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Abstract. In this paper, we consider the problem of heterogeneous
subset sampling. Each element in a domain set has different probabil-
ities of being included in a sample, which is a subset of the domain
set. Drawing a sample from a domain set of size n takes O(n) time if a
Naive algorithm is employed. We propose a Hybrid algorithm, which
requires O(n) preprocessing time and O(n) extra space. It draws a
sample in O(n

√
p∗) time on average where p∗ is min (pµ, 1− pµ) and

pµ denotes the mean of inclusion probabilities. In addition to the theo-
retical analysis, we evaluate the performance of the Hybrid algorithm
via experiments and give an application for particle-based simulations
on the spread of a disease.

1 Introduction

We begin by formulating the problem of heterogeneous subset sampling.

Problem HSS. Heterogeneous subset sampling involves drawing several samples
from a domain set of size n. Without loss of generality, let the domain set be
D = {1, . . . , n} in which each element i is associated with an inclusion probability
pi. For each drawn sample, which is a subset of the domain set, the probability
of element i being included is equal to the given inclusion probability pi. As it is
necessary to draw several samples from the exemplar application in this paper, and
potential new applications, we need to devise an efficient method to achieve the
task. We assume the source used to generate variates from the standard uniform
distribution U(0, 1) is given.

The homogeneous case, in which all pi are identical, is almost equivalent to
generating variates from a binomial distribution. However, only a few works, such
as [1], have considered the heterogeneous case and they focus on the size of the
drawn sample rather than the elements included in it. Although this approach
calculates the size of the drawn sample, it does not provide an efficient reduction
method for generating the included elements. An intuitive way to achieve reduc-
tion is to sample with replacement, but the HSS problem is a case of sampling



without replacement. Trivially applying the method of sampling with replacement
to the HSS problem may need infinite computation time in the worst case. With
regard to the elements included in a sample, to the best of our knowledge, only
the Naive algorithm introduced in Section 2.1 is known [2] [3]. The computational
cost of solving the HSS problem with the Naive algorithm is O(n) time for each
sample. There is no preprocessing time.

In this paper, we consider the distribution of inclusion probabilities, which may
be biased in many applications. For instance, in a particle-based simulation of the
spread of a disease, the mean of the distribution is biased toward being small. We
propose the Hybrid algorithm, which imposes a tighter bound on the computation
time, as a trade-off for preprocessing time and extra space. Our algorithm requires
O(n) preprocessing time, O(n) extra space, and O(n

√
p∗) time on average to draw

each sample, where p∗ is min (pµ, 1− pµ) and pµ denotes the mean of inclusion
probabilities. The Hybrid algorithm is more efficient than the Naive algorithm
when pµ deviates from 1/2 significantly. Particle-based simulation on the spread
of a disease is a particular case that can cope with the requirement for speedup.
We consider this case in detail in Section 3.

The remainder of this paper is organized as follows. In Section 2, we introduce
the proposed Hybrid algorithm, provide the proof of its correctness, and discuss.
In Section 3, we evaluate the performance of the Hybrid algorithm via experi-
ments and introduce an application for particle-based simulation of the spread of
a disease. Then, in Section 4, we summarize our conclusions.

2 Algorithms

In this section, three algorithms for solving the HSS problem are introduced. The
first two algorithms are the building blocks for the third one.

2.1 Naive Algorithm

Algorithm 1 details the steps of a Naive algorithm for the HSS problem. To deter-
mine whether an element i should be included in a drawn sample, the algorithm
compares its inclusion probability pi with a variate generated from U(0, 1). Be-
cause the size of the domain set D is n, the total cost is O(n), which would be
the lower bound of the HSS problem if it were necessary to make the decisions
one by one.

