
TR-IIS-09-002

Experimental and Theoretical Results

 Tree Decomposition for Large-Scale SVM Problems:

Fu Chang, Chien-Yang Guo, Xiao-Rong Lin, Chi-Jen Lu

April 2, 2009 || Technical Report No. TR-IIS-09-002
http://www.iis.sinica.edu.tw/page/library/LIB/TechReport/tr2009/tr09.html

Tree Decomposition for Large-Scale SVM Problems:
Experimental and Theoretical Results
Fu Chang, Chien-Yang Guo, Xiao-Rong Lin, Chi-Jen Lu

Institute of Information Science, Academia Sinica

128 Academia Road, Taipei, 115, Taiwan
{fchang, asdguo, eclipsex527, cjlu}@iis.sinica.edu.tw

Abstract
To handle problems created by large data sets, we propose a method that uses a de-

cision tree to decompose a data space and trains SVMs on the decomposed regions. Al-

though there are other means of decomposing a data space, we show that the decision tree

has several merits for large-scale SVM training. First, it can classify some data points by

its own means, thereby reducing the cost of SVM training applied to the remaining data

points. Second, it is efficient for seeking the parameter values that maximize the valida-

tion accuracy, which helps maintain good test accuracy. Third, we can provide a genera-

lization error bound for the classifier derived by the tree decomposition method. For ex-

periment data sets whose size can be handled by current non-linear, or kernel-based SVM

training techniques, the proposed method can speed up the training by a factor of thou-

sands, and still achieve comparable test accuracy.

Keywords: binary tree, generalization error bound, margin-based theory, pattern

classification, tree decomposition, support vector machine, VC theory

1. Introduction

Support vector machines (SVMs) have proven very effective for solving pattern

classification problems (Cortes and Vapnik, 1995; Vapnik, 1995). Because of the grow-

ing trend to apply them to various domains of interest, including bioinformatics, comput-

er vision, data mining and knowledge discovery, the size of training data sets continues to

grow at a rapid rate. At the same time, there is an ongoing effort to speed up the SVM

training. One approach, called the numerical technique in this paper, seeks efficient nu-

CHANG, GUO, LIN, AND LU

2

merical solutions to the QP optimization problem involved in the SVM training. A well-

known solution called sequential minimal optimization (SMO) breaks a large quadratic

programming (QP) problem into a series of smallest possible QP problems (Platt, 1999)

to reduce the amount of memory required for computation. In terms of speed, SMO has

proven superior to similar methods, such as the projected conjugated gradient “chunking”

algorithm (Burges, 1998) and Osuna’s algorithm (Osuna et al., 1997). A recent advance

in this direction is an online learning method called LASVM (Bordes et al., 2005), which

can converge to the QP optimal solution in one pass of examining training samples. The

method can be combined with an active selection of training samples to yield faster train-

ing, higher accuracy rates, and simpler models. Another advance in this direction is a me-

thod called maximum-gain working set selection (Glasmachers and Igle, 2006), which is

significantly faster than SMO on large training sets.

A different type of approach, called data-reduction in this paper, reduces a large

training data set to one or several small data sets. If only one reduced set is obtained, we

call the method single-set reduction (SSR); and if multiple reduced sets are obtained, we

call the method multiple-set reduction (MSR). In the latter case, SVM training is con-

ducted on each of the reduced sets and all the SVMs are combined into a final classifier.

We review MSR methods first. Perhaps the simplest MSR method is bagging

(Breiman, 1996). It employs a number of down-sampled data sets to train SVMs, which

jointly classify a test object based on majority vote. The boosting method (Schapire, 1990)

trains SVMs in a sequential manner, and the training of a particular SVM is dependent on

the training and performance of previously trained SVMs. The divide-and-combine strat-

egy (Rida et al., 1999) decomposes an input space into possibly overlapping regions, as-

signs each region a local predictor, and combines the local predictors into a global solu-

tion to the prediction problem. The Bayesian committee machine (Tresp, 2000) partitions

a large data set into smaller ones. The SVMs trained on the reduced sets jointly define the

posteriori probabilities of the classes into which test objects are categorized. The method

proposed by Collobert et al. (2002) divides a set of input samples into smaller subsets,

assigns each subset a local expert, and conducts a loop to re-assign samples to local ex-

perts according to how well the experts perform. The cascade SVM method (Graf et al.,

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 3

2005) also splits a large data set into smaller ones and extracts support vectors (SVs)

from each of them. The resulting SVs are further combined and filtered in a cascade of

SVMs. A few passes through the cascade ensures that the optimal solution is found.

On the SSR side of the data-reduction approach, the squashing method (Pavlov et al.,

2000) uses a likelihood-based squashing technique to obtain a reduced data set, and then

trains linear SVMs on that set. The sparse greedy approximation method (Smola and

Schölkopf, 2000) constructs a compressed representation of the design matrix involved in

the QP problem; while information vector machines (Lawrence et al., 2003) use a sparse

Gaussian process to select training samples with criteria based on information-theoretic

principles. Clustering-based SVM (Yu et al., 2005) applies a hierarchical clustering algo-

rithm to obtain a reduced data set, which is used to train SVMs. The concept boundary

detection (CBD) method (Panda et al., 2006) prepares nearest-neighbor lists as training

samples, and uses a special down-sampling technique to extract the data points that lie

close to class boundaries. This method can find a single set of near-boundary points for

all class pairs. In contrast, many other methods that utilize SVMs to analyze training

samples have to find different reduced sets for different class pairs, since SVMs can only

work on one class pair at a time. For more details of data-reduction methods proposed up

to 2001, readers may refer to Tresp (2001).

Finally, we remark that the numerical and data reduction approaches, instead of

competing, can actually complement each other’s functions. The data reduction approach

must train SVMs on reduced data sets and it can certainly use an efficient numerical me-

thod to perform the task. The numerical approach, on the other hand, can benefit by using

an efficient data reduction method to reduce its computational burden.

In this paper, we propose a method that decomposes a large data set into a number

of smaller ones and trains SVMs on each of them. This approach reduces the total train-

ing time for a very simple reason. The time complexity of training an SVM is in the order

of n2 when the number of training samples is n. If each smaller problem deals with σ

samples, where σ < n, then the complexity of solving all the problems is in the order of

(n/σ)×σ2 = nσ, which is much smaller than n2 if n is significantly larger than σ . Decom-

posing a large problem into smaller problems has the added benefit of reducing the num-

ber of support vectors (SVs) in the resultant SVMs. This in turn reduces the time required

CHANG, GUO, LIN, AND LU

4

for the testing process in which the number of SVs dominates the complexity of the com-

putation.

Our method can be categorized as an MSR method. It differs from other MSR me-

thods in that it uses of a decision tree to obtain multiple reduced data sets, whereas other

methods use non-supervised clustering (Rida et al., 1999), random sampling (Breiman,

1996), or random partition (Tresp, 2000; Collobert et al., 2002; Graf et al., 2005). Since

our method uses a decision tree to decompose the data space, we refer to it as the tree de-

composition (TD) method and the resultant classifier as the TD classifier.

A decision tree decomposes a data space into high-dimensional rectangles. Although

the generalization power of the decision tree as a classifier is compromised by the strict

requirement of rectangular partition of the data space, the role of the decision tree as a

decomposition scheme can have the following benefits when dealing with large-scale

SVM problems.

First, the decision tree may decompose the data space so that certain decomposed

regions become homogeneous; that is, they contain samples of the same labels. In the

testing phase, when a data point flows to a homogeneous region, we simply classify it in

terms of the common label of that region. This helps alleviate the burden of SVM training,

which is only conducted in heterogeneous regions. In fact, our experiments revealed that,

for certain data sets, more than 90% of the training samples reside in homogeneous re-

gions; thus, the decision tree method saves an enormous amount of time when training

SVMs. Random partitioning, on the other hand, cannot produce such an effect, since ran-

dom pooling of a set of samples can hardly create a homogeneous data set due to the in-

dependent sampling operation.

