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ABSTRACT 

This paper describes the design and implementation of an open source embedded workflow 
framework (EMWF). By providing a language for specifying embedded workflow processes 
and light weight engines for executing and managing them, EMWF enables us to design and 
build service robots and assistive robotic devices on workflow-based architecture. The 
embedded process definition language supported by EMWF is called SISARL-XPDL. It is a 
subset of the standard process definition language XPDL (XML Process Definition Language) 
augmented with elements that are essential for smart embedded devices but not offered by 
XPDL. The SISARL-XPDL preprocessor translates augmented elements into either 
directives for the engine or compound built-in activities defined in terms of standard XPDL. 
EMWF provides two workflow engines, for Linux and Windows CE platforms. Both are 
written in C in order to keep the memory footprint and runtime overhead of the engine small. 
We use EMWF as a test bed for experimentation with the workflow approach and evaluation 
of workflow-based design.  
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1 INTRODUCTION 

In coming decades, we are likely to witness accelerated growth in diversity and use of service 
robots and assistive robotic devices (SRARD). Examples include home and personal automation 
and assistive devices (e.g., robotic housekeeping aids and mobility assistants [1-5]) and social 
and service robots (e.g., robotic pets, object fetchers and intelligent physical-therapy companions 
[6-9]). Such devices can help to improve the quality of life and enhance the accessibility and 
mobility of their users, make physical exercises and therapy regiment more effective, and so on. 
They have become increasingly more essential tools, as world population ages and more and 
more elderly individuals need their help to stay well and remain independent. SRARD also 
include automation equipment and tools for hospitals and other care-providing institutions (e.g., 
[10-11]). Their use is a way to improve quality and reduce the costs of health and medical care. 

Despite vast differences in their functions and appearances, SRARD share many common 
characteristics and requirements. Typically, these devices are used at their users’ discretion, and 
often for the purpose of complementing and compensating users’ skills and weaknesses [12, 13]. 
Such a device must be affordable, easy to use. It must be flexible, meaning that it is configurable, 
customizable and can adapt: It can be easily configured to work with a variety of sensors and 
devices, rely on different support infrastructures and operate in different environments. It should 
be customizable according to its user’s preferences. The device may be in use for many years and, 
hence, should be able to adapt to changes in its user’s needs, mindset and skills.  

Advances in robotic and assistive technologies have made almost all essential SRARD functions 
and numerous advanced features feasible. The technology for their design and implementation is 
still relatively immature, however. Even today, all but the simplest SRARD devices are 
handcrafted. Once built, to configure and customize them is often difficult. This fact has 
motivated us to develop the open source embedded workflow framework (EMWF) described in 
this paper. Its primary purpose is to reduce the levels of expertise and effort (and consequently 
the cost) required for the design and implementation of easily configurable and customizable 
smart SISARL devices [14] in general and behavior-based SRARD in particular from reusable 
components. 

As its name implies, EMWF is based on the try-and-true workflow approach [15] that is widely 
used in enterprise computing for automation of business processes. The components of an 
application based on this approach are workflows, each of which is composed from elementary 
steps called general activities (or simply activities). In workflow-based embedded devices such 
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as SRARD, some activities are done with executable code; others are carried out manually or by 
hardware components. The order and conditions under which activities in a workflow are 
executed, the resources needed for their execution, and interactions among activities are 
specified in terms of a workflow graph: In essence, it is an executable control and data flow 
graph. Each node in it represents an activity. Each directed edge represents a transition from the 
source activity to the sink activity, and consequently a precedence relation between the activities. 
Each workflow has a start and one or more stop. They are special activities that have no 
predecessor and successor, respectively, in the graph. 

A key element of a platform for workflow applications is the workflow engine (or engine for 
short). This middleware offers the applications an execution environment. In addition to 
executing activities implemented by software components, the engine also provides and executes 
built-in activities that start and stop workflows, and once a workflow starts, sequence, 
synchronize and coordinate general activities in it as specified by the graph defining the 
workflow. By managing control and data flows among general activities and allocating resources 
and enforcing policies for them on behalf of the applications, the engine dynamically integrates 
the application components. 

A reason for the wide adoption of workflow approach for automation of business processes is the 
relative ease with which workflow-based applications can be designed and implemented. The 
developer of such an application only needs to supply the components that implements activities 
and workflow graphs that specify the interconnection and interaction among activities. One can 
configure and customize the application by changing the workflow graphs in it and by using 
different components for activities in the graphs. Existing standard process definition and 
execution languages (e.g., [16 - 19]), together with tools for defining and editing workflow 
definitions in diagram and text forms, and for parsing and building them significantly reduce the 
effort to do these tasks. They enable business application experts to develop and customize 
complex automatic business processes easily themselves without help from IT experts.  

