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Abstract 
To handle problems created by large data sets, we propose a method that uses a de-

cision tree to decompose a data space and trains SVMs on the decomposed regions. Al-

though there are other means of decomposing a data space, we show that the decision tree 

has several merits for large-scale SVM training. First, it can classify some data points by 

its own means, thereby reducing the cost of SVM training applied to the remaining data 

points. Second, it is efficient for seeking the parameter values that maximize the valida-

tion accuracy, which helps maintain good test accuracy. Third, we can provide a genera-

lization error bound for the classifier derived by the tree decomposition method. For ex-

periment data sets whose size can be handled by current non-linear, or kernel-based SVM 

training techniques, the proposed method can speed up the training by a factor of thou-

sands, and still achieve comparable test accuracy. 

Keywords: binary tree, generalization error bound, margin-based theory, pattern 

classification, tree decomposition, support vector machine, VC theory 

1. Introduction 

Support vector machines (SVMs) have proven very effective for solving pattern 

classification problems (Cortes and Vapnik, 1995; Vapnik, 1995). Because of the grow-

ing trend to apply them to various domains of interest, including bioinformatics, comput-

er vision, data mining and knowledge discovery, the size of training data sets continues to 

grow at a rapid rate. At the same time, there is an ongoing effort to speed up the SVM 

training. One approach, called the numerical technique in this paper, seeks efficient nu-
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merical solutions to the QP optimization problem involved in the SVM training. A well-

known solution called sequential minimal optimization (SMO) breaks a large quadratic 

programming (QP) problem into a series of smallest possible QP problems (Platt, 1999) 

to reduce the amount of memory required for computation. In terms of speed, SMO has 

proven superior to similar methods, such as the projected conjugated gradient “chunking” 

algorithm (Burges, 1998) and Osuna’s algorithm (Osuna et al., 1997). A recent advance 

in this direction is an online learning method called LASVM (Bordes et al., 2005), which 

can converge to the QP optimal solution in one pass of examining training samples. The 

method can be combined with an active selection of training samples to yield faster train-

ing, higher accuracy rates, and simpler models. Another advance in this direction is a me-

thod called maximum-gain working set selection (Glasmachers and Igle, 2006), which is 

significantly faster than SMO on large training sets.  

A different type of approach, called data-reduction in this paper, reduces a large 

training data set to one or several small data sets. If only one reduced set is obtained, we 

call the method single-set reduction (SSR); and if multiple reduced sets are obtained, we 

call the method multiple-set reduction (MSR). In the latter case, SVM training is con-

ducted on each of the reduced sets and all the SVMs are combined into a final classifier. 

We review MSR methods first. Perhaps the simplest MSR method is bagging 

(Breiman, 1996). It employs a number of down-sampled data sets to train SVMs, which 

jointly classify a test object based on majority vote. The boosting method (Schapire, 1990) 

trains SVMs in a sequential manner, and the training of a particular SVM is dependent on 

the training and performance of previously trained SVMs. The divide-and-combine strat-

egy (Rida et al., 1999) decomposes an input space into possibly overlapping regions, as-

signs each region a local predictor, and combines the local predictors into a global solu-

tion to the prediction problem. The Bayesian committee machine (Tresp, 2000) partitions 

a large data set into smaller ones. The SVMs trained on the reduced sets jointly define the 

posteriori probabilities of the classes into which test objects are categorized. The method 

proposed by Collobert et al. (2002) divides a set of input samples into smaller subsets, 

assigns each subset a local expert, and conducts a loop to re-assign samples to local ex-

perts according to how well the experts perform.  The cascade SVM method (Graf et al., 
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2005) also splits a large data set into smaller ones and extracts support vectors (SVs) 

from each of them. The resulting SVs are further combined and filtered in a cascade of 

SVMs. A few passes through the cascade ensures that the optimal solution is found. 

On the SSR side of the data-reduction approach, the squashing method (Pavlov et al., 

2000) uses a likelihood-based squashing technique to obtain a reduced data set, and then 

trains linear SVMs on that set. The sparse greedy approximation method (Smola and 

Schölkopf, 2000) constructs a compressed representation of the design matrix involved in 

the QP problem; while information vector machines (Lawrence et al., 2003) use a sparse 

Gaussian process to select training samples with criteria based on information-theoretic 

principles. Clustering-based SVM (Yu et al., 2005) applies a hierarchical clustering algo-

rithm to obtain a reduced data set, which is used to train SVMs. The concept boundary 

detection (CBD) method (Panda et al., 2006) prepares nearest-neighbor lists as training 

samples, and uses a special down-sampling technique to extract the data points that lie 

close to class boundaries. This method can find a single set of near-boundary points for 

all class pairs. In contrast, many other methods that utilize SVMs to analyze training 

samples have to find different reduced sets for different class pairs, since SVMs can only 

work on one class pair at a time. For more details of data-reduction methods proposed up 

to 2001, readers may refer to Tresp (2001). 

Finally, we remark that the numerical and data reduction approaches, instead of 

competing, can actually complement each other’s functions. The data reduction approach 

must train SVMs on reduced data sets and it can certainly use an efficient numerical me-

thod to perform the task. The numerical approach, on the other hand, can benefit by using 

an efficient data reduction method to reduce its computational burden. 

In this paper, we propose a method that decomposes a large data set into a number 

of smaller ones and trains SVMs on each of them. This approach reduces the total train-

ing time for a very simple reason. The time complexity of training an SVM is in the order 

of n2 when the number of training samples is n. If each smaller problem deals with σ 

samples, where σ < n, then the complexity of solving all the problems is in the order of 

(n/σ)×σ2 = nσ, which is much smaller than n2 if n is significantly larger than σ . Decom-

posing a large problem into smaller problems has the added benefit of reducing the num-

ber of support vectors (SVs) in the resultant SVMs. This in turn reduces the time required 
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for the testing process in which the number of SVs dominates the complexity of the com-

putation.  

Our method can be categorized as an MSR method. It differs from other MSR me-

thods in that it uses of a decision tree to obtain multiple reduced data sets, whereas other 

methods use non-supervised clustering (Rida et al., 1999), random sampling (Breiman, 

1996), or random partition (Tresp, 2000; Collobert et al., 2002; Graf et al., 2005). Since 

our method uses a decision tree to decompose the data space, we refer to it as the tree de-

composition (TD) method and the resultant classifier as the TD classifier. 

A decision tree decomposes a data space into high-dimensional rectangles. Although 

the generalization power of the decision tree as a classifier is compromised by the strict 

requirement of rectangular partition of the data space, the role of the decision tree as a 

decomposition scheme can have the following benefits when dealing with large-scale 

SVM problems.  

First, the decision tree may decompose the data space so that certain decomposed 

regions become homogeneous; that is, they contain samples of the same labels. In the 

testing phase, when a data point flows to a homogeneous region, we simply classify it in 

terms of the common label of that region. This helps alleviate the burden of SVM training, 

which is only conducted in heterogeneous regions. In fact, our experiments revealed that, 

for certain data sets, more than 90% of the training samples reside in homogeneous re-

gions; thus, the decision tree method saves an enormous amount of time when training 

SVMs. Random partitioning, on the other hand, cannot produce such an effect, since ran-

dom pooling of a set of samples can hardly create a homogeneous data set due to the in-

dependent sampling operation. 