Another benefit of using the decision tree is the convenience it provides when

searching for all the relevant parameter values to maximize the solution’s validation ac-

curacy, which helps maintain good test accuracy. The goal of the TD method is to attain

comparable validation accuracy while consuming less time than training SVMs on the

full data sets. To achieve our purpose, we found that it is important to control the size σ

of the tree-decomposed regions as well as the SVM-parameter values. For some data sets,

σ could be set to 1,500, while for other data sets, it had to be set to a larger value. Thus,

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 5

using tree decomposition for SVMs makes σ an additional parameter to the usual SVM-

parameters. Other MSR methods do not attempt to search for the optimal size of decom-

posed regions. Such searches are particularly easy under the TD method because a deci-

sion tree is constructed in a recursive manner; hence, obtaining a tree with a larger size of

σ does not require a new training.

Using a decision tree also helps alleviate the cost of searching for the optimal values

of SVM-parameters. Searching for these values is important, but it takes a tremendous

amount of time, especially when training non-linear SVMs. To the best of our knowledge,

no data-reduction method has attempted to reduce the cost of this operation. Our strategy

involves training SVMs with all combinations of SVM-parameter values only for decom-

posed regions with the minimum σ-level. The optimal values of the SVM-parameters ob-

tained at this level are not necessarily the same as those obtained at higher levels. How-

ever, we observe that the best values for a higher level are usually among the top-ranked

values for the minimum level. Therefore, when we want to train SVMs for a higher σ-

level, we only train them with the top-ranked values obtained for the minimum level.

Given the O(n2)-complexity of SVM training, conducting a full search of SVM-parameter

values only in regions with the minimum σ-level certainly reduces the SVM training time.

In fact, our experiments showed that such savings were possible even when the optimal

σ-level was no less than the full size of the data set.

Although the decision tree method may not be the only way to achieve the above

benefits for large-scale SVM problems, its effect can be understood in theory and a gene-

ralization error bound can be derived for the TD classifier. The bound is the sum of two

terms: the first term dominates in magnitude and is associated with SVM training; and the

second term is associated with tree training. Our experiment results show that the numer-

ical value of the dominant term is as small as, or of the same order of magnitude as, its

counterpart in a generalization error bound for SVM training conducted on the whole da-

ta set. This finding constitutes indirect evidence of the efficacy of tree decomposition for

large-scale SVM problems.

Finally, we remark that it is possible to have multiple decompositions of the same

data space with multiple trees. These trees can be obtained by using a randomized, rather

than the optimal, split point at each tree node (Dietterich, 2000). By so doing, we train

CHANG, GUO, LIN, AND LU

6

SVMs on all the decomposed regions and classify the test data based on majority votes.

We have actually studied the effect of such multiple decompositions. In terms of test ac-

curacy, multiple decompositions are not as effective as searching for the optimal σ-level

of decomposed regions. In fact, when the latter search is conducted, introducing multiple

decompositions does not lead to any significant improvement. Therefore, to avoid unne-

cessary complications, in this paper, we only consider the decomposition of a data space

by a single decision tree.

In the experimental study, we divided our data sets into training, validation, and test

components. We then used the training component to build TD classifiers, the validation

component to determine the optimal parameters, and the test component to measure the

test accuracy. We adopted two types of SVM training: one-against-one (1A1) (Knerr et al.

1990; Platt et al. 2000) and one-against-others (1AO) (Bottou et al., 1994). Furthermore,

we built non-linear SVMs on the data sets. When evaluating the TD method, we found it

could train TD classifiers that achieve comparable test accuracy rates to those of SVM

classifiers. The speedup factor for the six datasets, whose sizes ranged from 10K to 494K,

was between approximately 4 and 3,691 for 1A1 trainings, and between approximately

29 and 5,775 for 1AO trainings. Furthermore, we found that TD achieved much higher

speedup factors than two alternative methods, namely, bagging (Breiman, 1996), an MSR

method; and CBD (Panda et al., 2006), an SSR method. To demonstrate that TD can effi-

ciently train classifiers for larger data sets, we applied it to two datasets whose sizes were

approximately 581K and 4,898K respectively. The first data set took 4.7 and 7.3 hours to

complete 1A1 and 1AO trainings respectively, while the second data set required 5.2

hours for both types of training.

The remainder of this paper is organized as follows. In Section 2, we describe the

TD method. Section 3 details the experiment results. In Section 4, we provide theoretical

results for the TD method. Then, in Section 5, we present some concluding remarks.

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 7

2. The TD Method

In this section, we consider the decision tree that we use as the decomposition

scheme, and discuss the training process for the TD method. An implementation of the

TD method is available at

http://ocrlnx03.iis.sinica.edu.tw/~dar/Download%20area/tdsvm.php3

2.1 The Decision Tree

For the decomposition scheme, we adopt CART (Breiman et al., 1984) or a binary

C4.5 scheme (Quinlan, 1986) that allows two child nodes to grow from each node that is

not a leaf. Using a C4.5 scheme that allows multiple child nodes is feasible; however, we

do not consider it in this paper, since a binary C4.5 performs the job rather well for us.

To grow a binary tree, we follow a recursive process, whereby each training sample

flowing to a node is sent to its left-hand or right-hand child node. At a given node E, a

certain feature fE of the training samples flowing to E is compared with a certain value vE

so that all samples with fE < vE are sent to the left-hand child node, and the remaining

samples are sent to the right-hand child node. The values of fE and vE are determined as

follows. The split point vf of each feature f is calculated by

arg max (,)f
v

v IR f v= , (1)

where

| | | |
(,) () () ()

| | | |
f v f v

f v f v

S S
IR f v I S I S I S

S S
< ≥

< ≥= − − ,

S is the set of all samples flowing to E; Sf < v consists of the elements of S with f < v; Sf ≧v

= S\Sf < v; | X | is the size of any data set X; and I(X) is the impurity of X. The impurity

function we use in our experiments is the entropy measure, defined as

∑−=
y yy SpSpI)(log)()S(,

where p(Sy) is the proportion of S’s samples whose label is y. Then,

),(maxarg f
f

E vfIRf = ,

http://ocrlnx03.iis.sinica.edu.tw/~dar/Download%20area/tdsvm.php3�

CHANG, GUO, LIN, AND LU

8

and vE is taken as the split point of fE.

We stop splitting a node E when one of the following conditions is met: (i) the num-

ber of samples that flow to E is smaller than a ceiling size σ; or (ii) when IR(f, v) = 0 for

all f and v at E. The value of σ in the first condition is determined in a data-driven fashion,

which we describe in Section 2.2. The second condition occurs when all the samples that

flow to E are homogeneous or when a subset of them is homogeneous and the remaining

samples, although carrying different labels, are identical to some members of the homo-

geneous subset. There are other possible cases for the second condition, but their occur-

rence is extremely rare. If we want to split E in these cases, for a given feature f, we can

choose the following split point to minimize the difference between | Sf ≧v | and | Sf < v|, i.e.,

| |||| |minarg vfvf
v

f SSv >≤ −= ,

and then choose the feature whose split point has the minimum difference among all fea-

tures.

After growing a tree, we train an SVM on each of its leaves, using samples that flow

to each leaf as training data (Figure 1). The values of the SVM parameters are also de-

termined in a data-driven fashion. A tree and all SVMs associated with its leaves consti-

tute a TD classifier, as shown in Figure 1. In the training phase, all the SVMs are trained

with the same parameter values. We describe the determination of the optimal values in

Section 2.2. In the validation/testing procedure, we first input a given validation/test ob-

ject x to the tree. If x reaches a leaf that contains homogeneous samples, we classify x as

the label of those samples; otherwise, we classify it with the SVM associated with that

leaf.