EMWF enables us to adopt the workflow-based architecture for SRARD by providing a 
language for the specification of embedded workflow applications and choices of light-weight 
engines for executing and management them on embedded platforms. Specifically, the workflow 
process definition language supported by EMWF is called SISARL-XPDL. It is a variant of the 
standard XPDL (XML Process Definition Language) [18]. EMWF provides two versions of 
workflow engines for Linux and Windows CE. Both are written in C in order to keep the 
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memory footprint and runtime overhead introduced by the engine small. We are using EMWF as 
a test bed for the experimentation with the workflow paradigm and evaluation of its effectiveness, 
merits and shortcomings.  

Following this introduction, Section 2 provides an overview of closely related work. Section 3 
describes the major components of EMWF and general structure of embedded devices built 
within the framework. Section 4 describes the design, architecture and implementation of the 
engine software. Section 5 describes the entities and elements of SISARL-XPDL and provides 
rationales for their inclusion. Section 6 describes the case studies done to date. Section 7 
summarizes the paper and presents future work. 

2 RELATED WORKS  

As stated earlier, SISARL-XPDL is a small variant of standard XPDL [16]. XPDL was 
developed by WfMC (Workflow Management Coalition) to standardize specifications of 
workflows and thus, make process definitions interchangeable among modeling tools and 
execution engines. SISARL-XPDL contains a subset of XPDL, leaving out most of the entities 
and elements in standard XPDL that are not needed for embedded applications. The subset is 
augmented with elements essential for SRARD but not provided by standard XPDL. The 
SISARL-XPDL preprocessor translates some augmented elements into attributes of activities and 
workflows. The engine treats them as scheduling and resource allocation directives. Other 
augmented elements are built-in activities (e.g., behavior coordination mechanisms). They are 
translated into compound built-in activities defined by workflow graphs in terms of standard 
XPDL. In this way, we minimize the impact of incompatibility between SISARL-XPDL and 
standard XPDL.  

Similarly, numerous modern workflow engines and management environments (e.g., [20 - 22]) 
are available. Many of them handle in an integrated way automated activities implemented in 
software, activities triggered by external events, and activities carried out manually. EMWF is 
built on the foundation established by them. Existing engines are designed to run in J2EE 
or .NET environments and require resources far exceed amounts available in SRARD and similar 
embedded devices. In contrast, the EMWF engines are scaled down to fit embedded platforms. 

EMWF has the same goal as many efforts by robotic community aiming at making the creation 
and modification of robotic and assistive device software and systems easier. As examples, 
building blocks and development environments provided by Microsoft Robotic Studio and 
LEGO®MINDSTORMS™ reduce the skills and effort that are required to design and build some 
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robots [23, 24]. Research projects such as CARMENO, CLARAty, MARIE, MIRO, ORCA, 
OROCOS, and Player [25-31] aim to provide component-based software architectures and tools 
for building robotic software systems from reusable modules. EMWF aims to further the goal of 
Embedded Software Architecture for Intelligent Robots (ESAIR) [32]. ESAIR is an 
object-oriented environment designed and developed to support component-based design and 
implementation of embedded software of behavior-based robots. By providing a pluggable 
component interface and a discovery mechanism, ESAIR enables devices and software modules 
to be plugged in and removed from the system without having to redesign and implement the 
robot. Many design choices of EMWF were directly influenced by ESAIR. 

3 ARCHITECTURE AND COMPONENTS 

This section first describes architecture of workflow-based embedded devices focusing on the 
applications. It then describes the system from the perspective of the workflow engine.  

3.1 Application Structure 

In a SRARD device with workflow-based architecture, most parts are built from activities and 
workflows. Drivers and event handlers of some components may be hardwired, however.  

To illustrate, Figure 1 shows the structure of a representative workflow-based SRARD, 
highlighting its application components. The device is an intelligent medication cart designed to 
lead its user to patients and assist the user in administration of medications. The cart has 
microcontrollers and motors for propulsion, ultrasound range finder and other sensors for 
guidance and navigation, RFID reader and bar-code scanner for identification, and so on. Their 
drivers, like the workflow engine itself, are not built from workflows; these parts are shown in 
dark color in the figure. The other functions, including guidance and propulsion, are provided by 
workflows.  

In general, a device may contain both non-embedded and embedded workflows. For example, 
intelligent medication carts typically support planning and scheduling medication administration 
and automatic patient record updates. These components have no embedded modules. Their 
workflows are executed just like workflows in enterprise applications, perhaps even by another 
engine, not the embedded engine. We will ignore non-embedded workflows hereafter. By 
workflows, we mean embedded workflows.  
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Figure 1. Structure of a workflow-based device 

Figure 2 shows the guidance and propulsion module of the cart in its entirety to illustrate a 
distinguishing characteristic of embedded workflows: Only some activities in the module are 
executed by the engine on a CPU; we will call them software activities when we need to be 
specifics. An embedded workflow also has external activities: They are carried out manually, or 
by sensor devices, special-purpose hardware, and mechanical parts. In our example, external 
activities are in dotted boxes labeled environment interaction and cart components.  
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Figure 2. Guidance and propulsion workflows  
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In this and subsequent workflow graphs, we use rectangular boxes to represent general activities 
of the application. Table 1 lists examples of built-in activities. The left column lists generic 
built-ins required by typical embedded applications, including start, stop, listen, if else and merge 

