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Abstract—In this paper, we propose a new multiple-camera
people tracking system that is equipped with the following
functions: (1) can handle long-term occlusions, complete occlu-
sions, and unpredictable motions; (2) can detect arbitrarysized
foreground objects; (3) can detect objects with much fasterspeed.
The main contribution of our method is twofold: 1) An M-
to-one relationship with only point homography matching for
occlusion detection can achieve efficiency; 2) A view-hopping
technique based on object motion probability (OMP) is proposed
to automatically select an appropriate observation view for
tracking a human subject.

I. I NTRODUCTION

Tracking multiple people using multi-camera is a chal-
lenging issue in recent years. When a suspicious human
subject walks in an environment monitored by a multi-camera
surveillance system, the cooperation among different cameras
becomes very important. According to the literature [1], [2],
[3], multi-camera tracking techniques have shifted from the
monocular approaches [4], [5], [6], [7], [8], [9] toward the
multi-camera approaches [1], [2], [3]. The tracking approaches
using monocular camera aim to track people by a single
camera. Most of the existing systems adopted blob-based [4],
[5], [6] and color-based [7], [8], [9] approaches to perform
tracking. A set of features extracted from a human subject
is updated sequentially in both above mentioned approaches.
However, the major drawback of the above systems is that
when a human subject is occluded, there is no way to keep
updating the changes across time. Under these circumstances,
once a human subject is suddenly occluded and then re-
appears in the field of view, the tracking system may not be
able to catch him/her due to a significant change of pose,
shape, or illumination condition. Some approaches have been
proposed for solving the occlusion problem. For example,
Kalman filtering [10], [11] and particle filtering [12], [13]are
proposed to predict motions when occlusion occurs. However,
no matter Kalman filtering or particle filtering is applied, they
can only deal with a short-term occlusion problem due to
their prediction-based nature. To handle a long-term occlusion
problem, some other approaches need to be proposed. Among
different potential solutions, utilizing multiple cameras to work
together as a team is one of the best solutions to this problem.

There are a number of difficult issues associated with a multi-
camera surveillance system. These issues include: fusion of
data extracted from multiple cameras, illumination difference
at different locations, camera placement problem, etc.

In recent years, homography mapping [14], [15] has been
applied to the problem of multiple-camera-based video surveil-
lance. This technique can be used to match the corresponding
points among different camera views. Hu et al. [1] proposed a
principal axis-based correspondence checking among multiple
cameras. For the same human subject detected by different
cameras, the correspondences are matched based on homog-
raphy mapping. However, people tracking in each view is
still based on Kalman filtering. Under the circumstances, the
unreliable motion prediction process would degrade the per-
formance of a developed system. Fleuret et al. [2] proposed to
use a probabilistic occupancy map which is built by fusing the
extracted data from multiple cameras to perform homography
mapping. For each decided position, the average human height
and width (a rectangle) are given. This rectangle is used to
represent a person’s foreground area. Hence, a person who is
much shorter (a child) than the average height would still be
assigned with the default size. This kind of inflexible design
is inappropriate to the occlusion case. Khan and Shah [3]
proposed a multiple occluding people tracking method by
localizing on multiple scene planes. A planar homography
occupancy constraint and the foreground likelihood informa-
tion extracted from different views are combined to tackle the
occlusion problem. Nevertheless, fusion of information from
different views and multiple planes (10-20 planes) would be
very time consuming and it is not tolerable for a real-time
surveillance system.

In this paper, we propose a new multiple-camera people
tracking system providing the following functions: (1) can
deal with objects with occlusions for a long-term, complete
occlusions from other objects, and objects with faster motions;
(2) can detect foreground objects with arbitrary sizes; (3)can
efficiently detect objects. Our method has two main contri-
butions: 1) An occlusion detection function based on an M-
to-one relationship with only point homography matching can
achieve high computational efficiency; 2) An object motion
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Fig. 1. Proposed People Tracking System Architecture.

probability (OMP) based metric is proposed to automatically
select an appropriate observation view in our view-hopping
mechanism. The rest of the paper is organized as follows.
The proposed system architecture is highlighted in Sec. II.
Next, the proposed techniques are described in Sec. III.
Subsequently, the experimental results are demonstrated in
Sec. IV. Finally, conclusions are drawn in Sec. V.