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 9

x > b1

y > b2 x > b3

L1 L2

L3 L4

L5 L6

x ≦ b1

y ≦ b2 x ≦ b3

y ≦ b4 y > b4 y ≦ b5 y > b5

b1 b3

b2

b4

b5

L1

L2

L3

L4

L5

L6

Figure 1. The architecture of a TD classifier: a tree and all its leaves (L1 to L6) are produced and
SVMs are trained on the leaves.

2.2 The TD Training Process

Given a training and validation component, we build a TD classifier on the training

component and determine its optimal parameter values with the help of the validation

component. The parameters associated with a TD classifier are: (i)σ , the ceiling size of

the decision tree; and (ii) the SVM parameters. Their optimal values are determined in

the following way.

In the initial stage, we train a binary tree with an initial ceiling size σ0, and then train

SVMs on the tree’s leaves with SVM-parameters θ. Note that we express θ in boldface to

indicate that it may consist of more than one parameter. Let v(σ0, θ) be the validation ac-

curacy rate of the resultant TD classifier. Then, we can define

θ0 0argmax (,)v σ
∈Θ

=
θ

θ , and

0 0(0) (,)r v σ= θ ,

where Θ is the set of all possible SVM-parameter values whose effects we want to eva-

luate. The value r(0) is the best validation accuracy rate that we obtain out of all the TD

classifiers with ceiling size σ0. In our experiments, we set σ0 = 1,500.

CHANG, GUO, LIN, AND LU

10

For later stages, we want to construct TD classifiers with a larger ceiling size, but

we only train their associated SVMs with k top-ranked θ. To do so, we rank θ in the des-

cendant order of v(σ0, θ). Let Θ[k] be the set that consists of k top-ranked θ. In our expe-

riments, we set k to 5.

To be more specific, at stage t, we set σt = 4σt-1 for t = 1, 2, …. We modify the tree

with ceiling size σt-1 by dropping a few nodes from the lower levels so that the tree’s ceil-

ing size becomes σt. We then train new TD classifiers on the modified tree with θ being

chosen from Θ[k]. Then, we define

θt
[]

argmax (,)
k

tv σ
∈Θ

=
θ

θ , and

() (,)t tr t v σ= θ .

The value r(t) is the best validation accuracy rate out of all the TD classifiers with ceiling

size σt. We terminate the process when the improvement in the best validation accuracy

rate is insignificant, or we have already reached the root node of the tree.

The steps of the TD training process are as follows.

1. Set t = 0. Train the TD classifiers with ceiling size σ0 and choose the SVM-

parameters θ from Θ; then compute r(0).

2. Increase t by 1 and set σt = 4σt-1. Obtain the binary tree with ceiling size σt and

train the TD classifiers on that tree, and choose the SVM-parameters θ from

Θ[k]; then compute r(t).

3. If r(t) - r(t-1) < 0.5%, or σt is no less than the size of the training component, ter-

minate the process; otherwise, proceed to step 2. Note that when the process is

terminated, it outputs a TD classifier with the ceiling size σopt and SVM-

parameters θopt, where σopt = σt-1 and θopt = θt-1 if r(t) - r(t-1) < 0.5%, or σopt = σt

and θopt = θt if σt exceeds the size of the training component.

3. Experiment Results

Recall that the TD method trains a local SVM (lSVM) for each leaf of a binary tree,

while conventional SVM training constructs global SVM (gSVM) classifiers using all the

samples for training.

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 11

In our experiments, we divided the data sets into two groups. The first group was

used to evaluate the efficiency of TD and two alternative methods in terms of speeding

up SVM training. The second group was used to verify that the TD method could handle

large data sets, for which SVM would take very long time to complete the training

process. The first group consisted of six data sets, whose sizes ranged from 10K to 494K,

as shown in the first six rows of Table 1. The second group comprised two data sets of

size 581K and 4,898K, respectively, as shown in the last two rows of Table 1. The table

contains other information about the data sets, including the number of labels, the number

of samples, and the features in each data set. All data sets were obtained from the UCI

repository. Note that the original “Poker” data set in the repository contains 1 million

samples. However, in our experiments, we only used its training subset, whose size is

suitable for comparing TD with other methods, including gSVM.

We randomly divided each data set into 6 parts of equal size. Then, we used 4 parts

as the training data component, one part as the validation component, and the remaining

part as the test component. The TD classifiers were trained on the training and validation

components, as described in Section 2.2. On the completion of the training process, we

applied the output TD classifier to the corresponding test data set to obtain the test accu-

racy rate.

Data set No. of Labels No. of Samples No. of Features

Pen Hand Written (PHW) 10 10,992 16
Letter 26 20,000 16
Shuttle 7 58,000 9

Census Income 2 45,222 14
Poker 10 20,843 10

KDD CUP 10% 5 494,021 41
Forest 7 581,012 54

KDD CUP 1999 5 4,898,431 41

Table 1. The data sets used in the experiment.

In each data set, all the feature values of the data points were passed through a nor-

malization procedure. We normalized all the feature values to a real number between 0

and 1. We did this by transforming each value v of feature f into (v-fmin)/(fmax-fmin), where

fmax and fmin are the maximum and minimum values of f respectively.

CHANG, GUO, LIN, AND LU

12

We only studied non-linear SVMs in our experiments. Moreover, we used the RBF

kernel function to measure the similarity between vectors. As a result, we had two SVM

parameters: the penalty factor C, whose values were taken as Φ = {10a: a = -1, 0, …, 5};

and the γ parameter in the RBF function, whose values were taken as Ψ = {10b: b = -4,

-3, …, 4}. Thus, the set of all SVM parameter values was Θ = Φ×Ψ. In all SVM training

sessions, we used the LIBSVM software (Hsu and Lin, 2002). We adopted all default

options of this software, except the parameter values, which we specified above.

SVM training was implemented under the 1A1 and 1AO approaches. When the 1A1

approach is used, there are n(n-1)/2 classifiers, where n is the number of labels. Each of

the classifiers assigns one of two possible labels to a given validation/test sample. We

used all the classifiers to classify x, a given validation/test sample, based on majority

votes. Note that a more efficient technique (Platt et al. 2000) that only requires n classifi-

ers can be used in the validation/testing procedure. However, we adopted the technique

developed by Knerr et al. (1990), which requires n(n-1)/2 classifiers, because we were

only interested in the relative, rather than the absolute, performance of the methods com-

pared in our experiments. When the 1AO approach is used, there are n decision functions,

each of which is associated with a label. We assign x the label associated with the deci-

sion function that yields the highest functional value.

To compare TD with existing methods, we implemented two methods designed to

speed up SVM training: bagging (an MSR method) and CBD (an SSR method). When

implementing bagging, we created a number of SVMs for each θ∈Θ, where each SVM

was trained on 1,500 training samples chosen at random. For each θ, the training was

conducted sequentially. We stopped at the first m so that the validation accuracy rate of m

SVMs did not exceed that of m-1 SVMs by 0.5%. CBD training comprises two steps:

finding a reduced set, and training an SVM on that set for each θ∈Θ. The first part re-

quires finding k-nearest neighbors of each training sample and deriving the reduced data

set via a down-sampling technique. Following Panda et al. (2006), we set k to 100. In

finding the 100 nearest neighbors of each training sample x, we keep the current list of

100 nearest neighbors of x. For another training sample z, let d(x, z) be the distance be-

tween x and z. We need to compare this distance with d(x, w), where w is in the current

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 13

list and holds the largest distance with x. Since the squared distance is the sum of squared

feature differences, we can speed up the comparison by computing the partial sum of d2(x,

z). When this partial sum exceeds d2(x, w), we stop the comparison and exclude z from

the current list of x. This numerical trick saves a tremendous amount of time in finding

the 100 nearest neighbors for all training samples, especially when the number of training

samples is large.

