R 5T B
& At 4 515 5

Institute of Information Science, Academia Sinica « Taipei, Taiwan, ROC

TR-11S-09-006

Data-bandwidth-aware Job Scheduling
Techniques in Distributed Systems

De-Yu Chen, Pangfeng Liu, Jan-Jan Wu

June 17, 2009 || Technical Report No. TR-IIS-09-006
http:/ /www. iis.sinica.edu.tw/page/library /LIB/ TechReport/ tr2009/ tr09.html

Data-bandwidth-awar e Job Scheduling Techniquesin Distributed Systems

De-Yu Chen
Department of Computer Science and Information Engineering
National Taiwan University
Taipel, Taiwan
r96083@csie.ntu.edu.tw

Pangfeng Liu

Department of Computer Science and Information Engineering
Graduate Institute of Networking and Multimedia

National Taiwan University
Taipei, Taiwan

Abstract

This paper introducestechniquesin scheduling jobson a
master/wor kers platform where the bandwidth is shared by
all workers. Thejobs areindependent and each job requires
a fixed amount of bandwidth to download input data be-
fore execution. The master can communicate with multiple
workers simultaneously, provided that the bandwidth used
by the master and the workers do not exceed their band-
width limits.

We proposed two models for this limited-bandwidth
problem. If the data transfer cannot be interrupted, then
we prove that the scheduling problem is NP-complete. Nev-
ertheless we propose heuristic algorithms and experimen-
tally test their performance. If the data transfer can be in-
terrupted, we propose an algorithm that produces optimal
makespan. The algorithm is based on a binary search on
the completion time, and an efficient feasibility verification
process for a given completion time.

1 Introduction

Grid computing is becoming more and more popular
in both academic and industry recently. In grid systems,
distributed heterogeneous resources are connected through
local and/or wide area networks. By utilizing the vast
amount of computing and storage resources in grid sys-
tems, many large scale resource-demanding problems can
be solved within a reasonable amount of time. For ex-
ample, the Worldwide Large Hadron Collider Computing
Grid [9] builds and maintains a data storage and analysis

Jan-Jan Wu
Institute of Information Science
Academia Sinica
Nankang, Taiwan

infrastructure for the entire high energy physics commu-
nity. Other organizations like the Biomedical Informatics
Research Network [5] provides a platform for biomedical
scientist to share data and computing resources.

Many applications running on grids are for research pur-
pose, and most of them take large amount of input data and
perform complex computation to produce useful informa-
tion. However, grid systems are often built across the wide
area network and often consist of many sites distributed
around the world. The cost to transfer input data thus plays
an important rule to the overall efficiency of the application.
Due to the heterogeneous nature of the wide area network,
the computing sites in grid systems often differ from each
other on their computing and communication capabilities.
As a result, scheduling jobs in grid systems is aways an
important issue.

In this paper, we concentrate on scheduling jobs on a
master/workers platform, where all jobs are initially placed
on the master processor and need to be dispatched to
workers for execution. We adopt the bounded multi-port
model [8]. In this model, the master can communicate with
multiple workers simultaneously, provided that the band-
width used by the master and the workers do not exceed
their bandwidth limits.

The rest of the paper is organized as follows. In Sec-
tion 2, we begin by reviewing related works on scheduling
in system in which computing nodes have communication
bandwidth constraints. In Section 3, we describe our sys-
tem model. We describe two variations of our problem in
detail in Section 4 and Section 5. Finally, we conclude our
worksin Section 6.

2 Reated Works

Scheduling computational tasks on a given set of proces-
sorsisakey issuefor parallel and distributed systems. Gen-
era scheduling problems on multi-processor system has
been showed to be NP-complete [11]. Even if there are
only two processors with identical computing capacity and
jobs do not share data, the problem remains NP-complete
becauseit is a special case of 2-Partition problem [7].

