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Abstract

An adaptive local thresholding method for microscope based high con-
tent analysis (HCA) is proposed. Cell micrographs of HCA contain de-
tailed objects both in and out of focus, which cannot be correctly seg-
mented by global thresholding methods. The proposed method utilizes
adaptive local neighborhood size and double thresholding, and is able
to produce segmentations that conform closely to perceptually relevant
structures in the original image, robust to background noise and variation.
The proposed method is applied to the segmentation of mitochondria in
fluorescence cell micrographs. Comparison with both hand segmentation
and other global and local thresholding methods shows that the proposed
method produces results of comparable quality to hand segmentation and
discovers much more detailed structure than any previous thresholding
methods.
Keywords: local adaptive thresholding, image segmentation, fluores-
cence cell micrographs, microscope images.

1 Introduction

In digital image processing, a standard method to detect objects in a grayscale
image is to threshold the intensity values, from which a binarization of image
pixels into object and background is achieved [Sezgin and Sankur, 2004]. Early
thresholding methods use a single global threshold value for the whole image,
which can be obtained by detecting peaks and valleys in the intensity histogram
for the whole image, minimizing the intra-class variance of object and back-
ground pixels [Otsu, 1979], or iteratively updating the threshold to the average
of the object and background mean intensity [Ridler and Calvard, 1978], among
many other methods. These global formulations can also be adapted to calcu-
late local thresholds, where a different threshold value is used for each locality
in the image. For example, pixel thresholds can be obtained by examining the
local histogram, or by the mean and variance of its local neighborhood [Niblack,
1986].
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(a) Input image.

(b) Segmentation result.

Figure 1: A cell micrograph showing four cells with different mitochondria struc-
ture, and the segmentation result produced by the proposed method.

In this work a novel image thresholding/binarization method is proposed
and applied to cell micrographs of fluorescence protein (FP)-tagged mitochon-
dria. These images have changing background brightness and contrast, and
contains detailed and differentiated mitochondria structures. The proposed
method automatically produces segmentations of these images that preserves
the mitochondria structures as perceived by human experts. In other words,
the proposed method is designed to adaptively threshold the cell micrographs
and produce results that correspond closely to human intuition of detailed sub-
cellular structures.

In Figure 1 a cell micrograph containing four cells with different mitochon-
dria structure and the corresponding segmentation produced by the proposed
method is shown. It can be seen that the result faithfully captures the different
mitochondria structures within the four cells, from web-like and elongated to
fragmented dots to larger dots, in the presence of changing background bright-
ness within each cell and changing contrast levels between cells.

In the next section the proposed method is described in detail. In Section 3
the proposed method is first compared to manual segmentation, then to some
classical and recent thresholding methods.
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2 Adaptive Local Thresholding

In this section, a novel thresholding method, Adaptive Local Thresholding
(ALT), is proposed for the binarization of grayscale images. The method con-
sists of the following steps:

1. Adaptive local normalization

(a) Define local region variance threshold value;

(b) Automatically determine the locality size for each individual pixel;

(c) Calculate mean and standard deviation for each locality;

(d) Normalize the image pixel-by-pixel with respect to each locality.

2. Double thresholding

(a) Define high and low threshold values;

(b) Threshold the normalized image with the low threshold value;

(c) Remove objects that are not connected to any pixels above the high
threshold in the normalized image.

3. Postprocessing

(a) Define grayscale threshold value;

(b) Remove objects that are not connected to any pixels above the grayscale
threshold in the original image;

(c) Remove objects on the boundary of the image or region of interest.

In the following the algorithm is described and illustrated on the cell micro-
graph in Figure 2.

2.1 Adaptive Local Normalization

2D fluorescence cell micrographs contain out-of-focus objects that result in het-
erogeneous background, and are often incorrectly classified as objects by global
thresholding methods. In order to deal with the changing background brightness
and contrast level caused by out-of-focus objects, proper thresholding needs to
take into account the statistical properties associated with each locality in the
image. Traditional local thresholding methods determine the threshold at each
pixel by examining the region centered on the pixel, using a fixed window shape
and size, and effectively derives a threshold surface for the image. It would be
more appropriate to let the window size change dynamically according to the
characteristics of each pixel region, such that regions for background pixels con-
tain a portion of nearby objects, and regions for pixels within an object contain
some background, as shown in Figure 3 (see also [Yan et al., 2005]). In other
words, the local region of a pixel should be large enough to contain sufficient
amount of edges or other relevant local structures, but not too large as to also
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Figure 2: A sample cell micrograph.