II. PROPOSEDSYSTEM ARCHITECTURE

Fig. 1 shows the proposed system architecture. The left-
most part is the input of the people tracking system. In our
implementation, we used three video camcoders to capture
video data. We tried to synchronize the three input camcorders
and then analyzed the videos frame by frame. The first step of
our proposed people tracking system is foreground detection.
We used a simplified Gaussian Mixture Model (GMM) [16]
(K = 1) for background modeling. This model can achieve
more effective background reconstruction results than adaptive
GMM. Next, we used the foreground objects detected in one
view to match the corresponding objects in other views. The
homography technique [14], [15] was adopted to calculate
the correspondences among different views. For the occlusion
problem, we propose a multiple-points-to-one-region (M-to-
one) relation to deal with it. When an occlusion event is
detected, our system will respond with a hopping action. That
is, to hop from an occluded view to other (non-occluded)
views. A strategy based on object motion probability (OMP)
is proposed to select an appropriate view to hop. The details
about how view-hopping is implemented will be discussed in
the next section.

III. PROPOSEDPEOPLETRACKING SYSTEM

A. Foreground Detection

GMM [1], [3] has been extensively applied to perform
background modeling and foreground detection in the past few
years. However, for real world applications, a GMM may not
be suitable for real-time extraction of the foreground objects
due to its costly re-computation on the GMM distributions. In
a multi-camera tracking system, a near real-time requirement
is necessary. Most of the time, the system should notify the
administrator the runaway direction of a suspicious human
subject in seconds. As a result, a simplified GMM-based
background modeling scheme is proposed in this work.

Let It be an image frame acquired from one of the multiple
cameras at timet, and k be one half length of the search

window (previousk frames and subsequentk frames). The
frame differenceId

t at time t can be calculated as:

Id
t =

∣

∣

∣

∣

It −
1

2k
(Σt−1

i=t−kIi + Σt+k
i=t+1Ii)

∣

∣

∣

∣

, (1)

wherei is the frame index. In other words, based on Eq. (1),
the difference imageId

t can be generated according to the
difference computed from the current frame to the mean of all
2k frames in the search window at timet.

B. Multi-camera Projection

In our proposed system, the homography [14], [15] tech-
nique plays the role of matching correspondence between
different views. For a detected human subject, the positions
of his/her feet represent where his/her location is in the scene.
The correspondence of a same human subject in different
views can be calculated by a homography transformation. A
3 × 3 homography matrix can be expressed as follows:

H =





h11 h12 h13

h21 h22 h23

h31 h32 h33



 . (2)

Let the detected foot point in a view befp = [fx,fy], and
its corresponding point in another view bef ′

p = [f ′
x,f ′

y]. The
corresponding foot point can be calculated fromfp andH as:

[(f ′
p)

T ; 1] = H [(fp)
T ; 1]. (3)

However, the ground plane and corresponding points of land-
marks should be provided by user at the initial state.

C. Occlusion Detection: Multiple Points to One Region Rela-
tionship (M-to-One)

When a human subject is detected in the field of view of a
surveillance camera, his/her foot touching the ground should
be at the bottom of the line segment that links the head and
that foot. This is because we assume a human subject should
maintain his/her body vertical when walking. On the other
hand, it is reasonable to assume the center of a walking human
subject is the intersection of the above mentioned vertical
line segment and the line segment linking the two hands
of the human subject. The upper right part of Fig. 2 shows
how human subjects are detected by our method. The regions
bounded by blue boxes are the detected human subjects. The
red, blue, and green squares at the bottom indicate the IDs of
different people. From the detection results shown in the upper
right of Fig. 2 , it is obvious that the detected foot locations
are quite close to the real locations.

SupposeIf
t is a foreground object detected at timet. There

are two descriptors used to represent a detected human subject.
They are, the foot positionfp = [fx, fy], and the object region
OR, respectively. The definition ofOR is as follows:

OR =
{

I
f
t (x, y) = It(x, y) : Br > x > Bl, Bt > y > Bb.

}

(4)
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Fig. 2. Occlusion detection: upper part: no occlusion (red square person),
lower part: occlusion event (green and blue persons). Red, green, and blue
squares in the right view: foot points of each person. The squares in the left
view: corresponding foot points from the right view to the left view according
to homography.