Most applications deployed in grid systems require in-
put data [6, 2]. The Divisible Load Scheduling model [3]
assumes that the work for an application can be arbitrarily
divided into any number of “chunks’, where each chunk
consists of some amount of input data and some compu-
tation to perform on this data. The problem is proved to
be NP-complete in [12] by Yang et. a. (??? result from
Divisible Load Scheduling here) In [4], Beaumont et. al.
also targeted the bounded multi-port model. The main dif-
ference between our works and the work of Beaumont et.
al. [4] is that they adopted the divisible load model, where
both work and bandwidth can be divided arbitrarily, while
in our model the tasks are not divisible and the bandwidth
can only be divided into pieces of unit sizes. (??? is this
correct?)

Bags-of-tasks [1] is another popular model for schedul-
ing tasks on paralel and distributed systems. In Bags
of-tasks model, an application is a collection of indepen-
dent and identical tasks. In [10], Legrand et. a. stud-
ied the scheduling of bags-of-tasks on master-worker plat-
forms. They aso assumed a multi-port model whichissim-
ilar to our communication model. However, in their model
the bandwidth of the master is shared fairly by all ongoing
communications. On the other hand we focus on allocating
bandwidth for tasks so that the the entire execution time is
minimized in our model.

Master/workers model is fregently adopted for schedul-
ing tasks on grid systems.

3 System Model

We consider a grid system as a collection of a master
processor M, and n workers processors My, ..., M,. All
the processorsare connected by alogical star topology, with
the master in the center.

Each processor M; has a communication bandwidth
bound B;, which limits the bandwidth it can use to
send/receive data to/from other processors, and processors
may have different communication bandwidth bounds. We
assume that all B; are integers so that we can divide the
bandwidth into pieces of unit sizes. In addition we assume
that the master can communicate with multiple workers si-
multaneoudly, as long as the total communication band-

width used by the master does not exceed the master’s band-
width bound By.

3.1 Jobs

There are n jobs to process and worker M; will process
job J;, for i from 1 to n. A task is for processor to per-
form computations on its input data. Initially all jobs are
placed on the master and will be dispatched to workers for
computation.

Job J; hastwo integer attributes— input datasize D; and
computationtimeT;. Thedatasize D, is measured in terms
of the amount of data that can be sent using one unit of
bandwidth in one unit of time. At any given time step the
communication bandwidth used by the master to send data
to worker J; can be an arbitrary integer not exceeding the
bound B;. For example, if D; is 6, then job D; can finish
its communication by alocating two units of bandwidth in
the current unit time step, and four units of bandwidthin the
next unit time step, assuming its communication bandwidth
bound M is at least four.

The computation time 7T; is measured in terms of unit
time steps for J; to complete its computing. Note that a
worker hasto wait for all of itsinput data before it can start
ajob, and after the worker collects all of its input data, the
computation will finish in T; unit time steps, regardless the
situation on other processors. Note that our model can also
apply to systems in which processors have different com-
putation abilities since the time T; is defined as the time
for M; to execute J;. We also assume that the master pro-
cessor does not perform any computation because it is only
responsible for sending input data to workers.

3.2 Problem Definition

A bandwidth block b;; isthe i-th unit bandwidth the mas-
ter can provide at time t, and there are M, of them for ev-
ery time step. We can think of these “blocks’ as commaodi-
ties that the master can provide M, of them per time step.
Pleaserefer for Figure 1 for anillustration. A schedule ¥ is
afunction that maps each bandwidth block to ajob. In other
words, a schedule determines how the master allocates its
communication bandwidth among jobs at every time step.

Given a schedule ¥ we can determine ready time and
completion time for al jobs. A job J; isready at time k
when it has accumul ated enough bandwidth for its data size
Dy, i.e, till time &k the mapping function ¥ has mapped D;
bandwidth blocks for J;. Therefore the ready time of ajob
J; under ¥ isthe earliest timewhen job J; isready. We use
R;(¥) to denote the ready time of J; under . A worker
begins processing its job immediately after the job is ready.
Consequently the completion time of job J; is the sum of

its ready time R;(¥) and its computation time 7;. We use
C; () to denote the completion time of J; under V.

The makespan of a schedule is defined as the maximum
completion time of all jobs, denoted by C'(¥). Our godl is
to find a schedul e that minimizesthe makespan. This sched-
ule will be refereed to as as the optimal schedule, denoted
by U*. We also use C* to denote this minimum possible
makespan, or optimal makespan.