Another benefit of using the decision tree is the convenience it provides when 

searching for all the relevant parameter values to maximize the solution’s validation ac-

curacy, which helps maintain good test accuracy. The goal of the TD method is to attain 

comparable validation accuracy while consuming less time than training SVMs on the 

full data sets. To achieve our purpose, we found that it is important to control the size σ 

of the tree-decomposed regions as well as the SVM-parameter values. For some data sets, 

σ could be set to 1,500, while for other data sets, it had to be set to a larger value. Thus, 



TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS 

  5 

using tree decomposition for SVMs makes σ an additional parameter to the usual SVM-

parameters. Other MSR methods do not attempt to search for the optimal size of decom-

posed regions. Such searches are particularly easy under the TD method because a deci-

sion tree is constructed in a recursive manner; hence, obtaining a tree with a larger size of 

σ does not require a new training. 

Using a decision tree also helps alleviate the cost of searching for the optimal values 

of SVM-parameters. Searching for these values is important, but it takes a tremendous 

amount of time, especially when training non-linear SVMs. To the best of our knowledge, 

no data-reduction method has attempted to reduce the cost of this operation. Our strategy 

involves training SVMs with all combinations of SVM-parameter values only for decom-

posed regions with the minimum σ-level. The optimal values of the SVM-parameters ob-

tained at this level are not necessarily the same as those obtained at higher levels. How-

ever, we observe that the best values for a higher level are usually among the top-ranked 

values for the minimum level. Therefore, when we want to train SVMs for a higher σ-

level, we only train them with the top-ranked values obtained for the minimum level. 

Given the O(n2)-complexity of SVM training, conducting a full search of SVM-parameter 

values only in regions with the minimum σ-level certainly reduces the SVM training time. 

In fact, our experiments showed that such savings were possible even when the optimal 

σ-level was no less than the full size of the data set. 

Although the decision tree method may not be the only way to achieve the above 

benefits for large-scale SVM problems, its effect can be understood in theory and a gene-

ralization error bound can be derived for the TD classifier. The bound is the sum of two 

terms: the first term dominates in magnitude and is associated with SVM training; and the 

second term is associated with tree training. Our experiment results show that the numer-

ical value of the dominant term is as small as, or of the same order of magnitude as, its 

counterpart in a generalization error bound for SVM training conducted on the whole da-

ta set. This finding constitutes indirect evidence of the efficacy of tree decomposition for 

large-scale SVM problems. 

Finally, we remark that it is possible to have multiple decompositions of the same 

data space with multiple trees. These trees can be obtained by using a randomized, rather 

than the optimal, split point at each tree node (Dietterich, 2000). By so doing, we train 
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SVMs on all the decomposed regions and classify the test data based on majority votes. 

We have actually studied the effect of such multiple decompositions. In terms of test ac-

curacy, multiple decompositions are not as effective as searching for the optimal σ-level 

of decomposed regions. In fact, when the latter search is conducted, introducing multiple 

decompositions does not lead to any significant improvement. Therefore, to avoid unne-

cessary complications, in this paper, we only consider the decomposition of a data space 

by a single decision tree. 

In the experimental study, we divided our data sets into training, validation, and test 

components. We then used the training component to build TD classifiers, the validation 

component to determine the optimal parameters, and the test component to measure the 

test accuracy. We adopted two types of SVM training: one-against-one (1A1) (Knerr et al. 

1990; Platt et al. 2000) and one-against-others (1AO) (Bottou et al., 1994). Furthermore, 

we built non-linear SVMs on the data sets. When evaluating the TD method, we found it 

could train TD classifiers that achieve comparable test accuracy rates to those of SVM 

classifiers. The speedup factor for the six datasets, whose sizes ranged from 10K to 494K, 

was between approximately 4 and 3,691 for 1A1 trainings, and between approximately 

29 and 5,775 for 1AO trainings. Furthermore, we found that TD achieved much higher 

speedup factors than two alternative methods, namely, bagging (Breiman, 1996), an MSR 

method; and CBD (Panda et al., 2006), an SSR method. To demonstrate that TD can effi-

ciently train classifiers for larger data sets, we applied it to two datasets whose sizes were 

approximately 581K and 4,898K respectively. The first data set took 4.7 and 7.3 hours to 

complete 1A1 and 1AO trainings respectively, while the second data set required 5.2 

hours for both types of training. 

The remainder of this paper is organized as follows. In Section 2, we describe the 

TD method. Section 3 details the experiment results. In Section 4, we provide theoretical 

results for the TD method. Then, in Section 5, we present some concluding remarks. 
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2. The TD Method 

In this section, we consider the decision tree that we use as the decomposition 

scheme, and discuss the training process for the TD method. An implementation of the 

TD method is available at 

http://ocrlnx03.iis.sinica.edu.tw/~dar/Download%20area/tdsvm.php3 

2.1 The Decision Tree 

For the decomposition scheme, we adopt CART (Breiman et al., 1984) or a binary 

C4.5 scheme (Quinlan, 1986) that allows two child nodes to grow from each node that is 

not a leaf. Using a C4.5 scheme that allows multiple child nodes is feasible; however, we 

do not consider it in this paper, since a binary C4.5 performs the job rather well for us.  

To grow a binary tree, we follow a recursive process, whereby each training sample 

flowing to a node is sent to its left-hand or right-hand child node. At a given node E, a 

certain feature fE of the training samples flowing to E is compared with a certain value vE 

so that all samples with fE < vE are sent to the left-hand child node, and the remaining 

samples are sent to the right-hand child node. The values of fE and vE are determined as 

follows. The split point vf of each feature f is calculated by 

arg max ( , )f
v

v IR f v= ,                                                    (1) 

where 

| | | |
( , ) ( ) ( ) ( )

| | | |
f v f v

f v f v

S S
IR f v I S I S I S

S S
< ≥

< ≥= − − , 

S is the set of all samples flowing to E; Sf < v consists of the elements of S with f < v; Sf ≧v 

= S\Sf < v; | X | is the size of any data set X; and I(X) is the impurity of X. The impurity 

function we use in our experiments is the entropy measure, defined as 

∑−=
y yy SpSpI )(log)()S( , 

where p(Sy) is the proportion of S’s samples whose label is y. Then, 

),(maxarg f
f

E vfIRf = , 

http://ocrlnx03.iis.sinica.edu.tw/~dar/Download%20area/tdsvm.php3�
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and vE is taken as the split point of fE.  

We stop splitting a node E when one of the following conditions is met: (i) the num-

ber of samples that flow to E is smaller than a ceiling size σ; or (ii) when IR(f, v) = 0 for 

all f and v at E. The value of σ in the first condition is determined in a data-driven fashion, 

which we describe in Section 2.2. The second condition occurs when all the samples that 

flow to E are homogeneous or when a subset of them is homogeneous and the remaining 

samples, although carrying different labels, are identical to some members of the homo-

geneous subset. There are other possible cases for the second condition, but their occur-

rence is extremely rare. If we want to split E in these cases, for a given feature f, we can 

choose the following split point to minimize the difference between | Sf ≧v | and | Sf < v|, i.e., 

|  ||||  |minarg vfvf
v

f SSv >≤ −= , 

and then choose the feature whose split point has the minimum difference among all fea-

tures. 