2.2 Sieve Algorithm

The rationale for the proposed Sieve algorithm, Algorithm 2, is that instead of
making a decision about each element in the domain set, we consider a smaller
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Algorithm 1: Naive algorithm

input : a domain set D = {1, . . . , n} in which each element i is associated
with an inclusion probability pi

output: S, a drawn sample

S ← φ

foreach i ∈ D do
t← U(0, 1)
if t < pi then

S ← S ∪ {i}
end

end

return S

subset selected by a designed mechanism. Then, we only make decisions about
the elements in the subset.

The designed mechanism is based on a simple idea. Specifically, for each el-
ement i in the domain set, we decouple the decision about it being included in
a drawn sample into two decisions, Ai and Bi. For each pair of decisions Ai and
Bi, we assign inclusion probabilities to it so that Pr(Ai) × Pr(Bi) is equal to pi

and Pr(Ai) of all elements are identical. Hence, the original decision is included
if and only if both decoupled decisions are included. Since it is meaningful to
make decision Bi if and only if the outcome of Ai is included, the decision Ai acts
like a sieve by removing unnecessary correspondent decision Bi. To guarantee the
success of the decoupling, we let Pr(Ai) be equal to pmax, the maximum of all
pi’s.

One advantage of the decoupling procedure is that the outcome of a decision
Bi is meaningful if and only if the correspondent decision Ai is included. There-
fore, the outcomes of Ai’s identify a subset of all Bi’s to be determined. Another
advantage is that all Ai’s form a homogeneous case of the HSS problem which can
be solved efficiently with two building blocks, namely, Procedure SWOR(k,D) and
a binomial sampling from B(|D|, pmax). Procedure SWOR(k,X) randomly selects
a subset of X from all X’s subsets of size k. This is a classic result reported in
[4]. B(n, p) denotes the binomial distribution of n trials with success rate p.

We verify the equivalence of the Sieve and Naive algorithms by proving the
following assumptions, which are obviously true for the Naive algorithm. First,
the probability of an element being included in a drawn sample is equal to the
given inclusion probability. Second, the events of the elements being included in
a drawn sample are mutually independent. The proofs of the above assumptions
for the Sieve algorithm are given in Lemmas 1 and 2 respectively.
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Algorithm 2: Sieve algorithm

input : a domain set D = {1, . . . , n} in which each element i is
associated with an inclusion probability pi

output : a drawn sample S

pmax ← maxi∈D pi1

k ← B(|D|, pmax)2

R← SWOR(k,D)3

S ← φ4

foreach i ∈ R do5

t← U(0, 1)6

if t < pi/pmax then7

S ← S ∪ {i}8

end9

end10

return S11

Procedure SWOR(k,X)

built-in: an array E of size n, where E[i] = i for all 1 ≤ i ≤ n
input : an integer k, where k ≤ |X| ≤ n and a set X = {X1, . . . ,X|X|}
output : R, a randomly selected subset of X, whose size is k
R← φ1

for i = 1 to k do2

t← U(0, 1)3

t← min(⌊t(n − i + 1)⌋, n − i)4

exchange E[i + t] with E[i]5

R← R ∪ {XE[i]}6

end7

re-swap array E into the built-in state8

return R9
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Lemma 1. The probability p′i of element i being included in a drawn sample is

equal to pi.

Proof.

p′i =
n
∑

x=0

Pr((k ← B(n, pmax)) = x)Pr(i ∈ SWOR(k,D))Pr(Bi)

=

n
∑

x=0

(

n

x

)

px
max(1− pmax)n−x

(

x

n

)(

pi

pmax

)

=
n
∑

x=1

(

n− 1

x− 1

)

px−1
max(1− pmax)n−xpi

= (pmax + 1− pmax)n−1pi = pi

⊓⊔

Lemma 2. EV1 . . . EVn are mutually independent, where EVi denotes the event

of element i being included in a drawn sample; that is,

Pr

(

⋂

i∈R

(EVi)

)

=
∏

i∈R

Pr(EVi), for all R ⊂ {1, . . . , n}.

Proof.