Figure 1 illustrates an example of schedule. Each col-
ored blocks indicates the bandwidth blocks allocated to a
job, and Each dotted lines at the end of a colored block
represents the computation phases of that job. For exam-
ple, at the first time step the master allocates two blocks
to Jp, two blocks to J,, and one block to J;. At time 6
J1 becomes ready since the master has aready allocated
D; = 12 blocksto it, so that .J; can start computing. The
computing ends at time 11 since the computing time 77 is
5, and the ready time R, (V) is 6, so the completion time
Cy(P)is11.

0 1 2 3 4 5 6 7 8 9 10 11
Figure 1. An example of schedule

We formally define the problem Limited-Bandwidth-
Scheduling (LBS) asfollows.

Definition 1 (LBS). Given the bandwidth bounds of a mas-
ter processor M, and n worker processors My, ..., M,, a
set of n jobs J;, and the data size D, and computing time
T;, find a schedule ¥ that minimizes the makespan.

A job J; isinterrupted in aschedule VU if there exist time
steps t; < to < t3 such that ¥ assign bandwidth blocks
to J; at time ¢; and t3, but none at time ¢5. In practice
certain applications do not allow data transfer to be inter-
rupted, therefore we formulate the uninterrupted variation
of Limited-Bandwidth-Scheduling.

Definition 2 (LBS-Uninterruptible). Given the bandwidth
bounds of a master processor M, and n worker processors
My, ..., M,, asetof njobs J;, and the data size D; and
computing time T}, find a schedule ¥ that minimizes the
makespan and no job was interrupted.

3.3 Notations

Table 1 summarizes the notationsin our system model.

Notation Description
Mo the master processor
M; 1-th worker processor
Bo outgoing bandwidth bound of the master
B; incoming bandwidth bound of i-th worker
Ji job for i-th worker
D; input data size of J;
T; computation time of J;
v aschedule
o an optimal schedule
bij i-th unit of communication bandwidth of the master in j-th time slot
R;(¥) ready timeof J; under ¥
Ci(¥) completiontimeof J; under ¥
(o) makespan of ¥

cr the optimal makespan

Table 1. Notations used in the system model

4 Scheduling with Uninterruptible Commu-
nication

In this section, we study a variation of limited-
bandwidth-scheduling in which the data transfer of jobs
cannot be interrupted. We refer to this problem as LBS-
Uninterruptible. We first prove that LBS-Uninterruptible
is NP-complete, then we describe a specia case of LBS-
Uninterruptible in which an optimal solution can be easily
found. Finally, we propose heuristic algorithms that can
find efficient schedulesfor LBS-Uninterruptible.

4.1 NP-Completeness

Theorem 1. The uninterruptible limited-bandwidth-
scheduling problem is NP-complete.

Proof. It is trivial that uninterruptible limited-bandwidth-
scheduling problem isin NP since a non-deterministic Tur-
ing machine can easily determine the mapping function, and
verify the answer in polynomial time.

We prove that uninterruptible limited-bandwidth-
scheduling problem is NP-hard by reducing from
2-Partition [7]. Let I = (a;)1<i<n be an instance of
2-Partition, such that >~ a; = 2A. A solution to this
instance is a partition of the a;’s into two groups G; and
Gosuchthat >, ai = > cq, @i = A. We build an
instance I’ of LBS-Uninterruptible with two workers and n
jObS, WhereB1 =By=1,By=2,D; = a;, andﬂ =0.

If thereisasolution for the 2-Partition instance 7, we can
easily construct a schedule for LBS-Uninterruptible I’ with
makespan of A. We reserve one row of bandwidth blocks
for jobs in G, and the other row of bandwidth blocks for
jobsin G5. The job sequence in the first row is arbitrarily
taken from G'; as long as consecutive blocks are allocated
to the same job. We repeat this process for the second row

and we have a solution for LBS-Uninterruptible problem
instance I’

We observethat since the bandwidth bound for every job
is1, and thedatatransfer cannot beinterrupted, we can allo-
cateatimeinterval of length D, in which the schedule maps
exactly one block to J; for every time step in this interval.
Also notice that master must allocates exactly two blocksto
jobsin order to meet the time bound.

