the
corresponding formula of v is not stronger than ε ∨ κ, it is not included in any loop
invariant ι for ι =⇒ ε ∨ κ. The mechanical teacher thus answers NO to the member-
ship query MEM n(v). In other cases, the mechanical teacher simply gives a random
answer. Observe that random answers may yield different loop invariants in different
runs. A multitude of loop invariants are exploited by the randomized teacher.

For predicate abstraction, atomic predicates are extracted from program texts heuris-
tically [11]. If many irrelevant atomic predicates are extracted, the performance of clas-



test case vars cflcts MEM MEM EQ MEM$ MEM$ EQ$ time

ide-ide-tape
CDNF 6.0 0.0 16.2 - 4.8 4.0 - 0.3 0.046s

CDNF+ 3.0 0.0 1.0 - 3.0 0.0 - 0.0 0.015s
CDNF++ 3.0 0.0 1.0 0.0 3.0 0.0 0.0 0.0 0.015s

ide-wait-ireason
CDNF 8.0 1.6 85.5 - 32.9 14.9 - 7.8 0.237s

CDNF+ 4.0 0.0 8.0 - 9.5 1.0 - 0.0 0.044s
CDNF++ 4.0 0.0 19.0 0.0 29.0 0.0 0.0 0.0 0.088s

parser
CDNF 20.0 20.5 10203.9 - 1286.9 1306.6 - 44.9 41.044s

CDNF+ 9.0 0.0 97.3 - 32.4 36.8 - 0.0 0.501s
CDNF++ 9.0 0.0 304.8 0.0 91.0 8.5 0.0 0.0 1.006s

usb-message
CDNF 10.0 0.0 21.1 - 6.8 1.0 - 0.0 0.097s

CDNF+ 5.0 0.0 19.5 - 6.6 2.2 - 0.0 0.065s
CDNF++ 5.0 0.0 60.9 0.0 21.7 9.6 0.0 0.0 0.147s

vpr
CDNF 7.0 0.9 4.6 - 6.4 20.1 - 3.4 0.070s

CDNF+ 5.1 0.8 4.0 - 5.9 17.7 - 3.0 0.057s
CDNF++ 5.0 0.1 5.6 3.0 9.2 21.9 0.0 2.0 0.064s

Fig. 1. Experimental Results – Heuristic Variable Ordering

sical learning will be impeded. We therefore apply incremental learning to improve the
efficiency of the learning-based framework.

Two minor modifications derived from the domain knowledge are needed for this
application. First, recall that any loop invariant must be stronger than the disjunction
of the loop guard and the post-condition. An inferred loop invariant is likely to have
atomic predicates from them. We hence start with these atomic predicates and infer loop
invariants incrementally. This can be achieved by putting the atomic predicates of the
loop guard and the post-condition in front of the variable set, and initializing the variable
` with the number of such predicates. Second, observe that random answers from the
mechanical teacher may induce conflicting valuations. A conflict does not necessarily
imply the lack of variables. To give the learning algorithm more chances to infer a loop
invariant over the first ` atomic predicates, the variable ` is incremented only when
the number of conflicts is greater than d`1.2e. Otherwise, we restart the parameterized
CDNF algorithm to infer a loop invariant over the first ` atomic predicates.

We compare the average performance of 1000 runs in five test cases. Data are
collected from an Intel Core2 Quad Processor Q8200 running 64-bit Linux 2.6.32
with 4GB memory. Figure 1 shows our experimental results. Three learning algorithms
(CDNF, CDNF+, and CDNF++) are compared in the same test cases from [11]. The
number of atomic predicates is reported in the column “vars.” For the CDNF algorithm,
it indicates the number of atomic predicates extracted from program texts. For the in-
cremental learning algorithms, it indicates the average number of atomic predicates in
a loop invariant. The column “cflcts” shows the average number of conflicting valua-
tions induced by random answers or lack of variables. The columns “MEM”, “MEM”,
and “EQ” are respectively the average numbers of membership, non-membership, and
equivalence queries answered conclusively. The columns “MEM$”, “MEM$”, and “EQ$”



test case vars cflcts MEM MEM EQ MEM$ MEM$ EQ$ time

ide-ide-tape
CDNF 6.0 0.1 13.0 - 5.0 3.6 - 0.4 0.048s

CDNF+ 2.7 2.5 4.1 - 10.5 0.9 - 0.0 0.028s
CDNF++ 2.8 2.7 5.2 0.0 13.2 1.6 0.0 0.1 0.037s