After growing a tree, we train an SVM on each of its leaves, using samples that flow 

to each leaf as training data (Figure 1). The values of the SVM parameters are also de-

termined in a data-driven fashion. A tree and all SVMs associated with its leaves consti-

tute a TD classifier, as shown in Figure 1. In the training phase, all the SVMs are trained 

with the same parameter values. We describe the determination of the optimal values in 

Section 2.2. In the validation/testing procedure, we first input a given validation/test ob-

ject x to the tree. If x reaches a leaf that contains homogeneous samples, we classify x as 

the label of those samples; otherwise, we classify it with the SVM associated with that 

leaf. 
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L2

L3

L4

L5

L6

 

Figure 1. The architecture of a TD classifier: a tree and all its leaves (L1 to L6) are produced and 
SVMs are trained on the leaves. 

2.2  The TD Training Process 

Given a training and validation component, we build a TD classifier on the training 

component and determine its optimal parameter values with the help of the validation 

component. The parameters associated with a TD classifier are: (i)σ , the ceiling size of 

the decision tree; and (ii) the SVM parameters. Their optimal values are determined in 

the following way.  

In the initial stage, we train a binary tree with an initial ceiling size σ0, and then train 

SVMs on the tree’s leaves with SVM-parameters θ. Note that we express θ in boldface to 

indicate that it may consist of more than one parameter. Let v(σ0, θ) be the validation ac-

curacy rate of the resultant TD classifier. Then, we can define 

θ0 0argmax ( , )v σ
∈Θ

=
θ

θ , and 

0 0(0) ( , )r v σ= θ , 

where Θ is the set of all possible SVM-parameter values whose effects we want to eva-

luate. The value r(0) is the best validation accuracy rate that we obtain out of all the TD 

classifiers with ceiling size σ0. In our experiments, we set σ0 = 1,500. 
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For later stages, we want to construct TD classifiers with a larger ceiling size, but 

we only train their associated SVMs with k top-ranked θ. To do so, we rank θ in the des-

cendant order of v(σ0, θ). Let Θ[k] be the set that consists of k top-ranked θ. In our expe-

riments, we set k to 5. 

To be more specific, at stage t, we set σt = 4σt-1 for t = 1, 2, …. We modify the tree 

with ceiling size σt-1 by dropping a few nodes from the lower levels so that the tree’s ceil-

ing size becomes σt. We then train new TD classifiers on the modified tree with θ being 

chosen from Θ[k]. Then, we define 

θt
[ ]

argmax ( , )
k

tv σ
∈Θ

=
θ

θ , and 

( ) ( , )t tr t v σ= θ . 

The value r(t) is the best validation accuracy rate out of all the TD classifiers with ceiling 

size σt. We terminate the process when the improvement in the best validation accuracy 

rate is insignificant, or we have already reached the root node of the tree. 

The steps of the TD training process are as follows. 

1. Set t = 0. Train the TD classifiers with ceiling size σ0 and choose the SVM-

parameters θ from Θ; then compute r(0). 

2. Increase t by 1 and set σt = 4σt-1. Obtain the binary tree with ceiling size σt and 

train the TD classifiers on that tree, and choose the SVM-parameters θ from 

Θ[k]; then compute r(t). 

3. If r(t) - r(t-1) < 0.5%, or σt is no less than the size of the training component, ter-

minate the process; otherwise, proceed to step 2. Note that when the process is 

terminated, it outputs a TD classifier with the ceiling size σopt and SVM-

parameters θopt, where σopt = σt-1 and θopt = θt-1 if r(t) - r(t-1) < 0.5%, or σopt = σt 

and θopt = θt  if σt exceeds the size of the training component. 

3. Experiment Results 

Recall that the TD method trains a local SVM (lSVM) for each leaf of a binary tree, 

while conventional SVM training constructs global SVM (gSVM) classifiers using all the 

samples for training.  
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In our experiments, we divided the data sets into two groups. The first group was 

used to evaluate the efficiency of TD and two alternative methods in terms of speeding 

up SVM training. The second group was used to verify that the TD method could handle 

large data sets, for which SVM would take very long time to complete the training 

process. The first group consisted of six data sets, whose sizes ranged from 10K to 494K, 

as shown in the first six rows of Table 1. The second group comprised two data sets of 

size 581K and 4,898K, respectively, as shown in the last two rows of Table 1. The table 

contains other information about the data sets, including the number of labels, the number 

of samples, and the features in each data set. All data sets were obtained from the UCI 

repository. Note that the original “Poker” data set in the repository contains 1 million 

samples. However, in our experiments, we only used its training subset, whose size is 

suitable for comparing TD with other methods, including gSVM.  

We randomly divided each data set into 6 parts of equal size. Then, we used 4 parts 

as the training data component, one part as the validation component, and the remaining 

part as the test component. The TD classifiers were trained on the training and validation 

components, as described in Section 2.2. On the completion of the training process, we 

applied the output TD classifier to the corresponding test data set to obtain the test accu-

racy rate. 

 
Data set No. of Labels No. of Samples No. of Features 

Pen Hand Written (PHW) 10 10,992 16 
Letter 26 20,000 16 
Shuttle 7 58,000 9 

Census Income 2 45,222 14 
Poker 10 20,843 10 

KDD CUP 10% 5 494,021 41 
Forest 7 581,012 54 

KDD CUP 1999 5 4,898,431 41 

Table 1. The data sets used in the experiment. 

In each data set, all the feature values of the data points were passed through a nor-

malization procedure. We normalized all the feature values to a real number between 0 

and 1. We did this by transforming each value v of feature f into (v-fmin)/(fmax-fmin), where 

fmax and fmin are the maximum and minimum values of f respectively. 
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We only studied non-linear SVMs in our experiments. Moreover, we used the RBF 

kernel function to measure the similarity between vectors. As a result, we had two SVM 

parameters: the penalty factor C, whose values were taken as Φ = {10a: a = -1, 0, …, 5}; 

and the γ parameter in the RBF function, whose values were taken as Ψ = {10b: b = -4,     

-3, …, 4}. Thus, the set of all SVM parameter values was Θ = Φ×Ψ. In all SVM training 

sessions, we used the LIBSVM software (Hsu and Lin, 2002).  We adopted all default 

options of this software, except the parameter values, which we specified above. 

SVM training was implemented under the 1A1 and 1AO approaches. When the 1A1 

approach is used, there are n(n-1)/2 classifiers, where n is the number of labels. Each of 

the classifiers assigns one of two possible labels to a given validation/test sample. We 

used all the classifiers to classify x, a given validation/test sample, based on majority 

votes. Note that a more efficient technique (Platt et al. 2000) that only requires n classifi-

ers can be used in the validation/testing procedure. However, we adopted the technique 

developed by Knerr et al. (1990), which requires n(n-1)/2 classifiers, because we were 

only interested in the relative, rather than the absolute, performance of the methods com-

pared in our experiments. When the 1AO approach is used, there are n decision functions, 

each of which is associated with a label. We assign x the label associated with the deci-

sion function that yields the highest functional value. 