Now if we haveasolution for LBS-Uninterruptible prob-
lem instance I’, we can derive a solution for the 2-Partition
instance I. We derive this by mapping the time interval
windows of jobsto either “upper” or “lower” row of band-
width blocks. Theruleisthat if two windows overlap, then
they must be assigned differently as “upper” and “lower”.
We first arbitrarily pick one of the two jobs that starts at
time O as “upper”, and the other as “lower”. Without lose
of generality we assume that the “upper” job J has alonger
computing time. Now we assign those windows that over-
lap with J as“lower”. Eventually one such job .J’ will have
alarger ready time than J, then we repeat this process on
J’, and assign every jobs that overlap with .J’ as “upper”.
Since every job must be awindow and thereisno “hole” in
the schedul e, we can repeat this processuntil all jobsare as-
signed. Thiswill be asolution for the 2-Partition instance I
since the sums of window lengths from both the upper and
lower rows are both A. O

4.2 TUnlimited Model

Despite the NP-completeness of generd LBS
Uninterruptible problem, we can still find optimal
solutions for LBS-Uninterruptible in special cases. For
example, we will consider a special case in which the
communication bandwidth bound of each worker is at least
the communication bandwidth bound of the master, and
derive the optimal solution. We will refer to this model as
unlimited model.

We now define a sequence schedule in the unlimited
model. Since the number of blocksthat can be assigned to a
job per time step is only limited to the bandwidth bound of
the master, we can define a special class of scheduling that
allocates all blocks of every time step to the first job until
it has al the data, then allocates blocks to the second job,
and so on. Therefore the scheduling can be described as
a sequence of jobs, and the master will alocate blocks ac-
cording to this sequence. Note that the sequence scheduling
is possible in the unlimited model since there is no band-
width bound placed on jobs.

We establish the following lemma, which states that we
can always find an optimal schedule that is also a sequence
schedule.

Lemma 1. Given an problem instance in the unlimited

LBS-Uninterruptible model, there exists an optimal sched-
ule that is also a sequence schedule.

Proof. Let U* be an optimal schedule. We will convert ¥*
into a sequence schedul e without increasing the makespan.

The transformation works as follow. We first sort jobs
according to their ready time under the schedule ¥*, and
denote the job that has i-th earliest ready time as J;. If the
master allocates bandwidth blocks to jobs other than J; be-
fore J; isready (at time R;(¥*)), we switch these blocks
with those allocated to J; at R, (¥™*). Notethat thiswill not
delay the ready time of J; sincetheblocksit hasat R;(¥*))
will only be moved earlier in time. On the other hand, let
J; be the job that was allocated blocks before R; (U*), the
ready time of J; under R;(¥*). This switch will not de-
lay the ready time of J; either since the ready time of J;
is at least R1(¥*), by the definition that .J; has the earli-
est ready time. We repeat the switching until no block was
allocated to jobs other than J; before J; isready. After fin-
ishing moving all blocks of job J; forward we can move
the blocks of J,, and so on. Eventually we have a sequence
schedule. Since we did not delay ready time for any job
during the transformation, the makespan will not increase
and the resulting sequence scheduleis also optimal. O

With Lemma 1 in place we know that we can construct
an optimal schedule for the unlimited model by focusing on
only sequence schedules. That is we want to find a good
sequence of jobs for the master to transfer datato. The fol-
lowing theorem establishes the optimal job sequence.

Theorem 2. Given an instance of LBS-Uninterruptible
in the unlimited model. the sequence schedule in which
the master allocates blocks to jobs in the order of non-
increasing computation time, has the minimum makespan.

Proof. According to Lemma 1, there exist an optimal
schedule ¥* where the master sends the jobs as a sequence
7. Let J., be the i-th job in this sequence 7. We want
to argue that if there are two consecutive jobs in 7 that
are “out of order”, i.e. the job with longer computing ap-
pears later in 7, then we can switch them without increas-
ing the makespan. If this is true then we can repeatedly
switch those jobs that are out of order in 7, and derive a
sequence schedule ¥’ that is the same as the schedule that
follows the computing time order, and without increasing
the makespan. Since U* is already an optimal schedule, ¥’
isalso an optimal schedule.