(implicitly indicated by multiple edges directed to a single activity in order to save space) shown 
in Figure 2. The right column lists built-in activities EMWF provides specifically for 
behavior-based robotic applications. We will return to discuss these choices in Section 5. The 
symbols used to represent generic built-ins are from Windows Workflow Framework [22]. When 
there is no need to be specific, we use dotted circles to represent all built-in activities 

Table 1 Examples of built-in activities 

Start
Stop
Repeat point
While

If else
Delay /Timeout
Throw
Exception

Invoke workflow
Execute workflow
Invoke component command
Listen component event

Generic built-ins Built-ins for BCA

Arbiter

Voter

Superposition

Push data

Pull data

Mode change

S

V

A

P

R

-

+

 

Before moving forward to describe engine structure, it is important to note that procedures and 
executables for general software activities must not make blocking calls, and each has a single 
entry and a single exit. In essence, all activities that alter the flow path of a workflow are 
built-ins. This requirement is not unduly restrictive for embedded workflows as exemplified by 
the module in Figure 2. In behavior-based robotic devices, such as the ones targeted by ESAIR 
[32], activities are behaviors. With one exception, they meet this requirement naturally. The 
exception is when behaviors share sensor devices; a behavior needs to send the data it reads to 
receiving behavior(s). Having the sender block and wait for the receiver to be ready is not 
acceptable. The ESAIR provides a behavior supervisor to facilitate communication: A sending 
behavior can send data asynchronously to the middleware component. The supervisor holds the 
data and delivers the data to the receiver when the receiver is ready. The EMWF workflow 
engines also provide this kind of service. 
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3.2 Engine Structure 

Figure 3 shows a different view of the structure of a workflow-based device. Its focus being on 
the engine, the figure depicts the applications as workflow instances. Workflow definitions and 
attributes are represented internally as workflow scripts. Scripts are stored in .wfs files, which 
when loaded into memory, are processed by the engine. We omit the other aspects of the scripts 
because they are unimportant for our discussion here.  
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Figure 3. Major embedded engine components 

The XPDL term participant in the upper right refers to a resource such as a hardware device (e.g., 
bar-code scanner, motor, sensor and even CPU), people, and so on. When assigned to do the 
work, participants carry out external activities. They are declared in workflow definitions along 
with participants that implement software activities, including computer programs, executables 
and interfaces, Resources exclusively owned and used by individual software activities are not 
thus declared, however. 

The engine has three major components: workflow manager, workflow processor and engine 
manager. The workflow manager processes the workflow scripts and has the workflow processor 
execute activities according to the scripts. We will return to describe these components in the 
next section.  

The engine manager manages the configurations of both the engine and application workflows 
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and is responsible for the initialization of the engine and loading workflow scripts of applications 
during initialization. It is also responsible for handling user requests and managing access to 
workflow-related definitions and optional contextual information. 

The diagram of the engine manager in Figure 3 is that of an engine used for development within 
EMWF. A developer can tune the engine via the configuration interface by changing its 
configuration parameters, which include the maximum number of threads and timer resolution. 
The engine manager has SISARL-XPDL preprocessor and XPDL parser locally, as shown in the 
figure, or can access the tools remotely. These tools make it possible for the developer to add 
new workflows defined in terms of SISARL-XPDL, translate them into standard XPDL, parsed 
XPDL definitions into workflow scripts and stores the scripts as .wfs files. We show these tools 
and .xpdl files of workflow definitions in dotted shapes to indicate the fact that a typical device, 
even one as complex as an intelligent medication cart, do not have these tools. By requiring 
XPDL definitions to be parsed off-line, the engine does not incur the substantial memory space 
and power required to run the tools. 

The current versions of EMWF engines allow workflow script files defining workflows to be 
added and removed. The engine must be restarted for the configuration changes to take effect. 
This means that all the workflows a device needs to operate in multiple modes or adapt while 
running must have already been in the system and initialized before the device starts to run. 

4 WORKFLOW MANAGER AND PROCESSOR 

The workflow manager and workflow processor form the core of the engine. They contribute the 
bulk of memory footprint and context switch overheads of the engine. Needless to say that it is 
important to keep these overheads small. This objective is more challenging for embedded 
engines than engines used for enterprise computing. The execution times of general activities can 
be very small, especially for low-level embedded components. It follows that time spent to 
context switch between threads scheduling and executing general and built-in activities can be a 
large percentage of the overall run-time of such components.  