Here Br and Bl represent the right and left bounds in the
x-direction, andBt andBb are the top and bottom bounds in
the y-direction. The rectangular boxes formed by these bounds
are shown at the bottom-right of Fig. 2. The foot position
descriptor and the object region descriptor can work together
to easily identify an occlusion event. Unlike conventional
occlusion detection based on single camera, we propose to
detect an occlusion event by fusing the information grabbed
from different views. In our approach, if an occlusion event
happened, the foot position descriptor will detect more than
one foot point falling into the same object region. The upper-
left part of Fig. 2 indicates an occlusion event is happening
because the blue and the green squares that belong to two dif-
ferent human subjects fall into a same object region. However,
from the view observed by another camera (upper-right of Fig.
2), the two corresponding human subjects do not occlude each
other.

In what follows, we shall describe how to use the ho-
mography transform to judge whether an occlusion event is
happening or not. Letfp1 andfp2 be two foot points detected
by one camera. Their corresponding points viewed by another
camera can be computed by the homography transform,H , as
follows:

[(f ′
p1)

T ; 1] = H [(fp1)
T ; 1], and [(f ′

p2)
T ; 1] = H [(fp2)

T ; 1].
(5)

If both f ′
p1 andf ′

p2 fall into the same region,OR, i.e.,

f ′
p1 ∈ OR, andf ′

p2 ∈ OR, (6)

an occlusion event can be detected. It is reasonable to extend
the relation from the case of two-points-to-one-region (2-to-
one) to that of multiple-points-to-one-region (M-to-one). For
the case ofM points falling into the same region simultane-
ously, i.e.,

f ′
p1 ∈ OR, f ′

p2 ∈ OR, · · · f ′
pM ∈ OR, (7)
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Fig. 3. View-hopping example: The targeted object is hoppedfrom V iew 1

to V iew 2 due to an occlusion event.

an occlusion event can also be verified by checking the region
OR. Therefore, the M-to-one relation can be utilized to detect
an occlusion event by fusing the information grabbed from
many cameras.

D. View Hopping-based People Tracking

Suppose there areN cameras simultaneously and separately
mounted in a video surveillance system to monitor a same
scene. In the scene, it is allowed to have multiple human
subjects moving or standing still in it. For a targeted human
subject, the corresponding object regions in different views are
defined as:

{

OR1, OR2, · · · , ORN
}

, as shown by the solid
rectangles with different colors in the most upper part of Fig.
3. The rectangles with dashed lines in the same rows represent
the video frames captured from different views at the same
time. The small red squares bounded in object regions are
the homograpy transformed foot points which are transformed
from other views. These red spots are used to determine
whether there is an occlusion event occurring. From the
system administrator’s point of view, at a certain time instant,
he/she can only focus on several of the views from theN

cameras. Therefore, we propose a view-hopping strategery to
automatically select an appropriate view for the administrator
to monitor. Using Fig. 3 as an example, assume at timet, there
is no occlusion event detected in bothV iew 1 and V iew 2.
In other words, the one-to-one relations are detected in both
of these views. Therefore, we can randomly select one of the
object regions for the administrator to monitor. SupposeV iew

1 is randomly chosen. The object region inV iew 1 is shown
at the left of the upper row in Fig. 3. However, when the time
proceeds tot+1, there is an occlusion event occurred inV iew

1, because there are three foot points detected. However,V iew

2 still has only one foot point detected in the object region
(second row,V iew 2 in Fig. 3). That means the system has
to excute an automatic view hopping fromV iew 1 to V iew

2 to avoid the occlusion case. Therefore, the targeted object
TOt+1 has to be hopped toV iew 2, i.e.,

TOt+1 =
{

OR2 : f ′
p1, f

′
p2, f

′
p3 ∈ OR1 ; ∃!f ′

p ∈ OR2
}

, (8)



where f ′
p1, f ′

p2, and f ′
p3 are the homography transformed

foot points derived from another view, and the object region
OR2 only contains one homography transformed foot point
f ′

p. When Eq. (8) holds, a view-hopping action is triggered.
It is reasonable to extend the relation from the case of three

points toM points. By integrating Eq. (7) and Eq. (8), we can
derive:

TOt =
{

ORv : f ′
p1, f

′
p2 · · · f

′
pM ∈ ORu ; ∃!f ′

p ∈ ORv
}

,

(9)
whereu and v are the view indices amongN cameras. Eq.
(9) represents when an occlusion event occurred in theu-th
view but there is no occlusion identified in thev-th view, the
observation view should be hopped to thev-th view.