Let J,, and J,, , betwo successive jobsin 7, and J,
hasashorter computationtimethan J,, ,,i.e. T, < Tr,, ;.
Exchanging them in the allocation will not increase the
makespan, as suggested by the following inequality. Note
that ¥’ denotes the new schedule after exchanging J;, and
J

Ti41"

max(Cr, (¥7), Cr, ., (V7)))
= maX(Rﬂi (\I/*) + Tﬂ'i? R7T1‘+1 (\I/*) + T7Ti+1) (2)
= Rm+1 (\Ij*) + Tﬂ'qz+1 ©)

Y

maX(RmH (UF) + T, Ry, (\IJ/) + T7T'i+1) (4)
max (R, (\I/I) + T Ry (\IJ/) + Tm+1) 5
= InaX(Cﬂ-i (\I//)v C7T1‘+1 (\Iﬂ)) (6)

Equation 3 holds because J;,,, has a later ready time
and a longer execution time than J;, in ¥*. Inequality 4
holds because T, , islonger than T’,, and the ready time
of Jr,,, was moved earlier in ¥'. Finally it is easy to see
that the ready time of J,, , in U* isthe same as the ready
timeof J, inV',i.e, R, (¥*) = R, (¥'), thereforewe

have Equation 5. O

i+1

4.3 Heuristic Algorithms

In this section, we propose heuristic algorithms that
find good schedules for LBS-Uninterruptible problem. The
heuristic is inspired by the optimal algorithm for unlimited
model from Theorem 2. We first sort the jobs in according
to agiven priority metric, then construct a schedule by allo-
cating as many bandwidth blocks as possible to the job that
has the highest priority, until all of it datais avail and it is
ready for execution. By adopting this greedy scheme, vari-
ous schedules can be constructed based on different priority
metric. For example the optimal agorithm for unlimited
model uses non-decreasing computing time order.

4.3.1 Non-Increasing T;

The first priority metric we tested is the same non-
increasing computing time order we used in Section 4.2 to
construct an optimal schedule for the unlimited model. A
job with a long computation time is likely to has a large
completion time and thus is more likely to increase the
makespan, therefore by it ready as early as possible might
be helpful in reducing makespan.

4.3.2 Non-Increasing D;/B; Ratio

The general case of LBS-Uninterruptible differs from the
unlimited model in Section 4.2 in the bandwidth bounds of
the workers. If ajob hasalarge D;/B; rétio, i.e. it requires
alarge amount of data but it has only limited bandwidth to
download them, then it is very likely its ready time will be
delayed. As aresult we should schedule such jobs as early
as possible.

4.3.3 Non-Increasing D;/B; + T;

The total processing time of a job is the summation of its
data downloading time and computing time, and the data
downloading time of J; isabout D,/ B; if the bandwidthis
not shared by other jobs. D;/B; + T; thus may be a good
approximation for the total processing time of J;, and ajob
with larger total processing time should be scheduled earlier
in order to reduce the makespan. ??? How?

4.4 Performance Evaluation

In this section we compare the performances of the
heuristics. We run the heuristics on problem sizes for
which we can use exhaustive search to compute the opti-
mal makespans. Then we compute the performance of the
heuristic algorithm against the optimal solution.

In thefirst set of experimentswe set the bandwidth limit
By = 10 for the master, and B;’srandomly from 1 to 10 for
the workers. For each job J;, we set the data requirement
D; randomly from 1 to 15 and the execution time T; ran-
domly from 1 to 10. Figure 2 showsthat by setting the pri-
ority metric to be non-increasing D,/ B; + T;, we can con-
struct schedules with almost optimal makespan, even when
the number of jobsisincreasing.

"non-increasing T, ——
non-increasing D/B;
non-increasing Dy/B+T; ------

Ratio of Relative Performance

Number of Jobs

Figure 2. Relative performances of the
heuristics.