Figure 3: Ideal local region sizes for different localities.

contain irrelevant structures from faraway objects. An appropriate region size
for each individual pixel ensures correct classification of the pixel into object or
background.

The method proposed here uses the variance of pixel brightness in the local
region as a criterion to adaptively determine the local region size. A uniform
disk is used as the shape of each region, and the radius of the disk is set to the
minimum radius required for the region to have a brightness variance above a
certain threshold:

r(x, y) = min
r
{r > 0 |StD[Rr(x, y)] ≥ TStD}, (1)

where r(x, y) is the radius at pixel (x, y), Rr(x, y) is the circular region of radius
r centered at pixel (x, y), and TStD is the standard deviation threshold, which
can be set to about 0.3 to 0.4 of the global standard deviation of the image.
Thus it is assumed that if a region has standard deviation of at least TStD,
then it contains enough structural information to distinguish the pixel between
background and object. In this way, the parameter TStD would be more robust
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Figure 4: Adaptive local normalized image of Figure 2. Red, blue and green
regions indicate pixels above, below and equal the local mean, respectively.

than a single window size parameter for all pixels in the image, which necessarily
ignores local structural differences.

After the region size for each pixel is determined, an adaptive local normal-
ization of the original image IN can be obtained by calculating the mean IE and
variance IStD of each local region:

IE(x, y) = E[Rr(x,y)(x, y)], (2)

IStD(x, y) = StD[Rr(x,y)(x, y)], (3)

IN(x, y) =
I(x, y)− IE(x, y)

IStD(x, y)
. (4)

The local normalized pixel value would then serve as an adaptive and objective
criterion for object/background binarization.1 The adaptive local normalized
image for the cell micrograph in Figure 2 is shown in Figure 4.

As a simple empirical justification for using adaptive neighborhood size,
Figure 5 shows normalized images obtained using adaptive radius and radius
fixed at 4 and 8 pixels. It can be seen that for both fixed radius normalization,
some spurious objects would appear in the background. This is especially true
for the R = 4 image. The fact that even the R = 8 image contains such spurious
objects indicates that the proper radius in the background should in fact be
larger than R = 8. In addition, the R = 8 image contains many regions where
distinct objects are incorrectly merged together, which shows that a smaller
radius is more appropriate for those regions.

1Since this is essentially a binary classification formulation, if there are two brightness
values for objects, such as in multithresholding applications, additional processing will be
required.
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(a) Original (b) Adaptive Radius T = 0.35StD(I)

(c) R = 4 pixels (d) R = 8 pixels

Figure 5: Normalized images for adaptive and fixed region sizes. Normalized
values below zero are truncated to better illustrate correspondence with the
original image.
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In the actual computer implementation, the local radius is not allowed to
exceed a certain maximum Rmax for computational efficiency. To prevent such
a device from causing spurious “objects” within very low variance regions to
be picked out, a minimum region standard deviation equal to the threshold
TStD is also set for regions exceeding the maximum radius, with the local mean
calculated normally. Thus for the local region at pixel (x, y), the computational
equations to obtain the local radius r(x, y) and standard deviation IStD(x, y)
are

r(x, y) = min
{
Rmax,min

r
{r > 0 |StD[Rr(x, y)] ≥ TStD}

}
, (5)

IStD(x, y) = max
{
TStD,StD[Rr(x,y)(x, y)]

}
. (6)

Adapting a lower bound for the standard deviation image effectively attenuates
normalized values within regions with a very low standard deviation, and addi-
tionally acts as a safe guard against singularities.2 These observations are also
justified by empirical results, as can be seen in Section 3 where the proposed
method is compared with Niblack’s method.

2.2 Double Thresholding

For a more robust segmentation result, double thresholding is used to obtain
the final segmentation from the adaptive local normalized image. In double
thresholding, two thresholds are defined, and the image is first segmented with
the low threshold, then objects that contains no pixels above the high threshold
are removed. Either 4 or 8-connectedness can be used for defining distinct
objects, and 4-connectedness is used here. A property of double thresholding
is that it creates segmentations that appeal to intuition in that sufficiently
bright objects would appear to be segmented in whole, and spurious regions of
pixels that only just pass the low threshold would not be detected at all. A
thresholded image showing the application of high and low thresholds to the
normalized image in Figure 4 is shown in Figure 6, and the final segmentation
(with postprocessing) is shown in Figure 7.

Using two thresholds also results in more flexibility, in that the number of
objects detected and their extent can be controlled separately, by individually
changing the high and low thresholds. For example, this allows minimizing the
appearance of ”ghost” objects in the background without eroding the size of
legitimate objects.