The experiment results obtained by TD, bagging, CBD, and gSVM for the first six

data sets are shown in Tables 2-6 for 1A1 training, and in Tables 7-11 for 1AO training.

The boldface numbers in the tables signify the best performances. Table 2 and Table 7

show the training times of the four methods. The training time of each method comprises

the time required to obtain reduced data sets if it is a speedup method, the time to train all

SVMs, and the time to search for optimal parameters. The time to input or output data is

not included, however. The computation for the first seven data sets in Table 1 was con-

ducted on Intel Xeon CPU 3.2 GHz with 2GB RAM. That for “KDD CUP 1999” was

conducted on Intel Quad-Core Xeon CPU 2.5 GHz with 8 GB RAM.

Table 3 and Table 8 show speedup factors of TD, bagging, and CBD, where the

speedup factor of a method M is computed as gSVM’s training time divided by M’s

training time. Table 4 and Table 9 show the test accuracy rates of the four compared me-

thods. Note that the TD test accuracy rate is that of the TD classifier with the ceiling size

σopt and SVM-parameters θopt. When classifying a test sample with SVMs, the most time-

consuming part is computing a decision function, whose complexity can be measured in

terms of how many SVs are involved in the classification. Therefore, we use the “number

of SVs” (NSV) as a measure of the complexity, which is the average number of SVs con-

tained in the decision function used to classify a test sample. More specifically, NSV

represents the average number of SVs involved in classifying a test sample in the testing

process. Note that when a TD classifier is used, the SVs are associated with the leaf that

the test sample flows to. Table 5 and Table 10 list the NSVs of the four methods; while

Table 6 and Table 11 show the NSV ratios of TD, bagging, and CBD, where the NSV ra-

tio of a method M is computed as gSVM’s NSV divided by M’s NSV.

CHANG, GUO, LIN, AND LU

14

Data set TD Bagging CBD gSVM
PHW 275 2,204 697 1,192
Letter 768 7,575 2,598 4,157
Shuttle 23 2,100 303 5,096

Census Income 5,209 6,100 215,219 315,130
Poker 5,600 13,332 992,533 1,307,667

KDD CUP 10% 371 17,123 57,789 1,369,600

Table 2. Training times of the four methods, expressed in seconds. Training type = 1A1.

Data set TD Bagging CBD
PHW 4.33 0.54 1.71
Letter 5.41 0.55 1.60
Shuttle 221.57 2.43 16.82

Census Income 60.50 51.66 1.46
Poker 233.51 98.08 1.32

KDD CUP 10% 3,691.64 79.99 23.70
Table 3. Speedup factors of TD, bagging, and CBD. Training type = 1A1.

Data set TD Bagging CBD gSVM
PHW 99.42 99.52 99.63 99.63
Letter 97.60 93.09 95.25 97.54
Shuttle 99.93 99.66 99.85 99.92

Census Income 84.81 83.75 84.08 84.25
Poker 57.85 56.37 57.50 58.29

KDD CUP 10% 99.96 99.68 99.91 99.95

Table 4. Test accuracy rates of the four methods. Training type = 1A1.

Data set TD Bagging CBD gSVM
PHW 1,140 38,376 7,785 8,073
Letter 183,450 663,315 109,376 183,450
Shuttle 0.5 2,465 1,098 1,134

Census Income 300 5,381 9,560 10,451
Poker 5,284 100,018 145,522 174,942

KDD CUP 10% 3.9 1,873 2,783 2,287
Table 5. NSVs of the four methods. Training type = 1A1.

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 15

Data set TD Bagging CBD
PHW 7.08 0.21 1.04
Letter 1.00 0.28 1.68
Shuttle 2,432.70 0.46 1.03

Census Income 34.81 1.94 1.09
Poker 33.11 1.75 1.20

KDD CUP 10% 584.86 1.22 0.82
Table 6. NSV ratios of TD, bagging, and CBD. Training type = 1A1.

Data set TD Bagging CBD gSVM
PHW 672 12,271 5,893 19,988
Letter 3,281 105,121 87,179 151,476
Shuttle 36 5,359 700 36,689

Census Income 5,191 6,100 215,219 315,130
Poker 10,061 91,058 2,222,084 2,923,776

KDD CUP 10% 435 46,879 57,706 2,512,134
Table 7. Training times of the four methods, expressed in seconds. Training type =
1AO.

Data set TD Bagging CBD
PHW 29.74 1.63 3.39
Letter 46.17 1.44 1.74
Shuttle 1,019.14 6.85 52.41

Census Income 60.71 51.66 1.46
Poker 290.60 32.11 1.32

KDD CUP 10% 5,775.02 53.59 43.53
Table 8. Speedup factors of TD, bagging, and CBD. Training type = 1AO.

Data set TD Bagging CBD gSVM
PHW 99.52 99.47 99.63 99.63
Letter 97.66 93.80 96.20 97.66
Shuttle 99.89 99.67 99.82 99.91

Census Income 84.81 83.75 84.08 84.25
Poker 57.62 57.30 56.82 58.02

KDD CUP 10% 99.96 99.68 99.91 99.96
Table 9. Test accuracy rates of the four methods. Training type = 1AO.

CHANG, GUO, LIN, AND LU

16

Data set TD Bagging CBD gSVM
PHW 248 6,771 1,164 1,210
Letter 16,200 240,394 14,690 16,201
Shuttle 0.4 1,070 611 266

Census Income 300 5,381 9,560 10,451
Poker 1,801 160,779 40,965 47,951

KDD CUP 10% 1.8 756 1,576 1,566

Table 10. NSVs of the four methods. Training type = 1AO.

Data set TD Bagging CBD
PHW 4.87 0.18 1.04
Letter 1.00 0.07 1.10
Shuttle 597 0.25 0.44

Census Income 34.81 1.94 1.09
Poker 26.63 0.30 1.17

KDD CUP 10% 873.37 2.07 0.99

Table 11. NSV ratios of TD, bagging, and CBD. Training type = 1AO.

We summarize the results shown in Tables 2-11 as follows.

1. In terms of training time, TD outperformed the other three methods on all the data

sets (Table 2 and Table 7). Furthermore, TD achieved very large speedup factors

for “Shuttle”, “Poker”, and “KDD CUP 10%”, as compared with those derived by

bagging and CBD. (Table 3 and Table 8).

2. TD achieved comparable test accuracy rates to those of gSVM on all the data sets.

Bagging and CBD lag behind on “Letter” (Table 4 and Table 9).

3. In terms of NSV, TD’s performance was comparable to that of CBD and gSVM

on “Letter”, and it outperformed all the other methods on the remaining data sets

(Table 5 and Table 10). Moreover, TD obtained very large NSV ratios compared

to those of bagging and CBD on “Shuttle”, “Poker”, and “KDD CUP 10%” (Table

6 and Table 11).

4. TD achieved larger speedup factors for 1AO training than for 1A1 training (Table

3 and Table 8), and it yielded lower NSV ratios for 1AO training (Table 6 and

Table 11).

To gain insight into how TD achieved its effectiveness, in Table 12, we show the

optimal ceiling sizes derived by TD as well as the proportion of training samples that

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 17

flow to homogeneous leaves. Note that a single table suffices to show all the results, be-

cause 1A1 training and 1AO training employ the same decision trees and TD happens to

yield the same σopt value for both approaches.

 PHW Letter Shuttle Census Income Poker KDD CUP 10%
σopt 1,500 24,000 1,500 1,500 1,500 1,500

Proportion 0% 0% 98.42% 5.55% 0% 42.05%

Table 12. The optimal ceiling sizes optσ obtained by TD and the proportion of training
samples that flow to homogeneous leaves.

First, we observe that TD required a low ceiling size, 1,500, on all data sets except

“Letter”. This explains why TD generally achieved good speedup factors and NSV ratios.