In the second set of experimentswetry tighter bandwidth
boundsof the processors. In particular we set the bandwidth
limit By = 5 for the master and B; randomly from 1 to 5
for workers. Figure 3 shows that while the non-increasing
D;/B; + T; metric is still performs best, all heuristics per-
form worse than they did under larger bandwidth bounds as
in Figure 2.

"non-increasing T, —+—
non-increasing Dy/B;
non-increasing D/BFT, - x -

12

N
N
]

N

Ratio of Relative Performance

Number of Jobs

Figure 3. Relative performances of the
heuristics.

5 Scheduling with Interruptible Communi-
cation

in this section we study the general limited-bandwidth-
scheduling (LBS) problem. Unlike the uninterruptable ver-
sion we discussed in Section 4, now the the data transfers
of jobs can be interrupted. While uninterrupted version of
limited-bandwidth-scheduling is NP-Compl ete, we can find
optimal schedule for limited-bandwidth-scheduling if now
interruption in data transfer is allowed. We will first de-
scribe our algorithm in details, then prove that the schedule
constructed by the algorithm isindeed optimal.

5.1 The Algorithm

Our limited-bandwidth-scheduling algorithm works in
phases and each phase has two steps. In the first step we
“guess’ a completion time. In the second step, we verify
that the guessed completion time is feasible or not. By a
binary search on the completion time, where each phasein
our algorithm is a step in the binary search, we will be able
to find the minimum completion time while there till does
exist afeasible schedule.

5.1.1 Completion Time Guessing

We now describe the first step for each phase of the algo-
rithm — completion time guessing. Before actually allocat-
ing bandwidth blocks to jobs, we guess a completion time
C,; for the entire execution. Once we have a C; for our
schedule, the latest ready time L; for each job J; can be
derived as L; = Cy — T;. L; isthe deadline for job J; to
start execution, otherwise the completion time C; cannot be
accomplished. Figure 4 givesan illustration of C; and L;’s.

Ly Ly Ly Ly

Cy

T

By 3
T

e e

0

Figure 4. An illustration of C; and L;’s.

5.1.2 Feasibility Verification

Given the deadlines for the jobs to collect al the data and
start execution, we verify if we can allocate bandwidth to
jobs so that every job can meet its deadline. The main idea
of our bandwidth allocation processis to keep the allocated
bandwidth blocks as “flat” as possible at all time. That is,
we will use roughly the same amount of bandwidth at all
time.

We first determine the order of bandwidth alloca-
tion. Without lose of generality we assume that the jobs
Ji,...,J, areindexed according to a non-decreasing order
of their deadlines, i.e. L; < --- < L,. The agorithm
will first alocate bandwidth for the first job Jy, then for the
next job J,, and so on, until all jobs are allocated enough
bandwidth. If at any time the algorithm finds that it cannot
allocate enough bandwidth before the deadline of the cur-
rent job, it report failure and we know the current guessed
completiontime is not feasible.

We allocate bandwidth to the jobs as follows. For the
purpose of correctness proof we assume that the algorithm
allocates one bandwidth block at atime for ajob J; until it
gets enough bandwidth to transfer its input data. The algo-
rithm all ocates a bandwidth block b, to J; if the allocation
of b, setisfies the following three conditions.

e b, isnot yet allocated to any job.
e Theblock b, isearlierthan L;,i.e k < L;.

o Allocating b, to J; does not violate the bandwidth
constraint of J;, i.e. the number of blocks at time &
that have been allocated to job J; is ho more than the
bandwidth limit B; of job J;.

If no such bandwidth block can be found, then the al-
gorithm returns failure and we conclude that no feasible
schedule with completion time C; can be found. If there
are more than one bandwidth blocks which satisfy all of the
conditions, we choose the one with smallest j; among those
bandwidth blocks. If there are more than one bandwidth

blockswith the same smallest j, choose the one with small-
est k. In other words, we first allocate blocks in the row
with the minimum row index, and within each row we se-
lect blocksin increasing time order until the deadline or the
bandwidth constraint is violated. We will refer to thisalo-
cation as “min-row-first” method. Please refer to Figure 5
for an example.

Ly Ly Ly L G

By 3

0 1 2 3 4 5 6 7 8 9 10 11

Figure 5. An example of min-row-first
scheduling.