Pr

(

⋂

i∈R

(EVi)

)

=
n
∑

x=|R|

Pr((k ← B(n, pmax)) = x)Pr(R ⊂ SWOR(k,D))
∏

i∈R

Pr(Bi)

=

n
∑

x=|R|

(

n

x

)

px
max(1− pmax)n−x

(

n− |R|
x− |R|

)

(

n

x

)

∏

i∈R

Pr(EVi)

pmax

=
n
∑

x=|R|

(

n− |R|
x− |R|

)

px−|R|
max (1− pmax)n−x

∏

i∈R

Pr(EVi)

= (pmax + 1− pmax)n−|R|
∏

i∈R

Pr(EVi)

=
∏

i∈R

Pr(EVi)

⊓⊔
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Procedure SWOR(k,X) requires O(n) time to initialize the built-in array E and
O(n) space to accommodate it. Each invocation of Procedure SWOR(k,X) executes
a loop of k iterations(Lines 2-7). Then, the Procedure re-swaps the array E into
the built-in state, where there are at most 2k differences between them(Line 8).
Therefore, the time complexity of each invocation of Procedure SWOR(k,X) is
O(k).

The Sieve algorithm requires O(n) time to calculate pmax (Line 1). This step
is ignored in subsequent invocations under the same problem setting. For each
invocation, a binomial variate k is generated(Line 2) and Procedure SWOR(k,D) is
invoked once(Line 3), after which, a loop of k iterations is executed. Let C(B(n, p))
denote the cost of generating a variate that follows a binomial distribution B(n, p).
Then, the following lemma can be derived.

Lemma 3. Solving the HSS problem with the Sieve algorithm takes O(n) prepro-

cessing time and requires O(n) extra space; and the time complexity of drawing

each sample is

O(C(B(n, pmax)) + k). (1)

Several works focus on binomial random variate generation, e.g., [5] [6] [7] [8]
[9]. In [9], the authors report the results of comparing a number of algorithms in
experiments. For example, they show Algorithm BG in [6] needs O(k) computation
time for each sampling if the generated variate is k and Algorithm BALIAS in [9]
is O(1) fast. In addition, they conclude that their proposed Algorithm BTPE [9]
is the most effective when µ is moderate or large, where µ is the product of the
parameters n and p in B(n, p). For cases where µ is small, Algorithm BINV [9]
dominates. Since there is no difference between the binomial variate generation
algorithms in our theoretical analysis when its complexity can be bounded by
O(k), we let C(B(n, p)) be O(k) without specifying which efficient binomial variate
generator should be used. In [9], the authors conclude that the combination of
Algorithms BINV and BTPE is the fastest experimentally. Hence, we adopt this
combination to run the experiments in Section 3.

By replacing C(B(n, pmax)) in Eq.(1) with O(k), the time complexity of the
Sieve algorithm becomes O(k). Because the expected value of k is n·pmax, the Sieve
algorithm draws a sample in O(n · pmax) time on average. When 1− pmin < pmax,
where pmin is the minimum of all pi’s, it is easier to draw the complement of
a sample. Hence, it can be extended with a dual version of Sieve algorithm, as
shown in Algorithm 3.

Lemma 4. Applying Algorithm 3 to the case where 1 − pmin < pmax, the Sieve

algorithm can draw a sample in O(n ·min(pmax, 1− pmin)) time on average.

Remark 1. The Sieve algorithm is much more effective than the Naive algorithm

when pmax or 1−pmin deviates from 1 significantly. Although the algorithms have
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the same asymptotic behavior when both pmax and 1−pmin are close to 1, the Sieve

algorithm is less effective because the constant factor hidden in the asymptotic time

complexity analysis of the Naive algorithm is smaller.