Interestingly, the proportion of training samples that flowed to homogeneous leaves un-

der TD was very high in “Shuttle” and “KDD CUP 10%”. Since no SVM is involved in

any homogenous leaves, TD achieved very high speedup factors and NSV ratios on these

two data sets. The same fact also explains why TD achieved such low NSVs that even

fell below 1 on “Shuttle”. Note that this effect is achieved by decision trees that group

neighboring samples into the same leaf. Random decomposition, on the other hand, does

not produce the same effect, because the probability that all samples will carry the same

label in the same randomly decomposed region is extremely small.

Next, we consider the TD results for “Letter”. In this data set, the optimal ceiling

size exceeded the size of the training component. Thus, the output TD classifier was

trained on the full data set. However, TD still achieved positive speedup factors. This is

because TD trained lSVMs for all the parameter values only on leaves with ceiling size

1,500, which took much less amount of time than training them on the full training com-

ponent. The amount of time spent on higher ceiling sizes was even smaller, because TD

only trained a small number of lSVMs. Moreover, the lSVMs were trained with top-

ranked parameters, which tended to require less time than those trained with bottom-

ranked parameters.

Table 13 shows the training times required for different ceiling sizes, indicating that

TD spends most of its time on the leaves of the lowest ceiling size. In addition, Table 14

shows the test accuracy rates corresponding to different ceiling sizes, assuming that the

CHANG, GUO, LIN, AND LU

18

training was terminated at those sizes. The results demonstrate the benefit of searching

for optimal ceiling sizes because, if we terminated the training at ceiling size 1,500 or

6,000, we would obtain significantly lower test accuracy rates.

Data Set Training Mode 1,500 6,000 24,000

Letter 1A1 633 45 90
1AO 2,730 178 373

Table 13. The TD training times required for different ceiling sizes.

Data Set Training Mode 1,500 6,000 24,000

Letter 1A1 95.35 96.61 97.60
1AO 95.71 96.91 97.66

Table 14. The TD test accuracy rates that correspond to different ceiling sizes.

Data Set Training Mode Item TD

Forest

1A1
Training Time (Sec.) 16,927

NSV 350
Test Accuracy Rate (%) 94.61

1AO
Training Time (Sec.) 26,108

Number of SVs per Test Sample 289
Test Accuracy Rate (%) 94.59

KDD CUP 1999

1A1
Training Time (Sec.) 18,834

NSV 4.7
Test Accuracy Rate (%) 99.99

1AO
Training Time (Sec.) 18,550

NSV 10.4
Test Accuracy Rate (%) 99.99

Table 15. Training and testing results for the two large data sets.

Finally, Table 15 details the experiment results for the two large data sets. We only

conducted TD training on these data sets because training bagging, CBD, or gSVM

would require too much time. The TD training for “Forest” took 4.7 and 7.3 hours to

complete 1A1 training and 1AO training respectively; while the “KDD CUP 1999” train-

ing only took 5.2 hours for both types of training. Further details are given in Table 15.

4. Generalization Error Bounds for the TD Classifier

Let Rd be the d-dimensional Euclidean space. We assume that a set of training sam-

ples Xn = {(x1, y1), …, (xn, yn)} is given, where (xk, yk) ∈ Rd×{-1,1} for k = 1, …, n. The

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 19

TD method produces a classifier h(x, π, f), where π is a binary tree comprising L leaves, f

= (f1, …, fL), and fi is related to the lSVM trained on leaf i of π, for i = 1, …, L. The bi-

nary tree π produces a partition function that maps an input in Rd to {1, …, L}, and π(x)

is the leaf that x flows to. On the other hand, the lSVM trained on leave i, i = 1, …, L is

expressed as fi Φ, where Φ maps an input in Rd to a Hilbert space H, and fi is a linear

function from H to R. Note that a linear function g can be expressed as

() ,g z w z=

for some w∈H and for all z∈H. For such a function, we define 1/ 2|| || , .g w w=

If i = π(x), then h(x, π, f) = sign(fi(Φ(x)). Let

()() (()).fπ
π= Φxf x x

It follows that h(x, π, f) = sign(f π(x)) .

Sometimes, Φ is only defined implicitly. That is, instead of specifying the functional

form of Φ, only the inner product of Φ(u) and Φ(v) is specified as

(), () (,),kΦ Φ =u v u v

where u and v ∈Rd and (,)k ⋅ ⋅ is a kernel function. In the remainder of this section, we

assume that the function Φ is given and fixed.

Next, we define several notations. N is the set of natural numbers; R+ is the set of

positive real numbers; PL(Rd) is the class of all functions from Rd to {1, …, L}; R(H) is

the class of all functions from H to R; and L(H) is the class of all linear functions from H

to R. Moreover, if T is a set, we define TL = {(t1, …, tL): ti∈T for i = 1, …, L}; that is, TL

comprises all the L-tuples of T’s elements.

Using the standard definitions given below, we provide a bound for the generaliza-

tion error of h(x, π, f) in terms of the shatter coefficient of π and the margin of πf . More

details can be found in Vapnik (1995), and Cristianini and Shawe-Taylor (2000).

Definition 1. Let G ⊆ PL(Rd). For any n∈N, the nth shatter coefficient of G is

,| |
(,) max |{ : } |

d S
S R S n

V n π π
⊆ =

= ∈G G ,

CHANG, GUO, LIN, AND LU

20

where πS is the function obtained by restricting π to the domain S.

Definition 2. Let f = (f1, …, fL) ∈ (R(H))L, π ∈ PL(Rd), S ⊆ Rd×{-1,1}, and γ = (γ1,…, γL)

∈ (R+)L. We say that fπ has margin γ on S, or mg(fπ, S) ≧γ, if

() (())i iy y fπ γ⋅ ≡ ⋅ Φ ≥f x x

for any i∈{1,…,L} and any (x, y) ∈ S with π(x) = i.

We also adopt the following notion of a covering number proposed by Alon et al.

(1997).

Definition 3. Let η ∈ R+ and F ⊆ R(H). For a subset D ⊆ H, let C(F, D, η) be the

smallest collection of functions from D to R such that, for each f ∈ F, we have g ∈ C(F, D,

η) with | f(z)-g(z) | ≦ η for each z∈D. For H⊆E and n ∈ N, we define the covering

number of F with respect to E, n, and η as

, | |
(, , ,) max | (, ,) | .

D E D n
N E n Dη η

⊆ =
=F C F

4.1 Hard Margin Bounds

Given that π ∈ PL(Rd), f ∈ R(H))L, and the samples in Xn are drawn at random

based on the distribution D, the generalization error of the classifier sign(fπ) is defined as

the probability that sign(fπ(x)) ≠ y, where (,)yx is sampled according to D. The follow-

ing lemma generalizes a known result for SVMs. The proof of the lemma is rather leng-

thy, so we provide it in Appendix A.

Lemma 1. Let G ⊆ PL(Rd), π ∈ G, γ = (γ1,…, γL) ∈ (R+)L, and f = (f1, …, fL) ∈ F1×…×FL,

where Fi ⊆ R(H) and 1≦ i ≦ L. For any probability distribution D on Rd×{-1, 1}, if the

samples in Xn are drawn at random based on D, then, with probability 1-δ, the generali-

zation error of sign(fπ) with mg(fπ, Xn) ≧ γ will be at most

i1

2 log (, , 2 , / 2) log (, 2) log(2 /) ,L
ii

N E n V n
n

γ δ
=

 + + ∑ F G

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 21

where E = {Φ(x): (x, y) ∈ supp(D)} and supp(D) is the support of D.

Lemma 1 states a general result for G and Fi when i = 1, …, L. We now consider

some special examples of G and Fi. For β ∈ R+, we define L(H, β) as the class of all li-

near functions f∈L(H) with || f || ≦ β. A bound can be obtained for the covering number

of L(H, β) with respect to E, n and η, provided that E is a bounded subset of H (see, for

example, Bartlett and Shawe-Taylor, 1988).