4.1 Design Rationales 

An obvious way to minimize context switches is to have a single-threaded workflow processor 
execute all software activities: The thread alternatively invokes general activities and built-in 
activities as procedures and in-line functions. The workflow manager decides which activity of 
which workflow to execute based on the scheduling policy requested by the application. We 
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ruled out having single-threaded workflow processor by default. A reason is that embedded 
workflows can block on CPU, waiting for completion of external activities or user intervention, 
and any means to better utilize the CPU involves the use of additional threads. By making the 
maximum number of workflow-processing threads a configuration parameter of the engine, the 
developer can always choose the single-threaded configuration when it works for the device. 

There are two ways to structure a multi-threaded workflow processor:  

1. All activities in each workflow are executed by thread(s) dedicated to the workflow.  

2. Activities from multiple workflows are queued as work items and executed by worker 
threads serving the queues.  

To make good use of the respective thread models and APIs supported by the operating systems, 
the current version of the Linux EMWF engine, called LIWWE (Light-Weight Workflow Engine) 
in [37], uses the first strategy. The Windows CE engine uses the second. We will return to 
provide further details on the designs shortly.  

typedef struct activity_t {
BuildinActivity; // TRUE for a built-in
BuildinActivityType; 
* ActivityExe;   // function name or .exe
* Transitions;   // array of transitions
* ParticpantListHead; // Resources …

} ACTIVITY;
typedef struct workflow_t {

* WorkflowScript;   //  Workflow definition
…

} WORKFLOW;
typedef struct package_t {

* Workflows;   // array of wf in pkg
* Activities;     // array of activities…

} PACKAGE;
typedef struct activity_instance_t {

ACTIVITY* ThisActivity;  
Autorun;          // automatic or manual
isRunning;      
PriorityIncrement; 
…

} ACTINSTANCE;
typedef struct package_instance_t {

PACKAGE ThisPackage;
WFINSTANCE* RunningWorkflow; 
* PkgWideVariables;

} 

typedef struct worflow_instance_t {
WORKFLOW* ThisWorkflow;
WorkflowStatus;    
* StartTrigger;  // start event or timer
* EndTrigger;   // end event or timer
WfPriority;        // base priority of wf
ACTINSTANCE* RunningActivities;  
…
* WfWideVariables; 

} WFINSTANCE;

activity instances

package
instances

workflow instances

wf-wide variables

pkg-wide variables

Run-time data

 

Figure 4. Workflow and activity data structures 
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Figure 4 shows the structures of run-time data maintained by the engine on activity, workflow 
and package types and instances. (The XPDL term package means a container for grouping 
entities common in multiple workflow definitions to avoid duplicate definitions.) We omit data 
types in order to save space when there is no ambiguity. 

Most fields of structures in the figure are self-explanatory. Among the noteworthy ones is the 

AutoRun flag used to capture an execution control attribute of an activity. Its value being TRUE 

indicates that the engine is to start and finish the activity automatically. The opposite indicates 
manual mode; the execution of the activity requires explicit user interaction. In similar vein, 
StartTrigger and EndTrigger give the synchronization objects, if any, that signal to start the 
workflow and end the workflow process. As examples, the starts of workflows in Figure 2 are 
triggered by timers firing periodically at the specified rates.  

The current versions of both EMWF engines trade off in favor of run-time overheads, sometimes 
at the expense of memory footprint. As stated earlier, the engine manager loads intermediate .wfs 

files of all workflows during initialization. This allows the workflow manager to dynamically 
allocate memory for all instances of activities and workflows during initialization. Many 
low-level embedded components (e.g., the workflows in Figure 2) have stringent timing 
requirements. For them, this is exactly what the system should do. 

Threads executing general activities and built-in activities of a workflow and a package of 
related workflows must be able to communicate. This is done by via workflow-wide and 
package-wide variables WfWideVariables and PkgWideVariables that are accessible by all threads 
working on the workflows. Each workflow instance has a priority, given by the value of 
WfPriority field in the workflow instance. This field captures the contextual information on 
execution and resource allocation priority of the workflow provided by its definition. This is the 
default priority of all activities in the workflow: The definition optionally provides each activity 
with a priority relative to other activities in the workflow, and this information is captured by the 
field PriorityIncrement within the activity instance.  

4.2 Activity Execution 

Again, in both EMWF engines, the workflow manager creates and initializes threads needed to 
execute software and built-in activities when the engine is initialized, a group of POSIX threads 
in the Linux engine and user-mode threads in the Windows CE version. All threads execute at 
fixed priorities. 
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4.2.1 Linux Version  

As stated earlier, workflows are executed by dedicated threads in the Linux engine LIWWE. The 
workflow manager attaches a thread to each workflow when it initializes the workflow and 
schedules the thread to execute both general and built-in activities in the workflow. The thread 
inherits the priority of the workflow.  

The workflow manager keeps track of the relationship between threads and workflows. When a 
thread executes an end activity, it is de-attached from the workflow and returned to the thread 
pool. On the other hand, when the EndTrigger of the workflow being executed signals to 
terminate the workflow process, the workflow manager may terminate the thread(s) attached to 
the workflow.  