If we can allocate enough blocks for every job with the
min-row-first method, we have afeasible schedule. Thefea-
sibility of the resulting schedule can be easily checked since
we only alocate bandwidth blocks within the bandwidth
constraint and every job meets its data collection deadline.

If we cannot all ocate enough blocksfor any job using the
min-row-first method, we want to conclude that there will
be no feasible schedule under the current completion time
assumption. That is, we want to prove that the min-row-
first can find an optimal schedule for limited-bandwidth-
scheduling problem, if one does exist.

Theorem 3. There exists a feasible schedule ¥ with
makespan C (V) if and only if the min-row-first algorithm
return success with completion time set to C'().

Proof. We have already showed in Section 5.1.2 that the
schedule returned by our algorithm is always feasible, so
we only need to prove the “only if” part of the theorem by
showing that given an arbitrary schedule ¥ with makespan
C (), we can transform it into the schedule ¥’ return by
the min-row-first agorithm, when the completion time C,
issettobe C(¥).

An important observation in the block bandwidth model
is that there is no difference between blocks from the same
time step. Aslong as blocks are from the same time step, it
does not matter which block is allocated to which job. For
ease of explanation we assume that those allocated to jobs
with smallest job index will appear in rowswith smallest in-
dex. We will refer to this convention asthe early-job-lower-
row convention. Figure 6 illustrates the same schedule in
Figure 1 following this assumption. From now on we will
assume that all the scheduling will follow this convention.

By 3

0 1 2 3 4 5 6 7 8 9 10 11

Figure 6. A schedule that puts job with
smaller index into rows with smaller index
(early-job-lower-row convention)

We consider two schedules — ¥ and ¥/, where ¥ is

mime any feasible schedule for completion time C(¥), and ¥’ is

the schedul e produced by the min-row-first algorithm under
completion time C'(¥). We will show that we can always
convert ¥ into ¥’ without increasing the completion time.

We will convert the allocation one job at a time in or-
der as Jy, ..., J,, where we assume the jobs are indexed
according to a non-decreasing order of their deadlines, i.e.
Ly <--- < L,. Without lose of generality we assume that
we are converting blocks allocated to J;, and both sched-
ules follows the convention that smaller indexed jobs go to
smaller indexed rows.

We now focusonthe“first” block that wasallocated to J;
by ¥’ but was allocated to another job by ¥. We assumethat
thisblock isb,.;. Now consider the block that was allocated
to J; by W that hasthe largest row index, or the largest time
step if there are more than one block allocated to J; at that
row. Let this block be b,..-. We concludethat ' > r. That
is, block b, is a arow with alarger or equal index than
b+ since ¥’ isthe result of the min-row-first algorithm.

We consider those blocks at atime step that are assigned
tojobsother than Jy, ..., J; by ¥, and refer to them as free
blocks at that time step. Let S; be the set of free blocks at
time ¢t and S be the set of free blocks at time ¢’. Since r’
is no less than r, the number of free blocks at time step ¢
is at least one larger than the number of free blocksin time
step ¢, i.e. |Si| > |Sy| + 1. Thereason is that because
we follow the early-job-lower-row convention, and the fact
that ¥ allocates at least one more blocksto jobs Jy, ..., J;
at time step ¢’ than at time step ¢.

We now want to switch the alocations for blocks b,
and b,.++ in ¥, so the allocations becomes the same for this
block. We claim that there must exist a job J; that was
allocated at least a block in Sy, and the same job J; was
dlocated at most B, — 1 blocksin S;/. If thisis not the
case, then every job J;, that has been allocated blocks from
S; will have By, blocksin S;.. which isimpossible since the
sizeof S;isatleast | Sy |+ 1 from previousdiscussion. Asa

time

result we switch the allocation so that ¥ allocates b,., tojob
J; and br't’ to J,.. The new allocation will not violate the
bandwidth constraint for .J; since b,; was alocated to ¥’,
and there are at most B;, — 1 blocks allocated to J;, before
the switch. Please refer to Figure 7 for an example.