Lemma 2. Let ρ, β, and η ∈ R+ and let n∈N. Consider any E ⊆ H with || z || ≦ ρ for

every z ∈ E. Then, there is a constant c such that

2 2
2

2log (() ,) logN E n c nρ ββ η
η

, , , ≤ .HL

We also define BL(Rd) as the class of partition functions associated with binary trees

with L leaves. Clearly, BL(Rd) ⊆ PL(Rd). The following lemma provides a bound on the

nth shatter coefficient of BL(Rd).

Lemma 3. Let d, n, and L ∈ N. Then,

2log (()) log()d
LV n L dnL, ≤ .RB

Proof. Consider any n-element subset S ⊆ Rd . The goal is to cut S into L parts. Initially,

there is only one part, which is S. We perform the cut operation recursively. Each time,

we choose a part of S and cut it into two. To do so, we pick one of d dimensions and one

of at most n-1 cutting hyperplanes on that dimension. Thus, there are at most d(n-1)(L-1)

≤ dnL ways to perform one cut operation. To obtain L parts, we repeat the cut operation

L-1 times; hence, the number of possible partitions is at most (dnL)L-1 ≤ (dnL)L. Finally,

there are L! ways to order the L parts of each partition, yielding the following result:

2(()) () () ()d L L

LV n dnL L dnL, ≤ ⋅ ! ≤ .RB ■

From the above three lemmas, we immediately derive the following theorem.

Theorem 1. Let ρ and βi ∈ R+, 1 ≤ i ≤ L, γ = (γ1,…, γL) ∈ (R+)L, f = (f1, …, fL) ∈ L(H,

β1)×…×L(H, βL), and π ∈ BL(Rd). For any probability distribution D on Rd×{-1, 1}, if

CHANG, GUO, LIN, AND LU

22

the samples in Xn are drawn at random based on D such that ||Φ(x)|| ≦ ρ for (x, y) ∈

supp(D), then, with probability 1-δ, the generalization error of sign(fπ) with mg(fπ, S) ≧

γ will be at most

2 2
2 2

21
log log() log(1)L i

i
i

c n L dnL
n

ρ β δ
γ=

 
+ + / , 

 
∑

for some constant c.

4.2 Soft Margin Bounds

Note that Theorem 1 works in the case where the training data Xn can be separated

with a margin vector γ. If the data is non-separable or noisy, we need to consider the no-

tion of a soft margin (Cristianini and Shawe-Taylor 2000).

Definition 4. Let f = (f1, …, fL) ∈ (L(H))L, π ∈ PL(Rd), γ = (γ1,…, γL) ∈ (R+)L, and S ⊆

Rd×{-1, 1}. For 1 ≦ i ≦ L, let {(x, y)∈Xn: (xi,1, yi,1), …, (, ,,
i ii n i nyx)} for some ni∈N. For

1 ≦ i ≦ L and 1 ≦ j ≦ ni,, let

max(0 (()))i j i i j i i jy fξ γ, , ,= , − ⋅ Φ .x

The vector ξi = (ξi,1, …, , ii nξ) is called the margin slack vector of if with respect to π and

γi over Xn for 1 ≦ i ≦ L.

To find the bound for the generalization error in the case of a soft margin, we follow

Shawe-Taylor and Cristianini (1999 and 2002). Let βi ∈ R+ for 1 ≦ i ≦ L, f = (f1, …, fL)

∈ L(H, β1)×…×L(H, βL), π ∈ PL(Rd), γ = (γ1,…, γL) ∈ (R+)L; and let ξi = (ξi,1,…, , ii nξ)

be the slack margin vector of if with respect to π and γi over Xn for 1 ≦ i ≦ L. In addi-

tion, we assume that ||Φ(x)|| ≦ ρ for (x, y) ∈ supp(D). We want to construct a space Ĥ

that has a higher dimension than H and also form linear functions on Ĥ that have desira-

ble margins. For this purpose, we introduce the inner product space

I(H) = {f: f: H→R and f is non-zero on a finite number of inputs},

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 23

where , () ()
z

f g f z g z= ∑ for f and g ∈ T(H). Let

ˆ ()= ×H H HI .

Since I(H) is an inner product space, each of its elements defines a linear function on

I(H). Hence, for f ∈ L(H) and g, h ∈I(H), the function (f, g): Ĥ →R, defined by

(,)(,) () ,f g z h f z g h= + ,

is a linear function. Now, for 1 ≦ i ≦ L. we define gi ∈ I(H) by

,, , ()1
,i

i j

n
i i j i jj

g yξ δΦ=
= ⋅ ⋅∑ x

where

1 if ',
(')

0 otherwise.z

z z
zδ

=
= 



We also define ˆ ˆ:if →H R by

ˆ (/).i i if f g ρ= ,

Since fi ∈ L(H, βi), there exists wi ∈ H with || wi || ≦ βi such that fi(z) ,iw z= . It follows

that for ˆˆ ,z ∈ H

ˆ ˆˆ() ,ˆ iif z zw= ,

where ()ˆ i i iw gw ρ= , / , and

2 2 2 2 2 2 2|| || || || || || || || .ˆ i i i i iww ξ ρ β ξ ρ≤ + / ≤ + /

Therefore, ˆ ˆˆ(,),i if β∈ HL where 2 2 2ˆ || || .i i iβ β ξ ρ= + / We now define ˆ:ρτ →H H by

() (,).zz zρτ ρ δ= ⋅

Then, for (xi,j, yi,j) ∈ Xn,

CHANG, GUO, LIN, AND LU

24

ˆ ((())) (()) ()

(())

i j i i j i j i i j i j i j i j

i j i i j i j

i

y f y f y y
y f

ρτ ξ

ξ

γ

, , , , , , ,

, , ,

⋅ Φ = ⋅ Φ + ⋅ ⋅

= ⋅ Φ +

≥ .

x x
x

Let

,ρτΨ = Φ

1̂̂
ˆ (, ,),Lf f=f  and

ˆˆ () (()),ifπ = Ψx xf

where i = π(x). From the above discussion, f̂ has a margin (γ1, …, γL) with respect to

π on Xn. Also, for (x, y) ∈ supp(D),

2 2 2 2
()|| () || || () || || || 2ρδ ρΦΨ ≤ Φ + ≤ .xx x

Finally, we observe that, for any (x, y) ∉ Xn, sign(fπ) = ˆ(())sign πf x ; therefore,

sign(fπ) and ˆ()sign πf have the same generalization error on inputs that do not fall within

nX . However, it is possible that sign(fπ) will make more mistakes on Xn, and thus has a

larger generalization error over D than ˆ()sign πf . As suggested by Shaw-Taylor and Cris-

tianini (2002), this can be handled by modifying sign(fπ) on the misclassified elements in

Xn. We call this new function the Xn-filtered version of sign(fπ).

Now we can apply Theorem 1, with the space H replaced by Ĥ and the mapping Φ

replaced by Ψ, to obtain a bound on the generalization error of ˆ()sign πf , but with the

quantity ρ 2β 2/γ 2 replaced by

2 2 2 2 2 2 2

2 2

2 (|| ||) 2(|| ||)ρ β ξ ρ ρ β ξ
γ γ

+ / +
= .i i i i

i i

Since βi and γi are interdependent quantities, 1 ≤ i ≤ L, we can fix one of them and

seek to optimize the other. In the formulation of the SVM optimization problem, the ob-

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 25

jective is set to minimize βi under the constraint that γi = 1 for 1 ≤ i ≤ L. Under this con-

vention, we obtain the following theorem.