A workflow may contain built-in split and merge activities. The former splits an activity into 
multiple successor activities, and latter merge multiple predecessor activities into a single 
successor. When a split occurs, the manager selectively attaches additional threads to execute the 
successors. When multiple threads join for a merge activity, the last thread that reaches the merge 
executes the merge operation.  

An obvious advantage of this design is that most of the transitions between activities incur no 
context switch. Another important advantage is that the workflow manager does not need to 
handle blocking built-in activities (e.g., delay and listen) specially. It can simply let the thread 
executing a workflow wait when it executes such a built-in. It is expensive for threads to change 
priority, however. For this reason, the current version of LIWWE does not support 
varying-priority within workflow: Priority increments of activities are ignored.  

4.2.2 Windows CE Version 

The bottom half of Figure 3 shows the structures of workflow manager and workflow processor 
in the Window CE version of the EMWF engine. A configuration parameter is the number of 
priorities the engine supports. The workflow manager maintains a FIFO queue per priority. When 
a general software activity is ready to be executed, it is wrapped as a work item and placed in the 
queue at the priority of the activity (i.e., the sum of workflow priority and priority increment of 
the activity). The workflow manager has at least one worker thread dedicated to execute work 
items in each queue at the priority of the queue. In other words, ready activities are executed 
according to their priorities with ties among equal priority activities broken in FIFO order. 

Threads in the workflow manager and workflow processor interact in more or less the 
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leader/followers pattern [34], worker threads being followers. Let us focus first on the simple 
case where the workflows have no start, end and intermediate triggers [16], i.e., no blocking 
built-in activities. If the device were to have only such workflows, the workflow manager might 
have just one leader thread and let the leader execute at the highest priority. The leader process 
workflow scripts, queues ready general activities as work items, supervises their completion, 
executes built-in activities, which in turn leads to more activities be queued. Almost all built-in 
activities are simple. As depicted by the figure, they are not queued as work items. Rather the 
leader executes them itself; this allows functions for most built-in activities to be in-line. These 
functions of the leader are depicted as general activity scheduler and built-in activity accelerator 
in Figure 3. 

Specifically, worker threads signals the leader thread upon the completion of each general 
activity by setting a manual-reset completion event. When awaken by the event, the leader 
checks the completion status of pending (i.e., queued but yet to be completed) activities in 
priority order, starting from the one with the highest priority. For each completed activity it finds, 
the leader executes the successor built-in activity, queues the actuality or activities readied by the 
completion of the built-in activity. After it completes the work for that flow path, it continues to 
check the pending general activities and serves them until it find no more completed activities 
waiting for its attention. It then resets the completion event and return to wait. 

Clearly, the simple pattern with a single leader does not work because many generic built-ins 
(e.g., delay, listen) are blocking. A simple way is to have the leader dispatch a new leader just 
before it goes to wait. This scheme can work for a simple device, but can use more threads than 
necessary for complex SRARD devices like intelligent medication carts.  

The current workflow manager takes advantage of the fact that workflows are known before the 
engine starts and that a thread can wait simultaneously for multiple objects to reduce the number 
of threads needed to help the leader wait for them. For example, the time manager shown in 
Figure 3 is a helper thread that assists the leader by setting and waiting for all timers used for all 
running workflows. The engine also uses at least one helper thread to monitor events, rules, 
result tokens, etc. that standard XPDL allows to be triggers for which workflows may wait at the 
start and end, as well as within them.  

An advantage of this engine is that it can easily support varying priority within workflows. Every 
transition from one general activity to another incurs at least one context switch. This is one of 
the major disadvantages when compared with the Linux engine.  
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5 SISARL-XPDL 

The WfMC standard XPDL [16] has been widely used for not only business applications but also 
many industrial applications (e.g., factory and warehouse management) with embedded 
components. There is no question that we can use the full XPDL for defining workflows in 
SRARD and similar devices. A design decision of SISARL-XPDL, the embedded workflow 
definition language supported by EMWF, involves the selection of XPDL elements to be parsed 
into workflow scripts for execution by EMWF engines. It makes sense to start with a minimal 
SISARL-XPDL. We can add more elements into it as needed in the future without having to be 
concerned with backward compatibility. By excluding XPDL elements not essential for SRARD, 
we aim at keeping the EMWF XPDL parser simple and resultant workflow scripts generated by 
parser small.  

5.1 Subset of XPDL Elements 

Table 2 lists examples of standard XPDL elements included in SISARL-XPDL. The table divides 
the elements for definitions of workflows and their related attributes into three parts: workflow 
data, workflow structure, and workflow control. How some elements listed here are to be used 
can be readily deduced from their names. We have talked about some of the elements in passing 
in earlier sections.  