Ly Lo L3 Ly Cy

Sy

g

By 3

0 1 2 3 4 5 6 7 8 9 10 1

Figure 7. An illustration of b,, b1y, S; and Sy/.

After establishing that we can switch b, and b,..;, we
can repeat this process until ¥ and ¥’ becomes the same.
The reason is that if ¥ and ¥’ differ, then there must be
a b,y that is located at the same or lower row, since the
number of the blocksin ¥ and ¥’ are the same, and ¥’ uses
the min-row-first algorithm to allocate blocks. The theorem
follows. O

With Theorem 3 in place we are certain that if there ex-
ists a feasible schedule with a given completion time, the
min-row-first algorithmis able to find it. Therefore by abi-
nary search on the completion time we will be able to find
the minimum completion time while there still does exist a
feasible schedule. However, we need to specify the upper
bound for starting the binary search. It is easy to see that
Cy = >, [D;/min(By, B;)], is atrivial upper bound
of the minimum completion time such that we can start the
binary search.

6 Conclusions

This paper introducestechniquesin scheduling jobson a
master/workers platform where the bandwidth is shared by
all workers. The jobs are independent and each job requires
a fixed amount of bandwidth to download input data be-
fore execution. The master can communicate with multiple
workers simultaneously, provided that the bandwidth used
by the master and the workers do not exceed their band-
width limits.

We proposed two models for this limited-bandwidth
problem. If the data transfer cannot be interrupted, then we
prove that the scheduling problem is NP-complete. Nev-
ertheless we propose heuristic algorithms and experimen-
tally test their performance. If the data transfer can be in-
terrupted, we propose an algorithm that produces optimal

makespan. The algorithm is based on a binary search on
the completion time, and an efficient feasibility verification
process for a given completion time.

The authorswould like to further investigate possible ef -
ficient algorithms in both models. Despite the fact that it is
NP-complete to find the optimal solution when we do not
allow data transfer interruption, it is still possible to find
dynamic programming or approximation algorithm for the
scheduling problem. Another possible futurework isto im-
prove the optimal algorithm for the model that allowsinter-
ruption, since the current algorithm requires a binary search
on the completion time.

References

[1] M. Adler, Y. Gong, and A. L. Rosenberg. Optimal sharing
of bags of tasks in heterogeneous clusters. In 15th ACM
Symposium on Parallel Algorithms and Architectures, pages
1-10, 2003.

[2] S. F Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman. Basic loca aignment search tool. Journal of
Molecular Biology, 215(3):403-410, 1990.

[3] V. Bahradwaj, D. Ghose, V. Mani, and T. G. Robertazzi.
Scheduling Divisible Loads in Parallel and Distributed Sys-
tems. IEEE Computer Society Press, 1996.

[4] O. Beaumont, N. Bonichon, and L. Eyraud-Dubois.
Scheduling divisible workloads on heterogeneous platforms
under bounded muilti-port model. In 22nd IEEE Inter-
national Parallel and Distributed Processing Symposium,
2008.

[5] BIRN: The Biomedica Informatics Research Network.
http://www.nbirn.net/.

[6] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
apples parameter sweep template: user-level middleware for
the grid. In Proceedings of the ACM/IEEE conference on
Supercomputing, pages 75-76, 2000.

[7] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. WH Freeman and
Co. New York, NY, USA., 1979.

[8] B. Hong and V. Prasanna. Distributed adaptive task alloca
tion in heterogeneous computing environments to maximize
throughput. In 18th IEEE International Parallel and Dis-
tributed Processing Symposium, 2004.

[9] LCG: LHC Computing Grid. http://lcg.web.cern.ch/LCG/.

[10] A. Legrand and C. Touati. Non-cooperative scheduling
of multiple bag-of-task applications. In 26th IEEE Inter-
national Conference on Computer Communications, pages
427435, 2007.

[12] J. D. Ullman. Np-complete scheduling problems. Journal
of Computer and System Sciences, 10(3):384-393, 1975.

[12] Y. Yang, H. Casanova, M. Drozdowski, M. Lawenda, and
A. Legrand. On the complexity of multi-round divisibleload
scheduling. Technical report, 2007.