Theorem 2. Let ρ ∈ R+, f ∈ L(H1, β1)×…×L(HL, βL), and π ∈ BL(Rd). Consider any

probability distribution D on Rd×{-1, 1} such that ||Φ(x)|| ≦ ρ for (x, y) ∈ supp(D). If

the samples in Xn are drawn at random based on D, then, with probability 1-δ, the

generalization error of the Xn-filtered version of sign(fπ) will be at most

()()2 2 2 2 2
1

|| || log log() log(1)L
i ii

c n L dnL
n

ρ β δ
=

+ + + / ,∑ ξ (2)

for some constant c, where for 1 ≤ i ≤ L, ξi is the margin slack vector of fi with respect to

π and γi over Xn.

4.3 A Numerical Investigation

Recall that a TD classifier is associated with a tree with L leaves and each leaf is as-

sociated with an lSVM. If the tree has only one leaf (i.e., L = 1), then the TD classifier

will be reduced to an SVM classifier, which has the following generalization error bound

()()2 2 2 2|| || log log(1)c n
n

ρ β ξ δ+ + / (3)

(cf. Cristianini and Shawe-Taylor, 2000).

Let us compare the terms that appear in parentheses in (2) and (3). The second term

Llog(dnL2) in (2) is the shatter coefficient of the partition function π associated with a

binary tree. We claim that (2) is dominated by the first term, which is the sum of L quan-

tities associated with L leaves of a binary tree, as opposed to the single quantity in (3).

Moreover, the first term in (2) is comparable to the corresponding quantity in (3). The

above two claims are confirmed by the following experiment results.

To validate the first claim, we compared the two leading terms that appear in paren-

theses in (2). The first term is ()2 2 2 2
1 1

|| || logL
i ii

T nρ β
=

= +∑ ξ and the second term is T2 =

Llog(dnL2). The results, shown in Table 16, confirm the claim that T1 far exceeds T2 and

(2) is dominated by T1. Note that we compute T1 under the following assumptions. (i)

When the data set contains more than two labels, T1 is taken as the average of such quan-

CHANG, GUO, LIN, AND LU

26

tities over all classifiers. (ii) The value of ρ is always 1 when RBF kernels are involved.

(iii) The value of || ξ ||2 is obtained from the solution to the quadratic programming op-

timization problem. Further details can be found in Cristianini and Shawe-Taylor (2000),

Section 6.1.2.

Data Set 1A1 1AO
T1 T2 T1 T2

PHW 1,699 55 5,769 55
Shuttle 1,152,495 110 2,756,183 110

Census Income 101,177 481 101,177 481
Poker 16,403 194 62,638 194

KDD CUP 10% 1,297,678 287 57,426 287

Table 16. The values of two leading terms T1 and T2 that appear in the generalization
error bounds for TD classifiers. Training types = 1A1 and 1AO.

To validate the second claim, we compare ()2 2 2
1

|| ||L
i ii

R ρ β
=

= +∑ ξ and S = ρ2β2 +

|| ξ ||2, which are derived, respectively, from the first terms in the generalization error

bounds for TD and gSVM classifiers (i.e., in (2) and (3)) with the common factor log2n

removed from them. To make a meaningful comparison between R and S, both classifiers

have to take the same (C, γ) values, which we specify as the optimal values for gSVM.

As a result, for some data sets, we had to train new TD classifiers, using the same de-

composition schemes (i.e., the same binary trees and same ceiling sizes) as the old clas-

sifiers, but different (C, γ) values. Table 17 shows the values of S, R, and R/L, derived

from two data sets. Note that “Letter” is not included in the table because the TD classifi-

er using the designated values of (C, γ) would be the same as the gSVM for this data set.

It is clear that the values of R are as small (less than 1,500) as, or of the same order of

magnitude as, those of the corresponding S. In fact, S can be viewed as the slack-to-

margin ratio and R as the sum of such ratios. The results show that each lSVM classifier

generates smaller slack-to-margin ratios than the corresponding gSVM classifier, while

the sum of lSVM ratios is comparable to the corresponding gSVM ratio. This explains

why the test accuracy rates of TD classifiers are comparable to those of gSVM classifiers.

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 27

Data Set 1A1 1AO
S R R/L S R R/L

PHW 74 133 17 326 450 56
Shuttle 114,786 75,630 5,402 593,967 180,867 12,919

Census Income 8,211 6,800 128 8,211 6,800 128
Poker 464 1,143 48 2,899 4,366 182

KDD CUP 10% 100,227 70,796 2,212 5,089 3,133 98

Table 17. The values of S and R, which appear in the generalization error bound for the
gSVM and the TD classifiers respectively, and the values of R/L. Training types = 1A1
and 1AO.

5. Conclusion

We have proposed a method that uses a binary tree to decompose a data space and

trains an lSVM on each of the decomposed regions. The resultant TD classifier can be

constructed in a much shorter time than the corresponding gSVM classifier, and still

achieve comparable accuracy rates to the latter. We also provide a generalization error

bound for the TD classifier. Using some data sets to compute the theoretical bounds for

gSVM and TD classifiers, we find that TD classifiers generate comparable error bounds

than gSVM classifiers. This finding explains why TD classifiers can achieve more or less

the same accuracy rates as gSVM classifiers, even though the training times are small

relative to the gSVM training times.

References

N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions,
uniform convergence, and learnability. In Journal of ACM, 44(4): 615–631, 1997.

P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines
and other pattern classifiers. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods – Support Vector Learning. MIT Press, 1998.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and
active learning. In Journal of Machine Learning Research, 6:1579-1619, 2005.

L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller, E.
Sackinger, P. Simard, and V. Vapnik. Comparison of classifier methods: A case study
in handwriting digit recognition. In Proc. Int. Conf. Pattern Recognition, pages 77–87,
1994.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Chapman and Hall, 1984.

L. Breiman. Bagging predictors. In Machine Learning, 262:123-140, 1996.

CHANG, GUO, LIN, AND LU

28

C. J. C. Burges, A tutorial on support vector machines for pattern recognition. In Data
Mining and Knowledge Discovery, 2(2): 1-47, 1998.

R. Colbert, S. Bengio, and Y. Bengio, A parallel mixture of SVMs for very large scale
problems. In Neural Computation, 14(5): 1105-1114, 2002.

C. Cortes and V. Vapnik. Support vector machines. In Machine Learning, 20: 1-25, 1995.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods. Cambridge University Press, 2000.

L. Devroye, L Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, 1996.

T. Dietterich. An experimental comparison of three methods for constructing ensembles
of decision trees: Bagging, boosting, and randomization. In Machine Learning, 40:
139-157, 2000.

T. Glasmachers and C. Igle. Maximum-gain working set selection for SVMs. In Journal
of Machine Learning Research, 7: 1437–1466, 2006.

H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik. Parallel support vector
machines: the cascade SVM. In L. K. Saul, Y. Weiss and L. Bottou, editors, Advances
in Neural Information Processing Systems. MIT Press, 2004.

C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector ma-
chines. In IEEE Transactions on Neural Networks, 13(2): 415-425, 2002.

S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: A stepwise pro-
cedure for building and training a neural network. In J. Fogelman, editor, Neurocom-
puting: Algorithms, Architectures and Applications. Springer-Verlag, 1990.

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: the
informative vector machine. In S. Becker, S. Thrun, and K. Obermayer, editors, Ad-
vances in Neural Information Processing Systems. MIT Press, 2003.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI Repository of machine learn-
ing databases, Irvine, CA: University of California, Department of Information and
Computer Science, 1998. [http://www.ics.uci.edu/~mlearn/ MLRepository.html].

E. Osuna, R. Freud, and F. Girosi. An improved training algorithm for support vector
machines. In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, Neural Networks
for Signal Processing VII, pages 276-285, 1997.

N. Panda, E. Y. Chang, and G. Wu. Concept boundary detection for speeding up SVMs.
In Proceedings of International Conference on Machine learning, pages 681-688,
2006.