Table 2. Examples of XPDL elements in SISARL-XPDL 

Resources ParticpantType, Participant, Application
FormalParameter, ActualParameter, 

Extensions Period, ExtendedAttributes

Workflow 
Data

TypeDeclaration, DataType, BasicType, 
SchemaType, DeclaredType, RecordType
DataField, InitialValue

Workflow
Structure

Package, Pool, Lane, WorkflowProcess, 
Activity, BlockActivity, SubFlow, Task, 
Application, Implementation

Workflow
Control

Transitions,TransitionRef,TransitionRestriction, 
Route, Join, Split, StartEvent, EndEvent, 
Condition, IntermediateEventTrigger, Deadline, 
Priority

Class
A

Class
B

Class
C  

We use Figure 5 to help us explain some more. The figure depicts a simplified diagram of a 
system consisting of a smart medication dispenser and its user. The diagram is in a style similar 
to the ones used by some workflow graph editors. The outermost rectangle represents a package, 
i.e., a container for holding common entities. The package here contains two workflow processes: 
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Each process has one or more workflows. Here, the dispenser process has three interacting 
workflows; they are notify_workflow, timer_workflow, and schedule_workflow. The bottom 
rectangle encircles the manual workflow process of user activities. Associated with each 
workflow definition is the declaration of participants needed by the workflow. Examples here are 
user and sched ( ) needed by the manual and schedule workflows, and alarm and clock needed 
by the notify workflow.  

A sub-flow is a workflow called synchronously by another workflow, e.g., schedule_workflow is 
a sub-flow of notify_workflow. A workflow may also be called asynchronously, as exemplified by 
how notify and timer workflows here interact.  

Dispense 
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set timer

notify_workflow

Notify 
user by 
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schedule_
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Send
email
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Figure 5. Workflows in medication dispenser 

The example has only a two-way XOR split (i.e., an if-else built-in activity) depicted as a circle 
labeled R in notify_workflow graph. In general, the Route activity can have arbitrary numbers of 
incoming and outgoing transitions. When used with transition restriction, Route can implement 
arbitrary complex flow logic, including combination of conditional XOR and AND split of 
outgoing transitions and join of incoming transitions.  

XPDL Event activity is a general primitive for alternating the courses and timing of a workflow 
process. An event trigger can be time, timer, rule, results, result errors, and so on. The manual 
process illustrates the use of StartEvent. In this case, it is an alarm event (trg_2). When sounded, 
it triggers the start of the manual workflow: The user reports to the dispenser, which in turn sets 
the intermediate event (trg_1) used by notify_workflow. 
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Finally, XPDL schema provides a standard way for introducing user specific extensions. We have 
not yet fully exploited this aspect to add workflow attributes, such as rate and latency, which 
when declared can be used to help the engine better service workflows with rate and deadline 
constraints.  

5.2 Built-ins for Behavior Coordination  

Another design decision of SISARL-XPDL involves the choices of mechanisms for behavior 
coordination to be included as special-purpose built-in activities supported by EMWF: The 
special-purpose built-in activities provided by the current version of SISARL-XPDL are listed in 
the left half of Table 1. EMWF makes these commonly used building blocks of behavior-based 
robotic devices available and easily reusable. 

To justify their inclusion, we digress momentarily to observe ways in which a workflow-based 
design and implementation may map basic operations of a behavior-based robotic device to 
activities and workflows. Basic operations can be divided into reactions and behaviors (or 
reactive behaviors versus deliberative behaviors according to the definition in ESAIR [32]). A 
reaction is a simple basic operation (e.g., stop, spin) during which the system keeps no state. 
Even a simple robotic device (e.g., an automatic vacuum cleaner) can have a large number of 
reactions. A behavior is a sequenced set of reactions. The reactions in the set execute one or few 
at a time and thus perform a more complex operation together. This way of combining reactions 
into behaviors is called sequencing. It is the way advocated by authors of [35] and used in 
ESAIR. 

In a small grain workflow-based design and implementation, each reaction is an activity. A 
behavior is a compound activity or a workflow. It is then defined by a workflow graph in which 
nodes are reactions and edges (transitions) are sequencing of reactions. It is common to manage 
transitions between reactions according to a finite state machine, executed from start to finish 
with or without external intervention. 

Alternatively, in a large grain workflow-based design, activities are behaviors. In other words, 
each behavior, once starts, runs to completion without requiring engine attention. EMWF 
currently supports this option. In this case, some transitions between activities are coordination 
of behaviors. 

As shown in Figure 6, there are two major types of behavior coordination mechanisms: 
arbitration and command fusion [35]. At each selection time, an arbitration mechanism selects 
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one behavior from a group of behaviors competing for the control of the robot. A command 
fusion mechanism selects multiple behaviors and let them contribute to the control of the robot.  

Behavior coordination mechanisms

Arbitration Command Fusion

Priority-
based

State-
based

Winner-
take-all

Voting Superposition FuzzyMultiple 
objectives  

Figure 6. Taxonomy of behavior coordination mechanisms 

Arbitration mechanisms are further divided into priority-based, state-based and winner-take-all. 
Fixed priority, variable priority and subsumption mechanisms are priority-based, with the 
fixed-priority mechanism being the simplest of all mechanisms. When multiple behaviors send 
commands to the arbiter, the arbiter sends only the command of the highest priority behavior. In 
essence, subsumption is a generalization of fixed priority arbitration. Its disadvantages include 
that behaviors cannot cooperate and control structure is hardwired, and its advantages over 
fixed-priority arbitration are not sufficient to warrant its added complexity and variability [36, 
37]. For similar reasons, variable priority is also not widely used. This is the reason that EMWF 
supports only fixed priority arbitration for now. 