To compare TD with existing methods, we implemented two methods designed to 

speed up SVM training: bagging (an MSR method) and CBD (an SSR method). When 

implementing bagging, we created a number of SVMs for each θ∈Θ, where each SVM 

was trained on 1,500 training samples chosen at random. For each θ, the training was 

conducted sequentially. We stopped at the first m so that the validation accuracy rate of m 

SVMs did not exceed that of m-1 SVMs by 0.5%. CBD training comprises two steps: 

finding a reduced set, and training an SVM on that set for each θ∈Θ. The first part re-

quires finding k-nearest neighbors of each training sample and deriving the reduced data 

set via a down-sampling technique. Following Panda et al. (2006), we set k to 100. In 

finding the 100 nearest neighbors of each training sample x, we keep the current list of 

100 nearest neighbors of x. For another training sample z, let d(x, z) be the distance be-

tween x and z. We need to compare this distance with d(x, w), where w is in the current 
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list and holds the largest distance with x. Since the squared distance is the sum of squared 

feature differences, we can speed up the comparison by computing the partial sum of d2(x, 

z). When this partial sum exceeds d2(x, w), we stop the comparison and exclude z from 

the current list of x. This numerical trick saves a tremendous amount of time in finding 

the 100 nearest neighbors for all training samples, especially when the number of training 

samples is large. 

The experiment results obtained by TD, bagging, CBD, and gSVM for the first six 

data sets are shown in Tables 2-6 for 1A1 training, and in Tables 7-11 for 1AO training.  

The boldface numbers in the tables signify the best performances. Table 2 and Table 7 

show the training times of the four methods. The training time of each method comprises 

the time required to obtain reduced data sets if it is a speedup method, the time to train all 

SVMs, and the time to search for optimal parameters. The time to input or output data is 

not included, however. The computation for the first seven data sets in Table 1 was con-

ducted on Intel Xeon CPU 3.2 GHz with 2GB RAM. That for “KDD CUP 1999” was 

conducted on Intel Quad-Core Xeon CPU 2.5 GHz with 8 GB RAM. 

Table 3 and Table 8 show speedup factors of TD, bagging, and CBD, where the 

speedup factor of a method M is computed as gSVM’s training time divided by M’s 

training time. Table 4 and Table 9 show the test accuracy rates of the four compared me-

thods. Note that the TD test accuracy rate is that of the TD classifier with the ceiling size 

σopt and SVM-parameters θopt. When classifying a test sample with SVMs, the most time-

consuming part is computing a decision function, whose complexity can be measured in 

terms of how many SVs are involved in the classification. Therefore, we use the “number 

of SVs” (NSV) as a measure of the complexity, which is the average number of SVs con-

tained in the decision function used to classify a test sample. More specifically, NSV 

represents the average number of SVs involved in classifying a test sample in the testing 

process. Note that when a TD classifier is used, the SVs are associated with the leaf that 

the test sample flows to. Table 5 and Table 10 list the NSVs of the four methods; while 

Table 6 and Table 11 show the NSV ratios of TD, bagging, and CBD, where the NSV ra-

tio of a method M is computed as gSVM’s NSV divided by M’s NSV. 
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Data set TD Bagging CBD gSVM 
PHW 275 2,204 697 1,192 
Letter 768 7,575 2,598 4,157 
Shuttle 23 2,100 303 5,096 

Census Income 5,209   6,100   215,219   315,130   
Poker 5,600  13,332  992,533  1,307,667    

KDD CUP 10% 371 17,123 57,789 1,369,600 

Table 2. Training times of the four methods, expressed in seconds. Training type = 1A1. 

Data set TD Bagging CBD 
PHW 4.33 0.54  1.71  
Letter 5.41 0.55  1.60  
Shuttle 221.57 2.43  16.82  

Census Income 60.50  51.66  1.46  
Poker 233.51 98.08  1.32  

KDD CUP 10% 3,691.64 79.99  23.70  
Table 3. Speedup factors of TD, bagging, and CBD. Training type = 1A1. 

Data set TD Bagging CBD gSVM 
PHW 99.42 99.52 99.63 99.63 
Letter 97.60 93.09 95.25 97.54 
Shuttle 99.93 99.66 99.85 99.92 

Census Income 84.81 83.75 84.08 84.25 
Poker 57.85 56.37 57.50 58.29 

KDD CUP 10% 99.96 99.68 99.91 99.95 

Table 4. Test accuracy rates of the four methods. Training type = 1A1. 

Data set TD Bagging CBD gSVM 
PHW 1,140 38,376  7,785  8,073  
Letter 183,450 663,315  109,376  183,450  
Shuttle 0.5  2,465  1,098  1,134  

Census Income 300  5,381  9,560  10,451  
Poker 5,284  100,018  145,522  174,942  

KDD CUP 10% 3.9  1,873  2,783  2,287  
Table 5. NSVs of the four methods. Training type = 1A1. 
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Data set TD Bagging CBD 
PHW 7.08 0.21  1.04  
Letter 1.00 0.28  1.68  
Shuttle 2,432.70  0.46  1.03  

Census Income 34.81  1.94  1.09  
Poker 33.11  1.75  1.20  

KDD CUP 10% 584.86  1.22  0.82  
Table 6. NSV ratios of TD, bagging, and CBD. Training type = 1A1. 

Data set TD Bagging CBD gSVM 
PHW 672 12,271  5,893  19,988  
Letter 3,281 105,121  87,179  151,476  
Shuttle 36  5,359  700  36,689  

Census Income 5,191 6,100 215,219 315,130 
Poker 10,061 91,058 2,222,084 2,923,776 

KDD CUP 10% 435  46,879  57,706  2,512,134  
Table 7. Training times of the four methods, expressed in seconds. Training type = 
1AO. 

Data set TD Bagging CBD 
PHW 29.74 1.63  3.39  
Letter 46.17 1.44  1.74  
Shuttle 1,019.14  6.85  52.41  

Census Income 60.71 51.66 1.46 
Poker 290.60 32.11 1.32 

KDD CUP 10% 5,775.02  53.59  43.53  
Table 8. Speedup factors of TD, bagging, and CBD. Training type = 1AO. 

Data set TD Bagging CBD gSVM 
PHW 99.52 99.47  99.63  99.63  
Letter 97.66 93.80  96.20  97.66  
Shuttle 99.89  99.67  99.82  99.91  

Census Income 84.81 83.75 84.08 84.25 
Poker 57.62 57.30 56.82 58.02 

KDD CUP 10% 99.96  99.68  99.91  99.96  
Table 9. Test accuracy rates of the four methods. Training type = 1AO. 
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Data set TD Bagging CBD gSVM 
PHW 248 6,771  1,164  1,210  
Letter 16,200 240,394  14,690  16,201  
Shuttle 0.4  1,070  611  266  

Census Income 300 5,381 9,560 10,451 
Poker 1,801 160,779 40,965 47,951 

KDD CUP 10% 1.8  756  1,576  1,566  

Table 10. NSVs of the four methods. Training type = 1AO. 

Data set TD Bagging CBD 
PHW 4.87 0.18  1.04  
Letter 1.00 0.07  1.10  
Shuttle 597  0.25  0.44  

Census Income 34.81 1.94 1.09 
Poker 26.63 0.30 1.17 

KDD CUP 10% 873.37  2.07  0.99  

Table 11. NSV ratios of TD, bagging, and CBD. Training type = 1AO. 