D. Pavlov, D. Chudova, and P. Smyth. Towards scalable support vector machines using
squashing. In ACM SIGKDD, pages 295-299, 2000.

http://www.ics.uci.edu/~mlearn/%20MLRepository.html�

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 29

J. C. Platt. Fast training of support vector machines using sequential minimal optimiza-
tion. In B. Schölkopf, C. Burges, and A. J. Smola, editors, .Advances in Kernel Me-
thods: Support Vector Learning. MIT Press, 1999.

J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGs for multiclass classi-
fication. In S. A. Solla, T. K. Leen and K.-R. Müller, editors, Advances in Neural In-
formation Processing Systems. MIT Press, 2000.

J. R. Quinlan. Induction of Decision Tree. In Machine Learning, 1(1): 81-106, 1986.

A. Rida, A. Labbi, and C. Pellegrini. Local experts combination through density decom-
position. In Proceedings of International Workshop on AI and Statistics, 1999.

R. E. Schapire. The strength of weak learnability. In Machine Learning, 5: 197-227, 1990.

R. E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categoriza-
tion. Machine Learning, 39(2/3): 135-168, 2000.

A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning.
In Proceedings of 7th International Conference on Machine Learning, pages 911-918,
2000.

B. Schölkopf, C. J. C. Burges, and A. J. Smola. Advances in Kernel Methods - Support
Vector Learning. MIT Press, 1999.

J. Shawe-Taylor and N. Cristianini. Margin distribution bounds on generalization. In
Proceedings of the European Conference on Computational Learning Theory, pages
263-273, 1999.

J. Shawe-Taylor and N. Cristianini. On the generalization of soft margin algorithms. In
IEEE Transactions on Information Theory, 48(10): 2721–2735, 2002.

A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning.
In Proceedings of the International Conference on Machine Learning, pages 911–918,
2000.

V. Tresp. A Bayesian committee machines. Neural Computation, 12, pages 2719-2741, 2000

V. Tresp. Scaling kernel-based systems to large data sets. In Data Mining and Knowledge
Discovery, 5: 197-211, 2001.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. In Theory of Probability and Its Applications, 16: 264-
280, 1971.

V. Vapnik and A. Chervonenkis. Ordered risk minimization I. In Automation and Remote
Control, 35: 1226-1235, 1974.

V. Vapnik and A. Chervonenkis. Ordered risk minimization II. In Automation and Re-
mote Control, 35: 1403-1412, 1974.

V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, 1995.

H. Yu, J. Yang, J. Han, and X. Li. Making SVMs scalable to large data sets using hierar-
chical cluster indexing. In Data Mining and Knowledge Discovery, 11: 295-321, 2003.

CHANG, GUO, LIN, AND LU

30

Appendix A. Proof of Lemma 1

Let G ⊆ PL(Rd), γ = (γ1,…, γL) ∈ (R+)L, and Fi ⊆ R(H) for i = 1, …, L. The samples

in Xn are drawn at random based on the distribution D .

Our goal is to find an upper bound for the probability of the following event:

 A1: there exist π ∈ G and f = (f1,…, fL) ∈ F1×…×FL such that mg(fπ, Xn) ≧ γ and

err(fπ, D)>ε, where err(fπ, D) is the probability that sign(fπ(x)) ≠ y with (x, y) will be

sampled according to D.

We relate event A1 to another event A2 in which an additional set ˆ
nX of n indepen-

dent samples are drawn at random based on D:

 A2: there exist π ∈ G and f = (f1,…, fL) ∈ F1×…×FL such that mg(fπ, Xn) ≧ γ and

ˆ(,) / 2,nerr Xπ ε>f where ˆˆ(,) |{(,) : (()) } | /n i nerr X y X sign y nπ π= ∈ ≠f x f x .

By a standard argument (cf. Vapnik 1998), one can show that

ˆ1 2,Pr A 2 Pr A
n n nX X X

   
      ≤ ⋅ .

The next step involves finding a bound for ˆ 2,Pr [A].
n nX X To do this, we observe that

ˆ 2,Pr [A]
n nX X equals the probability of another event, A3, where a set X2n of 2n samples are

drawn at random based on D, and X2n is further divided randomly into two disjoint parts

of equal size: W1 and W2.

 A3: there exist π ∈ G and f = (f1,…, fL) ∈ F1×…×FL such that mg(fπ, W1) ≧ γ and

err(fπ, W2) > ε/2.

Let G(X2n) be the family of functions of G restricted to the domain {x: (x, y) ∈ X2n};

and for π ∈ G(X2n), let

(1) ()
2 2 1 2 1 2(()) (() 2) (() 2)L

n n L n LB X X Xπ γ γ/ Φ = ,Φ , / ×...× ,Φ , / ,γ C F C F

TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

 31

where Φ(()
2

i
nX) = {Φ(x): (x, y) ∈ X2n, π(x) = i}. For g = (g1, …, gL) ∈ / 2Bπ

γ (Φ(X2n)), let

gπ(x) = gi(x) for x ∈ Φ(()
2

i
nX) for 1≦i ≦ L. Then, for π ∈ G(X2n) and f = (f1, …, fn) ∈

F1×…×FL, there exists g = (g1, …, gL) ∈ / 2Bπ
γ (Φ(X2n)) such that for any (x, y) ∈ Xn, if π(x)

= i, then

(()) (()) 2i i if g γ| Φ − Φ |≤ / .x x

For such fπ and gπ, mg(fπ, W1)≧γ implies that mg(gπ, W1)≧γ/2; and err(fπ, W2)≧ε/2 im-

plies that errγ/2(gπ, W2)≧ε/2, where errγ/2(gπ, W2) is the proportion of (x, y) in W2 for

which gi(x) < γi/2 if π(x) = i. Therefore, the probability of the event A3 cannot exceed that

of the following event A4.

 A4: there exist π ∈ G and g ∈ / 2Bπ
γ (Φ(X2n)) such that mg(gπ, W1) ≧ γ/2 and

errγ/2(gπ, W2) ≧ ε/2.

For any X2n, π, and g, we have

1 2

2 (2) (2)
2

, 1 / 2 2
2

Pr (,) / 2 and (,) / 2 2
2

n n n
n n

W W
n

n

nmg W err W
n

ε ε
π π ε

γ ε

 − /  /
  − / 

 
 
 
 

  ≥ ≥ ≤ ≤ = .    
gγg

Therefore, we have

[] []
2 1 2 2 1 2 2 2 / 2

/ 2
, , 4 , 4 ()

Pr A E Pr A E 2 .
n n n n

n
X W W X W W X X g Bπ

ε
π

  −
  ∈ ∈ 

 = ≤   ∑ ∑
γG

Since | X2n | = 2n, | G(X2n) | ≦ V(G,2n). Moreover,

() ()
/ 2 2 2 2

1 1 1

| () | | (2) | (,| | 2) (, 2 2),i i
n i n i i n i i i

i L i L i L

B X X N E X N E nπ γ γ γ
≤ ≤ ≤ ≤ ≤ ≤

= , , / ≤ , , / ≤ , , /∏ ∏ ∏γ C F F F

where E = {Φ(x): (x, y) ∈ supp(D)}. As a result, we have

2 1 2

2
1 , , 4

1

Pr A 2 Pr A 2 (2) (, 2 2) 2 .
n n

n
X X W W i i

i L

V n N E n εγ − /   
      

≤ ≤

 
≤ ⋅ ≤ ⋅ , ⋅ , , / ⋅ 

 
∏G F

The last quantity is δ, if

CHANG, GUO, LIN, AND LU

32

1

2 log (2) log (, , 2 , / 2) log(2)i i
i L

V n N E n
n

ε γ δ
≤ ≤

 = , + + / . 
 

∑G F

This proves the lemma.

	Tree Decomposition for Large-Scale SVM Problems: Experimental and Theoretical Results
	Introduction
	The TD Method
	Experiment Results
	Generalization Error Bounds for the TD Classifier
	4.2 Soft Margin Bounds

	Conclusion
	References
	Appendix A. Proof of Lemma 1