There are four major categories of command fusion mechanisms: voting, superposition, multiple 
objective behavior coordination and fuzzy command fusion. We chose to support voting and 
superposition.  Like fixed priority arbiter, voter and superposition mechanism can be 
implemented using route activity.  

We mentioned earlier that behaviors sometimes need to send and received data. Push and pull 
data built-in activities allow them to do so asynchronously.  The mode change activity enables 
the device to reconfigure while running to a limited extent. The limitation arises from that the 
current version of EMWF requires all workflow scripts be loaded at initialization. We will work 
to remove this limitation in a future version.  

6 CASE STUDIES 

We are evaluating the workflow-based design for SRARD, and for smart personal and home 
automation devices in general, along multiple dimensions to seek answers to many questions, 
including the ones listed below: 
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1 Are the higher memory and runtime overheads of workflow-based devices within acceptable 
ranges? 

2 Is the workflow approach indeed effective in reducing the time and effort needed for design 
and building of component-based SRARD and configure and customize the devices after 
they are built? 

3 Can the paradigm enable developers with minimal expertise in robotics build robotic devices 
from reusable components with quality comparable to handcrafted ones? 

4 What other uses are there of workflow definitions, engines, management environments and 
tools? 

The case studies summarized here hardly scratch the surface of the experimentation and 
evaluation work required to answer these questions. What we found from our initial experiments 
are encouraging enough for us to move forward and do more.  

6.1 Memory and Run-Time Overheads 

The purpose of the first experiment carried out on LIWWE as soon as the preliminary version of 
the engine became available was to assess the overheads introduced by the engine and 
application workflows. EMWF and the workflow approach supported by it are not the way to go 
when optimizing run-time performance, size and power consumption is the primary design goal. 
Most SRARD and similar devices are not demanding in these aspects: Still, it is important to be 
sure that overheads one must endure for flexibility is acceptable.  

In this experiment, we measured the resident memory sizes and total CPU times of two small 
workflow-based applications: One includes processes with route activity between general 
activities. In other words, it has splits and joins in its control path. The processes in the other 
applications contain only general activities and straight line transitions. Both applications have 
no blocking built-in activities. We used top command to measure the total resident memory size 
of application workflows and the engine and time command to measure their total CPU time. We 
then implemented the applications with customized programs and measured their residence 
memory sizes and total CPU times.  

Table 3 summarizes the results from the measurements. One can see that the workflow-based 
applications and the engine consume up to 50% more memory space than customized codes. The 
executable code of the engine itself is only 64 KB. However, the engine must maintain data 
structures of loaded packages and workflows and they take up much more space than the engine.  
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Table 3. Comparison of memory sizes and execution times 

Maximum resident memory size in megabits

Workflows & engine Customized code

Application without route

Application with route

Average CPU time in seconds

Workflows & engine Customized code

Application without route

Application with route

38

39

25

26

5.7796

6.4020

5.5174

6.3474  

On the other hand, we can also see from the table that the total run time overhead of the 
workflow application and the engine is only slightly larger than that of the customized code for 
both applications. This is what we expect. As stated earlier, LIWWE uses dedicated threads to 
execute workflows and hence does not introduce context switches between general and built-in 
activities.  

We will repeat this measurement as soon as the Windows CE engine is stable enough for this 
experiment. Because the bulk of the memory space is taken up by application data structures and 
they are independent of the engine, we expect that memory space overheads are comparable for 
both engines. However, the run-time overhead of workflow applications on Windows CE engine 
may be higher because the engine uses different threads to execute general and built-in activities.  

6.2 Usage and Effectiveness 

Our experimentations on application of workflow-based design and implementation paradigm to 
smart automation and robotic devices are too limited to give definitive answers to the remaining 
questions posted above. However, from what we have done so far, we are convinced that 
componentization comes naturally with workflow-based design of such embedded devices, as 
advocates of workflows say about enterprise applications. Indeed, the workflow engine provides 
a flexible platform for integrating reusable components. One can easily build devices with 
different functionalities from components by modifying the graphs defining their workflow 
processes and/or using different participants for activities. To illustrate, Figure 7 shows the graph 
of workflows in an automatic vacuum cleaner. The figure is almost the same as in Figure 2, 
except that the workflow graphs in them are different. Indeed, many of the software activities in 
them are essentially the same. (Of course, the robot components used for intelligent medication 
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cart and vacuum cleaner differ significantly.) If we want to build a toy sumo, we can do so 
simply by replacing the back and random move maneuver by a move back and hit maneuver.  