Because double thresholding is applied to the normalized image, there is no
need to adjust the threshold values for images of different brightness or contrast.
In fact, assuming normalized images correctly represent the structures of the
original, the threshold values then represent a global, objective threshold on
object saliency.

2Local regions with 0 variance.
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Figure 6: Application of high and low thresholds to Figure 4. White pixels pass
the high threshold, and gray pixels pass the low threshold.

Figure 7: Final segmentation of Figure 1.
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3 Experimental Results

3.1 Comparison with Manual Segmentation

Figure 8 shows the results of comparison with hand segmentation. It can be
seen that the proposed algorithm shows good agreement with manual segmen-
tation, and sometimes even produce results that better correspond to intuition.
The proposed method is also more robust and stable across images of different
brightness and contrast, and can be used as an objective and much more effi-
cient alternative to manual segmentation, which is often affected by differences
in computer monitor brightness and subjective evaluation standards. For this
comparison TStD is set to 0.35 times the global image standard deviation, and
the high and low thresholds for the double thresholding are set to 0.6 and 0.3,
respectively.

3.2 Comparison with Other Thresholding Methods

In this section the proposed method is compared with two global threshold-
ing methods and two locally adaptive methods. The global methods are the
classical Otsu’s global thresholding [Otsu, 1979] and an iterative thresholding
method [Ridler and Calvard, 1978]. The local methods are the classical Niblack’s
method [Niblack, 1986] and a recent adaptive thresholding method based on a
variational minimax algorithm [Saha and Ray, 2009]. Only Niblack’s method
requires setting parameters, for this comparison a disk shaped local neighbor-
hood of radius 6 pixels is used, and the threshold is set to the local mean plus
0.4 times the local standard deviation. For the proposed method TStD is set to
0.35 times the global image standard deviation, and the high and low thresholds
for the double thresholding are set to 1 and 0.35, respectively.

The comparison on select cell micrographs are shown in Figures 9-11. It can
be seen that global thresholding methods cannot adequately deal with chang-
ing background brightness, and cannot reveal detailed structure in the original
image. The local methods fare better, with results closer to the intuitive ideal
segmentation, but both still contain incorrect segmentations. Niblack’s method,
due to the use of a fixed size local region, generates many “ghost” objects in
the background. The variational minimax algorithm is able to segment detailed
structures without generating “ghost” objects, but on closer inspection, and
comparing with the results from the proposed method, detected objects are ex-
cessively merged, and many areas also contain incorrect clumps that corresponds
to visually separated objects in the original image. Only the proposed method
is able to successfully pick out perceptually relevant objects even in areas of low
contrast where the “background” is bright and misty, without generating any
“ghost” objects in the background, and the segmentation result is also much
cleaner with respect to separating distinct objects.

It can be seen from the results of other methods that there is an implicit scale
parameter at work, which is not directly adjustable for the global methods and
the variational minimax algorithm, this prevents detailed structures from being
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(a) Original images.

(b) Hand segmentation.

(c) Proposed method.

Figure 8: Comparison of the proposed method with hand segmentation.
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(a) Original image. (b) Otsu’s method.

(c) Iterative thresholding. (d) Niblack’s method.

(e) Variational minimax algorithm. (f) Proposed method.

Figure 9: Comparison with other thresholding methods on a representative cell
micrograph.
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(a) Original image. (b) Otsu’s method.

(c) Iterative thresholding. (d) Niblack’s method.

(e) Variational minimax algorithm. (f) Proposed method.

Figure 10: Comparison with other thresholding methods on a representative
cell micrograph.
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(a) Original image. (b) Otsu’s method.

(c) Iterative thresholding. (d) Niblack’s method.

(e) Variational minimax algorithm. (f) Proposed method.

Figure 11: Comparison with other thresholding methods on a representative
cell micrograph.
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distinguished in these methods. The proposed method, as well as Niblack’s
method, features a scale parameter in terms of local variance threshold or local
region size, which can then be adapted to the perceptual scale of objects in
images. Using the local variance as a criterion to determine local region size
is more robust than directly specifying the region size, this approach is also
validated by the comparison results, which shows that the proposed method
can effectively prevent spurious “ghost” objects from being detected while also
cleanly separating objects with touching boundaries.

4 Conclusion

In conclusion, an adaptive local thresholding method is proposed that utilizes
adaptive local region size and double thresholding. The proposed method is
able to pick out perceptually relevant structures from fluorescence cell micro-
graphs robustly, performs better than previous segmentation methods and is
comparable to hand segmentation.
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