We summarize the results shown in Tables 2-11 as follows. 

1. In terms of training time, TD outperformed the other three methods on all the data 

sets (Table 2 and Table 7). Furthermore, TD achieved very large speedup factors 

for “Shuttle”, “Poker”, and “KDD CUP 10%”, as compared with those derived by 

bagging and CBD. (Table 3 and Table 8). 

2. TD achieved comparable test accuracy rates to those of gSVM on all the data sets. 

Bagging and CBD lag behind on “Letter” (Table 4 and Table 9). 

3. In terms of NSV, TD’s performance was comparable to that of CBD and gSVM 

on “Letter”, and it outperformed all the other methods on the remaining data sets 

(Table 5 and Table 10). Moreover, TD obtained very large NSV ratios compared 

to those of bagging and CBD on “Shuttle”, “Poker”, and “KDD CUP 10%” (Table 

6 and Table 11). 

4. TD achieved larger speedup factors for 1AO training than for 1A1 training (Table 

3 and Table 8), and it yielded lower NSV ratios for 1AO training (Table 6 and 

Table 11). 

To gain insight into how TD achieved its effectiveness, in Table 12, we show the 

optimal ceiling sizes derived by TD as well as the proportion of training samples that 
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flow to homogeneous leaves. Note that a single table suffices to show all the results, be-

cause 1A1 training and 1AO training employ the same decision trees and TD happens to 

yield the same σopt value for both approaches. 
 

 PHW Letter Shuttle Census Income Poker KDD CUP 10% 
σopt 1,500 24,000 1,500 1,500 1,500 1,500 

Proportion 0% 0% 98.42% 5.55% 0% 42.05% 

Table 12. The optimal ceiling sizes optσ  obtained by TD and the proportion of training 
samples that flow to homogeneous leaves. 

First, we observe that TD required a low ceiling size, 1,500, on all data sets except 

“Letter”. This explains why TD generally achieved good speedup factors and NSV ratios. 

Interestingly, the proportion of training samples that flowed to homogeneous leaves un-

der TD was very high in “Shuttle” and “KDD CUP 10%”. Since no SVM is involved in 

any homogenous leaves, TD achieved very high speedup factors and NSV ratios on these 

two data sets. The same fact also explains why TD achieved such low NSVs that even 

fell below 1 on “Shuttle”. Note that this effect is achieved by decision trees that group 

neighboring samples into the same leaf. Random decomposition, on the other hand, does 

not produce the same effect, because the probability that all samples will carry the same 

label in the same randomly decomposed region is extremely small. 

Next, we consider the TD results for “Letter”. In this data set, the optimal ceiling 

size exceeded the size of the training component. Thus, the output TD classifier was 

trained on the full data set. However, TD still achieved positive speedup factors. This is 

because TD trained lSVMs for all the parameter values only on leaves with ceiling size 

1,500, which took much less amount of time than training them on the full training com-

ponent. The amount of time spent on higher ceiling sizes was even smaller, because TD 

only trained a small number of lSVMs. Moreover, the lSVMs were trained with top-

ranked parameters, which tended to require less time than those trained with bottom-

ranked parameters. 

Table 13 shows the training times required for different ceiling sizes, indicating that 

TD spends most of its time on the leaves of the lowest ceiling size. In addition, Table 14 

shows the test accuracy rates corresponding to different ceiling sizes, assuming that the 
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training was terminated at those sizes. The results demonstrate the benefit of searching 

for optimal ceiling sizes because, if we terminated the training at ceiling size 1,500 or 

6,000, we would obtain significantly lower test accuracy rates. 
 

Data Set Training Mode 1,500 6,000 24,000 

Letter 1A1 633 45 90 
1AO 2,730 178 373 

Table 13. The TD training times required for different ceiling sizes. 

Data Set Training Mode 1,500 6,000 24,000 

Letter 1A1 95.35 96.61 97.60 
1AO 95.71 96.91 97.66 

Table 14. The TD test accuracy rates that correspond to different ceiling sizes. 

Data Set Training Mode Item TD 

Forest 

1A1 
Training Time (Sec.) 16,927 

NSV 350 
Test Accuracy Rate (%) 94.61 

1AO 
Training Time (Sec.) 26,108 

Number of SVs per Test Sample 289 
Test Accuracy Rate (%) 94.59 

KDD CUP 1999 

1A1 
Training Time (Sec.) 18,834 

NSV 4.7 
Test Accuracy Rate (%) 99.99 

1AO 
Training Time (Sec.) 18,550 

NSV 10.4 
Test Accuracy Rate (%) 99.99 

Table 15. Training and testing results for the two large data sets. 

Finally, Table 15 details the experiment results for the two large data sets. We only 

conducted TD training on these data sets because training bagging, CBD, or gSVM 

would require too much time. The TD training for “Forest” took 4.7 and 7.3 hours to 

complete 1A1 training and 1AO training respectively; while the “KDD CUP 1999” train-

ing only took 5.2 hours for both types of training. Further details are given in Table 15. 

4. Generalization Error Bounds for the TD Classifier 

Let Rd be the d-dimensional Euclidean space. We assume that a set of training sam-

ples Xn = {(x1, y1), …, (xn, yn)} is given, where (xk, yk) ∈ Rd×{-1,1}  for k = 1, …, n. The 
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TD method produces a classifier h(x, π, f), where π is a binary tree comprising L leaves, f 

= (f1, …, fL), and fi is related to the lSVM trained on leaf i of π, for i = 1, …, L. The bi-

nary tree π produces a partition function that maps an input in Rd to {1, …, L}, and π(x) 

is the leaf that x flows to. On the other hand, the lSVM trained on leave i, i = 1, …, L is 

expressed as fi Φ, where Φ maps an input in Rd to a Hilbert space H, and fi is a linear 

function from H to R. Note that a linear function g can be expressed as 

( ) ,g z w z=  

for some  w∈H and for all z∈H. For such a function, we define 1/ 2|| || , .g w w=  

If i = π(x), then h(x, π, f) = sign(fi(Φ(x)). Let 

( )( ) ( ( )).fπ
π= Φxf x x  

It follows that h(x, π, f) = sign(f π(x)) . 

Sometimes, Φ is only defined implicitly. That is, instead of specifying the functional 

form of Φ, only the inner product of Φ(u) and Φ(v)  is specified as 

( ), ( ) ( , ),kΦ Φ =u v u v  

where u and v ∈Rd  and ( , )k ⋅ ⋅  is a kernel function. In the remainder of this section, we 

assume that the function Φ is given and fixed. 

Next, we define several notations. N is the set of natural numbers; R+ is the set of 

positive real numbers; PL(Rd) is the class of all functions from Rd to {1, …, L};  R(H) is 

the class of all functions from H to R; and L(H) is the class of all linear functions from H 

to R. Moreover, if T is a set, we define TL = {(t1, …, tL): ti∈T for i = 1, …, L}; that is, TL 

comprises all the L-tuples of T’s elements.  

Using the standard definitions given below, we provide a bound for the generaliza-

tion error of h(x, π, f) in terms of the shatter coefficient of π  and the margin of πf . More 

details can be found in Vapnik (1995), and Cristianini and Shawe-Taylor (2000). 