Algorithm 3: Dual Sieve algorithm

input : a domain set D = {1, . . . , n} in which element i is associated
with an inclusion probability pi

output : a drawn sample S

pmin ← mini∈D pi1

k ← B(|D|, 1− pmin)2

R← SWOR(k,D)3

S̄ ← φ4

foreach i ∈ R do5

t← U(0, 1)6

if t < (1− pi)/(1 − pmin) then7

S̄ ← S̄ ∪ {i}8

end9

end10

return D − S̄11

2.3 Hybrid Algorithm

To leverage the advantages of the Naive and Sieve algorithms, Algorithm 4, the
Hybrid algorithm, divides the original domain set D into two disjoint domain sets
X and Y . The division is made so that X contains all elements whose inclusion
probability is less than a calculated threshold pthres =

√
pµ, and Y contains the

remaining elements. Then, the Hybrid algorithm applies the Sieve algorithm and
the Naive algorithm to X and Y respectively. Therefore, the equivalence of the
Hybrid algorithm and the Naive algorithm is verified by the equivalence of the
Sieve algorithm and the Naive algorithm, as shown in the previous section. Let
sieve(D) and naive(D) represent solving the HSS problem in the domain set D
with the Sieve algorithm and the Naive algorithm.

The Hybrid algorithm requires O(n) preprocessing time to execute Lines 1-4.
This step is only performed once, i.e., during the first invocation. However, it
is not necessary to allocate extra space for sets X and Y , which can be done
by swapping the elements in the domain set D. To draw a sample, the Hybrid
algorithm invokes the Sieve and Naive algorithms in Line 5. As a result, the
following lemma is derived.
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Algorithm 4: Hybrid algorithm

input : a domain set D = {1, . . . , n} in which element i is associated
with an inclusion probability pi

output : S, a drawn sample

pµ ←
∑

i∈D pi/n1

pthres ← √pµ2

X ← {i ∈ D | pi ≤ pthres}3

Y ← D −X4

S ← sieve(X) ∪ naive(Y )5

return S6

Lemma 5. Solving the HSS problem with the Hybrid algorithm takes O(n) pre-

processing time and requires O(n) extra space; the time complexity of drawing each

sample is

O(C(B(n, pthres)) + k + |Y |). (2)

|Y | is bounded by O(n
√

pµ) because
∑

i∈Y pi ≤
∑

i∈D pi = n·pµ and mini∈Y pi

is greater than
√

pµ. Similar to the analysis of the Sieve algorithm, Eq. (2) can be
rewritten as O(n

√
pµ) on average.

Lemma 6. Similar to the idea of applying a dual Sieve algorithm, the case of

1/2 < pµ can be handled more effectively by a dual version of the Hybrid algo-

rithm. Thus, it takes O(n
√

p∗) time on average to draw a sample with the Hybrid

algorithm, where p∗ is min(pµ, 1− pµ).

We compare the complexity of the proposed algorithms in Table 1,

ALGO\CPLX Time(Preprocessing) Time(Draw Each Sample) Space

Naive algorithm O(1) O(n) O(1)
Sieve algorithm O(n) O(n ·min(pmax, 1− pmin)) on average O(n)
Hybrid algorithm O(n) O(n

√
p∗) on average O(n)

Table 1: Complexity comparison.

3 Experiment Results

In this section, we compare the performance of the Naive algorithm and Hybrid
algorithm via experiments. Then, we demonstrate how the Hybrid algorithm to
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substantially improves the performance of a practical application. The implemen-
tation of the combined BTPE and BINV algorithms [9] was downloaded from
GSL(GNU Scientific Library). All experiments were run on a workstation with
Intel Xeon 3.2GHz processors.