E. Object Motion Probability (OMP) for View Hopping

In a multi-camera environment, a human subject may be
occluded by other people in the view of one camera, but he/she
may not be occluded in other camera views. Because a front
view contains the most information of a human subject, we
hope our developed system can automatically hop to that view.
In general if a person walks from far to near in the field of
view of a camera, its corresponding y-axis component in a 2-
D image plane should be from top to bottom, as shown by the
red arrow in Fig. 4 (a). In other words, the object motion [17]
in y-direction can be used to judge whether a human subject is
approaching (can see his/her front) or leaving (can see his/her
back) the camera. Therefore, we shall make use of the object
motion to judge whether a walking human subject is in front
view or not.

As shown in Fig. 4 (a) and Fig. 4 (b), the left human subject
is walking in a constant speed. The object motion in the far
location (red segment in Fig. 4 (a)) is much smaller than that
in the near location (red segment in Fig. 4 (b)). Since the
movement of a human subject in the distance may result in
a smaller object motion in comparison with an object motion
happens nearby, the object motion has to be normalized based
on its distance to the viewer. Therefore, we have

NOMyt
=

fpt
(fy) − fpt−1

(fy)

max
(

fpt
(fy), fpt−1

(fy)
) , (10)

whereNOMyt
is the normalized object motion in y-direction

detected at timet, and fpt
(fy) is the foot point position in

y-direction at timet. For the convenience of representation,
we use NOM as the abbreviation ofNOMyt

. Fig. 5 shows
the relationship of the items in Eq. (10). The black arrow
shows the original object motion. The y direction projection
is illustrated as the blue arrow (the numerator in Eq. (10)).
The denominator in Eq. (10) is represented by the unit object
motion, as shown by the red segment in Fig. 5. As a result,
the NOM can be obtained as shown by the red arrow in Fig.
5. Note that the NOM is calculated for the corresponding
human subject in the same view. Since the computation of
foot points can be easily affected by noises, we only consider
those significant object motions. That is, only for those object

(a)
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Fig. 4. The movement of a human subject (left one) from a far location to a
near location: (a) walking at distance, (b) walking at a nearlocation.
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Fig. 5. The relationship among OM, OM in y-direction, unit OMin y direction,
and NOM in y direction.

motions that have larger magnitudes can be accepted as valid
object motions.

Motivated by the concept of probability updating for appear-
ance model [18], the approaching/leaving probability of object
motion for a human subject can be updated by checking the
corresponding object motion, i.e.,

OMPat
(NOMyt

)=

{

OMPat−1
·λ+(1−λ), if NOMyt

≥ThNOM ;
OMPat−1

·λ, otherwise,
(11)

and

OMPlt
(NOMyt

)=

{

OMPlt−1
·λ+(1−λ), if NOMyt

<−ThNOM ;
OMPlt−1

·λ, otherwise,
(12)

where NOMyt
is the y-direction object motion of a corre-

sponding human subject at timet, λ is an update factor,
set to 0.95 [18], and ThNOM is a threshold for a valid
normalized object motion. For the convenience of represen-
tation, we useapproaching OMP to representOMPat

, and
leaving OMP to representOMPlt . In our experiments, the
approaching/leaving OMPsfor a human subject are initially
set to0.5 because he/she has equal probability of approaching
or leaving a camera without any prior knowledge.

An example of updatingapproaching/leaving OMPs is
shown in Fig. 6. At first, the foreground objects can be detected
from all three views. The labels with different colors represent
different human subjects, as shown in Fig. 6 (a). Next, the
proposed occlusion detection algorithm is used to detect the
occlusion region. In this example,V iew3 in Fig. 6 (a) was
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Fig. 6. OMP example: (a) detected foreground objects in three views (b)
target object (bounded by green rectangle in (a) ), (c)OMPs in three views,
and (d) the weightedOMPs in three views.

identified as an occlusion event. Therefore, we have to check
the OMP status ofV iew1 andV iew2. Let’s use the human
subject bounded by the green rectangle as an example. In
V iew1, the targeted human subject was detected with a higher
approaching OMP and a lowerleaving OMP (the left most
blue bar and brown bar, respectively). On the other hand,
the approaching OMP in V iew2 is much smaller than the
leaving OMP. Since the targeted human subject is occluded
in V iew3, the best view to hop to isV iew1 in this case.
The selection of the best view is determined by computing
the weightedOMPs under different conditions, i.e.,

Vt = argmax
v

{W v · OMP v
t } , (13)

W v =







1, approaching OMPs≥ ThC;
0.5, leaving/approaching OMPs< ThC ;
0, disappeared or occluded;

(14)

where W v is the weight for thev-th view, andOMP v
t =

{approaching OMP, leaving OMP}. When theOMPs fit the
situations described in Eq. (14), its corresponding weightW v

would be generated. Under these circumstances, the distribu-
tion probability among different views can be calculated (e.g.
Fig. 6 (d)). Finally, an appropriate view can be determined by
exhaustively searching the view with the maximum weighted
approaching/leaving OMPsas expressed by Eq. (13).