Definition 1. Let G ⊆ PL(Rd). For any n∈N, the nth shatter coefficient of G is  

,| |
( , ) max |{ : } |

d S
S R S n

V n π π
⊆ =

= ∈G G , 
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where πS is the function obtained by restricting π to the domain S. 

Definition 2. Let f = (f1, …, fL) ∈ (R(H))L, π ∈ PL(Rd), S ⊆ Rd×{-1,1}, and γ = (γ1,…, γL) 

∈ (R+)L. We say that fπ has margin γ on S, or mg(fπ, S) ≧γ, if 

( ) ( ( ))i iy y fπ γ⋅ ≡ ⋅ Φ ≥f x x  

for any i∈{1,…,L} and any (x, y) ∈ S with π(x) = i. 

We also adopt the following notion of a covering number proposed by Alon et al. 

(1997). 

Definition 3. Let η ∈ R+ and F ⊆ R(H). For a subset D ⊆ H, let C(F, D, η) be the 

smallest collection of functions from D to R such that, for each f ∈ F, we have g ∈ C(F, D, 

η)  with | f(z)-g(z) | ≦ η for each z∈D. For H⊆E  and n ∈ N, we define the covering 

number of F with respect to E, n, and η as 

, | |
( , , , ) max | ( , , ) | .

D E D n
N E n Dη η

⊆ =
=F C F  

4.1 Hard Margin Bounds 

Given that π ∈ PL(Rd), f ∈ R(H))L, and the samples in Xn are drawn at random 

based on the distribution D, the generalization error of the classifier sign(fπ) is defined as 

the probability that sign(fπ(x)) ≠ y, where ( , )yx  is sampled according to D. The follow-

ing lemma generalizes a known result for SVMs. The proof of the lemma is rather leng-

thy, so we provide it in Appendix A. 

Lemma 1. Let G ⊆ PL(Rd), π ∈ G, γ = (γ1,…, γL) ∈ (R+)L, and f = (f1, …, fL) ∈ F1×…×FL, 

where Fi ⊆ R(H) and 1≦ i ≦ L. For any probability distribution D on Rd×{-1, 1},  if the 

samples in Xn are drawn at random based on D, then, with probability 1-δ, the generali-

zation error of sign(fπ) with mg(fπ, Xn) ≧ γ  will be at most 

i1

2 log ( , , 2 , / 2) log ( , 2 ) log(2 / ) ,L
ii

N E n V n
n

γ δ
=

 + + ∑ F G   
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where  E = {Φ(x): (x, y) ∈ supp(D)} and supp(D) is the support of D. 

Lemma 1 states a general result for G and Fi when i = 1, …, L. We now consider 

some special examples of G and Fi. For β ∈ R+, we define L(H, β) as the class of all li-

near functions f∈L(H) with || f || ≦ β. A bound can be obtained for the covering number 

of L(H, β) with respect to E, n and η, provided that E is a bounded subset of H (see, for 

example, Bartlett and Shawe-Taylor, 1988). 

Lemma 2. Let ρ, β, and η ∈ R+ and let n∈N. Consider any E ⊆ H  with || z || ≦ ρ for 

every z ∈ E. Then, there is a constant c such that  

2 2
2

2log ( ( ) , ) logN E n c nρ ββ η
η

, , , ≤ .HL  

We also define BL(Rd) as the class of partition functions associated with binary trees 

with L leaves. Clearly, BL(Rd) ⊆ PL(Rd). The following lemma provides a bound on the 

nth shatter coefficient of BL(Rd). 

Lemma 3. Let d, n, and L ∈ N. Then, 

2log ( ( ) ) log( )d
LV n L dnL, ≤ .RB  

Proof. Consider any n-element subset S ⊆ Rd . The goal is to cut S into L parts. Initially, 

there is only one part, which is S. We perform the cut operation recursively. Each time, 

we choose a part of S and cut it into two. To do so, we pick one of d dimensions and one 

of at most n-1 cutting hyperplanes on that dimension. Thus, there are at most d(n-1)(L-1) 

≤ dnL ways to perform one cut operation. To obtain L parts, we repeat the cut operation 

L-1 times; hence, the number of possible partitions is at most (dnL)L-1 ≤ (dnL)L. Finally, 

there are L! ways to order the L parts of each partition, yielding the following result: 

 
2( ( ) ) ( ) ( ) ( )d L L

LV n dnL L dnL, ≤ ⋅ ! ≤ .RB                              ■ 

From the above three lemmas, we immediately derive the following theorem.  

Theorem 1.  Let ρ and βi ∈ R+, 1 ≤ i ≤ L, γ = (γ1,…, γL) ∈ (R+)L, f = (f1, …, fL) ∈ L(H, 

β1)×…×L(H, βL), and π ∈ BL(Rd). For any probability distribution D on Rd×{-1, 1}, if 
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the samples in Xn are drawn at random based on D such that ||Φ(x)|| ≦ ρ for (x, y) ∈ 

supp(D), then, with probability 1-δ, the generalization error of sign(fπ) with mg(fπ, S) ≧ 

γ  will be at most 

2 2
2 2

21
log log( ) log(1 )L i

i
i

c n L dnL
n

ρ β δ
γ=

 
+ + / , 

 
∑  

for some constant c. 

4.2 Soft Margin Bounds 

Note that Theorem 1 works in the case where the training data Xn can be separated 

with a margin vector γ. If the data is non-separable or noisy, we need to consider the no-

tion of a soft margin (Cristianini and Shawe-Taylor 2000).  

Definition 4. Let f = (f1, …, fL) ∈ (L(H))L, π ∈ PL(Rd), γ = (γ1,…, γL) ∈ (R+)L,  and S ⊆ 

Rd×{-1, 1}. For 1 ≦ i ≦ L, let {(x, y)∈Xn: (xi,1, yi,1), …, ( , ,,
i ii n i nyx )} for some ni∈N. For 

1 ≦ i ≦ L and 1 ≦ j ≦ ni,, let 

max(0 ( ( )))i j i i j i i jy fξ γ, , ,= , − ⋅ Φ .x  

The vector ξi = (ξi,1, …, , ii nξ ) is called the margin slack vector of if  with respect to π and 

γi over Xn for 1 ≦ i ≦ L. 

To find the bound for the generalization error in the case of a soft margin, we follow 

Shawe-Taylor and Cristianini (1999 and 2002). Let βi ∈ R+ for 1 ≦ i ≦ L, f = (f1, …, fL) 

∈ L(H, β1)×…×L(H, βL), π ∈ PL(Rd), γ = (γ1,…, γL) ∈ (R+)L; and let  ξi = (ξi,1,…, , ii nξ ) 

be the slack margin vector of if  with respect to π and γi over Xn for 1 ≦ i ≦ L. In addi-

tion, we assume that ||Φ(x)|| ≦ ρ for (x, y) ∈ supp(D). We want to construct a space Ĥ 

that has a higher dimension than H and also form linear functions on Ĥ that have desira-

ble margins. For this purpose, we introduce the inner product space 

I(H) = {f:  f: H→R and f is non-zero on a finite number of inputs}, 
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where , ( ) ( )
z

f g f z g z= ∑  for f and g ∈ T(H). Let 

ˆ ( )= ×H H HI . 