ide-wait-ireason
CDNF 8.0 1.6 87.8 - 32.0 14.2 - 7.6 0.247s

CDNF+ 6.9 7.6 76.4 - 51.7 12.6 - 5.1 0.236s
CDNF++ 6.8 7.4 83.0 3.4 56.0 17.5 0.4 4.5 0.256s

parser
CDNF 20.0 5.6 2948.4 - 405.6 563.7 - 12.6 11.961s

CDNF+ 19.0 31.1 4343.5 - 942.0 783.0 - 8.9 18.143s
CDNF++ 19.1 31.5 3365.1 19.3 572.8 757.1 0.4 9.1 13.504s

usb-message
CDNF 10.0 0.0 21.4 - 7.3 1.0 - 0.0 0.094s

CDNF+ 8.1 8.1 47.2 - 44.1 3.1 - 0.0 0.205s
CDNF++ 8.4 8.4 39.8 3.5 35.1 5.0 0.0 0.0 0.181s

vpr
CDNF 7.0 1.6 9.5 - 9.4 33.0 - 6.3 0.112s

CDNF+ 4.4 4.4 7.3 - 16.4 16.2 - 6.4 0.082s
CDNF++ 5.1 5.6 15.9 1.4 22.5 24.0 1.0 6.5 0.119s

Fig. 2. Experimental Results – Random Variable Orderings

show the average numbers of random membership, non-membership, and equivalence
queries respectively. The column “time” indicates average running time.

With our simple heuristic variable ordering, the CDNF+ algorithms performs better
than the classical learning algorithm in all test cases. The more sophisticated CDNF++
algorithm is outperformed by the classical algorithm in only one test case (usb-message).
Both incremental learning algorithms improve the most complicated case parser sig-
nificantly. The classical learning algorithm takes about 41 seconds to infer a loop invari-
ant in this test case. The CDNF+ and CDNF++ algorithms use about .5 and 1 second
respectively in the same test case. Across the five test cases, the CDNF+ and CDNF++
algorithms have expected speedups of 59.8% and 36.9% respectively.

We now evaluate the worst-case performance of the incremental learning algo-
rithms. To this end, we randomly order the set of atomic predicates extracted from
program texts at each run. Starting from the first variable in a random variable ordering,
our incremental learning algorithms are invoked to infer loop invariants. Similarly, we
invoke the classical CDNF algorithm on all randomly ordered variables at each run. We
compare the average of 1000 runs in each test case. Figure 2 gives the results.

With random variable orderings, the incremental learning algorithms perform com-
parably to the classical learning algorithm in all test cases but usb-message. For
this particular case, conflicts are negligible when all atomic predicates are used. In-
cremental learning, on the other hand, needs to enlarge the set of atomic predicates 8
times. Subsequently, both incremental learning algorithms make lots of useless queries
before a loop invariant is inferred. Also note that the CDNF algorithm performs signif-
icantly better with random variable orderings in the test case parser. Yet the classical
algorithm still requires about 12 seconds to infer a loop invariant. In comparison, our
incremental algorithms are an order of magnitude faster with our heuristic variable or-
dering (cf Figure 1). Using random variable orderings, we observe 19.4% and 18.5% of



slowdowns respectively from the CDNF+ and CDNF++ algorithms across the five test
cases. Note that the test case usb-message alone registers a slowdown of more than
90%. The incremental learning algorithms in fact perform slightly better than the clas-
sical algorithm for the other four test cases on average (5.3% for CDNF+ and 0.1% for
CDNF++). Also recall that this is the worst-case scenario for incremental learning. As
in loop invariant inference, heuristics for choosing sensible variable orderings are often
available for most applications. Our incremental learning algorithms should outperform
the classical algorithm with the domain knowledge in practice.

6 Conclusion

Classical learning algorithms for Boolean functions assume a fixed number of variables
for unknown targets. The assumption precludes applications where indefinitely many
variables are needed. It can also be unexpectedly inefficient at the presence of irrele-
vant variables. We address the problem by inferring unknown targets through enlarging
numbers of ordered variables. Our experiments show that incremental learning attains
significant improvement with a simple heuristic variable ordering. They also suggest
manageable slowdowns in the worst-case scenario with random variable orderings.

Applications of incremental learning in formal verification are under investigation.
Particularly, problems in program verification inherently have indefinitely many vari-
ables in unknown targets. Applying incremental learning to program verification will be
interesting. We are working on applications in automated assume-guarantee reasoning.
Domain knowledge about contextual assumptions will be essential in this application.
Acknowledgement. We thank the invaluable comments from anonymous referees.
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