IV. EXPERIMENTAL RESULTS

To test the effectiveness of the proposed method, we used
two scenarios to capture videos at two distinct time spots of
a same day. Fig. 7 shows some snapshots of two scenarios:
the two-camera scenario is adopted to verity whether the ho-
mography transformation can be appropriately used to perform
occlusion detection, and the three-camera scenario is usedto
check whether the proposed scheme can be applied to real-
world problems. Fig. 8 shows the trajectories of three human

(a)
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View1
 View2


View1
 View2
 View3


Fig. 7. Test Videos: (a) Two-camera scenario, (b) Three-camera scenario:
Tennis Court.
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Fig. 8. Trajectories calculated from the two-camera sequence: (a) trajectories
of three human subjects detected inV iew1, with occlusions in red circles, (b)
trajectories of homography mapping fromV iew2 to V iew1, with occlusions
in red circles, and (c) trajectories of three human subjectsdetected inV iew2.

subjects walking in the two-camera surveillance system. The
trajectories ofV iew1 andV iew2 in Fig. 7 (a) are shown, re-
spectively in Fig. 8 (a) and Fig. 8 (c). The detected foot points
of V iew2 can be transformed via homography toV iew1, as
indicated in Fig. 8 (b). By comparing the detected trajectories
(Fig. 8 (a) ) and the homography transformed trajectories
(Fig. 8 (b) ), we can verify that the results are quite close
to each other, showing that the correspondence established
from different views by homography transformation are quite
accurate.

The tracking results of a real-world case are shown in Fig.
9. The columns represent the video frames captured from
different views, and the rows represent the frames captured
at different time instants. For different human subjects, we
used rectangles with different colors to represent them. For
example, in Fig. 9 (c), the human subjects bounded by red
rectangles in three views are identical. This indicates that the
applied homography transformation can help match the corre-
spondence. On the other hand,V iew1 in Fig. 9 (c), V iew2
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Fig. 9. Video test sequence inTennis Court, the frames in the first, second,
and third columns are fromV iew1, V iew2, andV iew3, respectively. The
rows show different time instants at (a) frame number3050 (b) frame number
3150, and (c) frame number3250.

in Fig. 9 (a), andV iew3 in Fig. 9 (b) all contained detected
occlusion events. This outcome shows that our proposed M-to-
one occlusion detection mechanism could successfully detect
the occlusion regions in frames. As to the best view selection
issue, the results are shown in Figs. 10-11. In these figures,the
targeted human subject is shown in the left of each row. In Fig.
10, the targeted human subject are viewed from camera 2. This
is because the weightedapproaching OMPs were the largest
at all three time instants. In Fig. 11, the targeted human subject
are viewed from camera 1 at the first two instants because the
weightedapproaching OMPs were bigger than that of other
views. However, the view was forced to hop to camera 2 due
to occlusions. In Fig. 11 (c), only camera 2 was associated
with the values of weightedOMPs. Camera 1 and Camera 3
did not have any weightedOMPs value, it means the targeted
human subject may be occluded or may be outside the range
of that camera. Under these circumstances, we are forced to
hop to Camera 2, though it is only a back view.

V. CONCLUSIONS

In this paper, a novel multiple-camera people tracking
system is proposed to supply the following functions: (1)
long-term occlusions, complete occlusions, and unpredictable
motions could be handled; (2) an object could be detected ac-
cording to its corresponding foreground size, avoiding theun-
reasonable size given problem; (3) objects could be effectively
detected. The main contribution of our method was twofold: 1)
An M-to-one relationship matched by point homography for
occlusion detection could achieve high efficiency; 2) An object
motion probability (OMP) based view-hopping technique was
proposed to automatically select an appropriate observation
view for people tracking. However, the limitation of our
system is that when a tracked human subject is occluded in
all views, our system cannot identify the occlusion events,
furthermore, the view-hopping result could be falsely given.
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Fig. 10. Experiment # 1 of best view selection. From left to right, the targeted
human subject,OMPs (blue bars:approaching OMPs; brown bars:leaving
OMPs), and weightedOMPs. From top to bottom, frame grabbed at different
time instants: (a) frame number3050 (b) frame number3150, and (c) frame
number3250.
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