Since I(H) is an inner product space, each of its elements defines a linear function on 

I(H). Hence, for f ∈ L(H) and g, h ∈I(H), the function (f, g): Ĥ →R, defined by 

( , )( , ) ( ) ,f g z h f z g h= + , 

is a linear function. Now, for 1 ≦ i ≦ L. we define gi ∈ I(H) by 

,, , ( )1
,i

i j

n
i i j i jj

g yξ δΦ=
= ⋅ ⋅∑ x  

where 

1     if ',
( ')

0     otherwise.z

z z
zδ

=
= 


 

We also define ˆ ˆ:if →H R  by 

ˆ ( / ).i i if f g ρ= ,  

Since fi ∈ L(H, βi), there exists wi ∈ H with || wi || ≦ βi such that fi(z) ,iw z= . It follows 

that for ˆˆ ,z ∈ H  

ˆ ˆˆ( ) ,ˆ iif z zw= ,  

where ( )ˆ i i iw gw ρ= , / , and 

2 2 2 2 2 2 2|| || || || || || || || .ˆ i i i i iww ξ ρ β ξ ρ≤ + / ≤ + /  

Therefore, ˆ ˆˆ( , ),i if β∈ HL  where 2 2 2ˆ || || .i i iβ β ξ ρ= + /  We now define ˆ:ρτ →H H  by 

( ) ( , ).zz zρτ ρ δ= ⋅  

Then, for  (xi,j, yi,j)  ∈ Xn,  
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ˆ ( ( ( ))) ( ( )) ( )

( ( ))

 

i j i i j i j i i j i j i j i j

i j i i j i j

i

y f y f y y
y f

ρτ ξ

ξ

γ

, , , , , , ,

, , ,

⋅ Φ = ⋅ Φ + ⋅ ⋅

= ⋅ Φ +

≥ .

x x
x  

Let 

,ρτΨ = Φ  

1̂̂
ˆ ( , , ),Lf f=f   and 

ˆˆ ( ) ( ( )),ifπ = Ψx xf  

where i = π(x). From the above discussion, f̂  has a margin (γ1, …, γL) with respect to 

π on Xn. Also, for (x, y) ∈ supp(D), 

2 2 2 2
( )|| ( ) ||  || ( ) || || || 2ρδ ρΦΨ ≤ Φ + ≤ .xx x  

Finally, we observe that, for any (x, y) ∉ Xn, sign(fπ) = ˆ( ( ))sign πf x ; therefore, 

sign(fπ) and ˆ( )sign πf  have the same generalization error on inputs that do not fall within 

nX . However, it is possible that sign(fπ) will make more mistakes on Xn, and thus has a 

larger generalization error over D than ˆ( )sign πf . As suggested by Shaw-Taylor and Cris-

tianini (2002), this can be handled by modifying sign(fπ) on the misclassified elements in 

Xn. We call this new function the Xn-filtered version of sign(fπ). 

Now we can apply Theorem 1, with the space H replaced by Ĥ and the mapping Φ 

replaced by Ψ, to obtain a bound on the generalization error of ˆ( )sign πf , but with the 

quantity ρ 2β 2/γ 2 replaced by 

2 2 2 2 2 2 2

2 2

2 ( || || ) 2( || || )ρ β ξ ρ ρ β ξ
γ γ

+ / +
= .i i i i

i i

 

Since βi and γi   are interdependent quantities, 1 ≤ i ≤ L, we can fix one of them and 

seek to optimize the other. In the formulation of the SVM optimization problem, the ob-
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jective is set to minimize βi under the constraint that γi = 1 for 1 ≤ i ≤ L. Under this con-

vention, we obtain the following theorem. 

Theorem 2. Let ρ ∈ R+, f ∈ L(H1, β1)×…×L(HL, βL), and π ∈ BL(Rd). Consider any 

probability distribution D on Rd×{-1, 1} such that ||Φ(x)|| ≦ ρ for (x, y) ∈ supp(D). If 

the samples in Xn are drawn at random based on D, then, with probability 1-δ, the 

generalization error of the Xn-filtered version of sign(fπ) will be at most  

( )( )2 2 2 2 2
1

|| || log log( ) log(1 )L
i ii

c n L dnL
n

ρ β δ
=

+ + + / ,∑ ξ                      (2) 

for some constant c, where for 1 ≤ i ≤ L, ξi  is the margin slack vector of fi with respect to 

π and γi over Xn. 

4.3 A Numerical Investigation 

Recall that a TD classifier is associated with a tree with L leaves and each leaf is as-

sociated with an lSVM. If the tree has only one leaf (i.e., L = 1), then the TD classifier 

will be reduced to an SVM classifier, which has the following generalization error bound 

( )( )2 2 2 2|| || log log(1 )c n
n

ρ β ξ δ+ + /                                     (3) 

(cf. Cristianini and Shawe-Taylor, 2000). 

Let us compare the terms that appear in parentheses in (2) and (3).  The second term 

Llog(dnL2) in (2) is the shatter coefficient of the partition function π  associated with a 

binary tree. We claim that (2) is dominated by the first term, which is the sum of L quan-

tities associated with L leaves of a binary tree, as opposed to the single quantity in (3). 

Moreover, the first term in (2) is comparable to the corresponding quantity in (3). The 

above two claims are confirmed by the following experiment results. 

To validate the first claim, we compared the two leading terms that appear in paren-

theses in (2).  The first term is ( )2 2 2 2
1 1

|| || logL
i ii

T nρ β
=

= +∑ ξ  and the second term is T2 = 

Llog(dnL2). The results, shown in Table 16, confirm the claim that T1 far exceeds T2 and 

(2) is dominated by T1. Note that we compute T1 under the following assumptions. (i) 

When the data set contains more than two labels, T1 is taken as the average of such quan-



CHANG, GUO, LIN, AND LU 

26 

 

tities over all classifiers. (ii) The value of ρ is always 1 when RBF kernels are involved. 

(iii) The value of || ξ ||2   is obtained from the solution to the quadratic programming op-

timization problem. Further details can be found in Cristianini and Shawe-Taylor (2000), 

Section 6.1.2. 

 

Data Set 1A1 1AO 
T1 T2 T1 T2 

PHW 1,699 55 5,769 55 
Shuttle 1,152,495 110 2,756,183 110 

Census Income 101,177 481 101,177 481 
Poker 16,403 194 62,638 194 

KDD CUP 10% 1,297,678 287  57,426 287  

Table 16. The values of two leading terms T1 and T2 that appear in the generalization 
error bounds for TD classifiers. Training types = 1A1 and 1AO. 

To validate the second claim, we compare ( )2 2 2
1

|| ||L
i ii

R ρ β
=

= +∑ ξ  and S =  ρ2β2 + 

|| ξ ||2, which are derived, respectively, from the first terms in the generalization error 

bounds for TD and gSVM classifiers (i.e., in (2) and (3)) with the common factor log2n 

removed from them. To make a meaningful comparison between R and S, both classifiers 

have to take the same (C, γ) values, which we specify as the optimal values for gSVM. 