3.1 Experiments

We conducted a number of experiments to assess the speedup and relative er-
ror of the Hybrid algorithm for solving the HSS problem. Let EXalg(n, pµ) be
an experiment of drawing 100 samples with an algorithm alg, where |D| = n
and

∑

i∈D pi/n = pµ. In addition, let SP (n, pµ) denote the ratio of the run-
ning time of EXnaive(n, pµ) to that of EXhybrid(n, pµ); note that the prepro-
cessing time is included. Let ASalg(n, pµ) be the average size of the samples
drawn in the experiment EXalg(n, pµ); and let RE(n, pµ) denote the relative error
(AShybrid(n, pµ) − ASnaive(n, pµ))/ASnaive(n, pµ). The Figure 1(a) illustrates the
speedup factor. Clearly, the speedup is substantial when pµ deviates from 1/2
significantly. The difference between the curves of SP (105, ∗) and SP (106, ∗) is
caused by the preprocessing time. The Figure 1(b) illustrates the relative error
of the two algorithms. The distributions of the algorithms are similar because, in
both scenarios, the relative error is bounded in the interval [−0.4%, 1%] and con-
verges to the interval [−0.2%, 0.2%]. Since ASnaive(n, pµ) is not fixed, the relative
error declines as pµ increases.
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Fig. 1: Comparison of the Hybrid algorithm and the Naive algorithm.

3.2 An Practical Application of the Hybrid Algorithm

Particle-based simulation models are now being used in computational epidemiol-
ogy [3] in addition to traditional SIR (Susceptible, Infector, and Remove/Recovered)

9



differential-equation-based approaches, such as [10] [11] [12] and [13]. There are
two key reasons for this development [3]. The first is that the SIR model can
best describe the dynamics of an epidemic when the number of infected persons
is large, rather than in the initial or final stages of a disease outbreak. However,
the initial stage is crucial because some intervention methods could be applied to
prevent or slow down the transmission of the disease at this point. The second
reason is that a particle-based simulation model provides more opportunities to
fine tune the values of the features considered by the model.

Algorithm 5: Particle-based simulation model.

foreach time period T do

foreach infector I do
foreach susceptible individual S that had contact with I during T
do

if the infection between I and S takes place then
change the susceptible status of S

end

end

end

end

Algorithm 5 provides a high-level description of the particle-based simulation
model of disease transmission. The most inner loop can be thought as a case of
the HSS problem. The most time-consuming part is determining which possible
infections have taken place. For each possible infection between an infector I and
a susceptible individual S, the occurrence rate p may vary because of a number
of factors, such as the nature of the disease, the intervention methods applied to
it, and the closeness of I and S. In other words, p varies between different (I, S)
pairs and also in the same pair when time period changes.

According to the work [3], we construct a simulation model based on Taiwan
census data. As shown in Figure 2, the value of p is usually quite small in the sim-
ulation model of disease transmission, as a person seldom has close contact with
a large number of family members or friends, compared to the number of casual
contacts encountered daily. The figure also shows that setting

√
pµ as pthres is

not appropriate. In practice, to maximize the speedup, pthres can be adjusted dy-
namically based on the distribution of inclusion probabilities. Figure 3 compares
the simulated results, attack rates, and the differences between the computational
cost of two algorithms. Based on the figure, we conclude that the Hybrid algo-
rithm improve the performance of particle-based disease simulation substantially,
without changing the behavior of the model.
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4 Concluding Remarks

In this paper, we propose an algorithm, called the Hybrid algorithm, to solve
the problem of heterogeneous subset sampling. We prove the correctness of the
algorithm and show that time complexity is O(n

√
p∗). In addition, we evaluated

the performance via experiments and demonstrated its efficacy by a practical ap-
plication. The experiment results show the substantial speedup when pµ deviates
from 1/2 a great deal. Moreover, the exemplar application demonstrates that the
Hybrid algorithm can be applied to simulate the particle-based simulation of the
spread of a disease effectively and without changing the behavior of the model.
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In addition to the application, we believe that the Hybrid algorithm can be ap-
plied to many other problems. In practice,

√
p∗ may not be an appropriate choice

for pthres. To maximize the performance in a future work, we will analyze the
distribution of the inclusion probabilities to adjust pthres dynamically.
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