As a result, for some data sets, we had to train new TD classifiers, using the same de-

composition schemes (i.e., the same binary trees and same ceiling sizes) as the old clas-

sifiers, but different (C, γ) values. Table 17 shows the values of S, R, and R/L, derived 

from two data sets. Note that “Letter” is not included in the table because the TD classifi-

er using the designated values of (C, γ) would be the same as the gSVM for this data set. 

It is clear that the values of R are as small (less than 1,500) as, or of the same order of 

magnitude as, those of the corresponding S. In fact, S can be viewed as the slack-to-

margin ratio and R as the sum of such ratios. The results show that each lSVM classifier 

generates smaller slack-to-margin ratios than the corresponding gSVM classifier, while 

the sum of lSVM ratios is comparable to the corresponding gSVM ratio. This explains 

why the test accuracy rates of TD classifiers are comparable to those of gSVM classifiers. 
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Data Set 1A1 1AO 
S R R/L S R R/L 

PHW 74 133 17 326  450 56 
Shuttle 114,786 75,630 5,402 593,967  180,867 12,919 

Census Income 8,211 6,800 128 8,211 6,800 128 
Poker 464 1,143 48 2,899 4,366 182 

KDD CUP 10% 100,227  70,796 2,212 5,089  3,133 98 

Table 17. The values of S and R, which appear in the generalization error bound for the 
gSVM and the TD classifiers respectively, and the values of R/L. Training types = 1A1 
and 1AO. 

5. Conclusion 

We have proposed a method that uses a binary tree to decompose a data space and 

trains an lSVM on each of the decomposed regions. The resultant TD classifier can be 

constructed in a much shorter time than the corresponding gSVM classifier, and still 

achieve comparable accuracy rates to the latter. We also provide a generalization error 

bound for the TD classifier. Using some data sets to compute the theoretical bounds for 

gSVM and TD classifiers, we find that TD classifiers generate comparable error bounds 

than gSVM classifiers. This finding explains why TD classifiers can achieve more or less 

the same accuracy rates as gSVM classifiers, even though the training times are small 

relative to the gSVM training times. 
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Appendix A. Proof of Lemma 1 

Let G ⊆ PL(Rd), γ = (γ1,…, γL) ∈ (R+)L, and Fi ⊆ R(H) for i = 1, …, L. The samples 

in Xn are drawn at random based on the distribution D . 

Our goal is to find an upper bound for the probability of the following event:  

 A1: there exist π ∈ G and f = (f1,…, fL) ∈ F1×…×FL such that mg(fπ, Xn) ≧ γ and 

err(fπ, D)>ε, where err(fπ, D) is the probability that sign(fπ(x)) ≠ y with (x, y) will be 

sampled according to D. 

We relate event A1 to another event A2 in which an additional set ˆ
nX  of n indepen-

dent samples are drawn at random based on D:  

 A2: there exist  π ∈ G and f = (f1,…, fL) ∈ F1×…×FL such that mg(fπ, Xn) ≧ γ and 

ˆ( , ) / 2,nerr Xπ ε>f  where ˆˆ( , )  |{( , ) : ( ( )) } | /n i nerr X y X sign y nπ π= ∈ ≠f x f x . 

By a standard argument (cf. Vapnik 1998), one can show that  

ˆ1 2,Pr A 2 Pr A
n n nX X X

   
      ≤ ⋅ .  

The next step involves finding a bound for ˆ 2,Pr [A ].
n nX X  To do this, we observe that 

ˆ 2,Pr [A ]
n nX X  equals the probability of another event, A3, where a set X2n of 2n samples are 

drawn at random based on D, and X2n is further divided randomly into two disjoint parts 

of equal size:  W1 and W2. 

 A3: there exist π ∈ G and f = (f1,…, fL) ∈ F1×…×FL such that mg(fπ, W1) ≧ γ  and 

err(fπ, W2) > ε/2. 

Let G(X2n) be the family of functions of G restricted to the domain {x: (x, y) ∈ X2n}; 

and for π ∈ G(X2n), let 

(1) ( )
2 2 1 2 1 2( ( )) ( ( ) 2) ( ( ) 2)L

n n L n LB X X Xπ γ γ/ Φ = ,Φ , / ×...× ,Φ , / ,γ C F C F  
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where Φ( ( )
2

i
nX ) = {Φ(x): (x, y) ∈ X2n, π(x) = i}. For g = (g1, …, gL) ∈ / 2Bπ

γ (Φ(X2n)), let 

gπ(x) = gi(x) for x ∈ Φ( ( )
2

i
nX ) for 1≦i ≦ L. Then, for π ∈ G(X2n) and f = (f1, …, fn) ∈ 

F1×…×FL, there exists g = (g1, …, gL) ∈ / 2Bπ
γ (Φ(X2n)) such that for any (x, y) ∈ Xn, if π(x) 

= i, then  

( ( )) ( ( )) 2i i if g γ| Φ − Φ |≤ / .x x  

For such fπ and gπ, mg(fπ, W1)≧γ implies that mg(gπ, W1)≧γ/2; and err(fπ, W2)≧ε/2 im-

plies that errγ/2(gπ, W2)≧ε/2, where errγ/2(gπ, W2) is the proportion of (x, y) in W2 for 

which gi(x) < γi/2 if π(x) = i. Therefore, the probability of the event A3 cannot exceed that 

of the following event A4. 

 A4: there exist π ∈ G and g ∈ / 2Bπ
γ (Φ(X2n))  such that mg(gπ, W1) ≧ γ/2 and 

errγ/2(gπ, W2) ≧ ε/2. 

For any X2n, π, and g, we have 

1 2

2 ( 2) ( 2)
2

, 1 / 2 2
2

Pr ( , ) / 2 and ( , ) / 2 2
2

n n n
n n

W W
n

n

nmg W err W
n

ε ε
π π ε

γ ε

 − /  /
  − / 

 
 
 
 

  ≥ ≥ ≤ ≤ = .    
gγg  

Therefore, we have 

[ ] [ ]
2 1 2 2 1 2 2 2 / 2

/ 2
, , 4 , 4 ( )

Pr A E Pr A E 2 .
n n n n

n
X W W X W W X X g Bπ

ε
π

  −
  ∈ ∈ 

 = ≤   ∑ ∑
γG

 

Since  | X2n | = 2n, | G(X2n) | ≦ V(G,2n). Moreover,  

( ) ( )
/ 2 2 2 2

1 1 1

| ( ) | | ( 2) | ( ,| | 2) ( , 2 2),i i
n i n i i n i i i

i L i L i L

B X X N E X N E nπ γ γ γ
≤ ≤ ≤ ≤ ≤ ≤

= , , / ≤ , , / ≤ , , /∏ ∏ ∏γ C F F F  

where E = {Φ(x): (x, y) ∈ supp(D)}. As a result, we have 

2 1 2

2
1 , , 4

1

Pr A 2 Pr A 2 ( 2 ) ( , 2 2) 2 .
n n

n
X X W W i i

i L

V n N E n εγ − /   
      

≤ ≤

 
≤ ⋅ ≤ ⋅ , ⋅ , , / ⋅ 

 
∏G F  

The last quantity is δ, if 
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1

2 log ( 2 ) log ( , , 2 , / 2) log(2 )i i
i L

V n N E n
n

ε γ δ
≤ ≤

 = , + + / . 
 

∑G F  

This proves the lemma. 
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