Environment Interaction Workflows Robot Components

Move the robotMove the robotMove the robotWait for the moveWait for the move

Edge maneuverEdge maneuverEdge maneuver

Sense edgeSense edgeEdgeEdge

20Hz

ContactContactContact

10Hz

TrackTrack

2Hz

Sense contactSense contact

Find obstacleFind obstacle

Track maneuverTrack maneuverTrack maneuver

On  
edge? No

Yes

Contacted? No
Yes

Obstacle 
found?

Yes

No

Back & random 
move

(Contact maneuver)

Back & random Back & random 
movemove

(Contact maneuver)(Contact maneuver)

 

Figure 7. Workflows in a automatic vacuum cleaner 

We are also using workflows for the specification of the operations of the devices, especially 
semi-automatic devices that rely on their users to perform critical operations. Specifically, 
according to the SISARL component model [38], a device is specified by an operational 
(behavior) view specification, in addition to a traditional, structural view specification on how 
the device is to be built. The operational view specification of a device is written in terms of 
workflow graphs. The graphs define the actions of the user(s) and collaborations between the 
user and the device in the same way as they define the work by the device.  

Returning to Figure 5, we note that the definitions of timer, notify, and schedule workflows are 
parts that define the implementation of the medication dispenser. Together with the definition of 
the user workflow process, they provide a rigorous specification of how a smart medication 
dispenser works, how its user may act and how the device and its user interact.  

In many ways, the workflow-based specifications are more intuitive and easily understandable 
than the more commonly used state machine specifications. Other advantages of workflow-based 
specification are that specifications are executable and map directly to implementation. In a 
parallel effort, we are developing a simulation environment that will enable us to experiment 
with and evaluate new device designs and prototypes as soon as they are specified and during 
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their development. In particular, by executing the operational specification of a new device with 
user activities based on validated user models, the environment can help us to better assess the 
usability of the device throughout its development process. 

7 SUMMARY 

We have described in earlier sections the design and implementation of EMWF. The embedded 
workflow framework provides light-weight engines for Linux and Windows CE platforms. It 
also provides a small but extensible language, called SISARL-XPDL for defining embedded 
workflow processes. The SISARL-XPDL preprocessor translates special-purpose built-in 
activities into standard XPDL. Unlike some existing engines, the EMWF engines cannot execute 
XPDL directly. Commonly used execution languages such as BPEL are unsuitable for our 
purpose. For these reasons, EMWF also has a XPDL parser that translates workflow process 
definitions into workflow scripts for the engine.  

Both engines, SISARL-XPDL preprocessor and EMWF XPDL parser will be released under 
GPL license later this year. We chose to build the current version of the above mentioned 
simulation environment on Windows Workflow Foundation because we want a prototype 
environment for experimentation in minimal time. We will port part of the environment to 
EMWF in the near future. 

The work on case studies reported here is only the tip of the iceberg of all the work to be done to 
demonstrate that workflow paradigm is indeed an excellent way to build smart and robotic 
devices for personal and home use and for automation in care providing institutions. We do not 
yet have working workflow-based device prototypes from which we can systematically extract 
benchmarks for performance measurement. We will repeat the experiment described above to 
better quantify overhead penalties of workflow-based designs as benchmarks become available.  

8 ACKNOWLEDGMENT 

This work is partially supported by the Taiwan Academia Sinica thematic project SISARL, 
Sensor Information Systems for Active Retirees and Assisted Living. 

8 REFERENCES 

[1] iRobot Home Robots, http://www.irobot.com/   



 

 23

[2] Forizzi, J. and C. DiSalvo, “Service robots in domestic environment: a study of Roomba 
vacuum in the home,” Proceedings of ACM/IEEE International Conference on HRI, March 
2006.  

[3] Kulyukin, V. A. and C. Gharpure, “Ergonomics-for-one in a robot shopping cart for the 
blind,” Proceedings of ACM/IEEE International Conference on HRI, March 2006 

[4] Kaneshige,Y., M. Nihei, and M. G. Fujie, “Development of new mobility assistive robot for 
elderly people with body functional control,” Proceedings of IEEE/RAS-EMBS,, February 
2006.   

[5] Lin, C. H., Y. Q. Wang and K. T. Song, “Personal assistant robot,” Proceedings of IEEE 
International Conference on Mechatronics, July 2005.  

[6] Mataric, M. J., J. Eriksson, D. J. Feil-Seifer, C. J. Winstein, “Socially Assistive Robotics for 
Post-Stroke Rehabilitation,” Journal of Neuroengineering and Rehabilitation, Vol. 4, No. 5, 
2007  

[7] Gockley R., and M. J. Mataric, “Encouraging physical therapy compliance with hand-off 
mobile robot,” Proceedings of ACM/IEEE International Conference on HRI, March 2006. 

[8] Thrun, S., “Toward a framework for human-robot interaction,” Human-Computer Interaction, 
Vol. 19, 2004. 

[9] Fong, T., I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive robots,” 
Robotics and Autonomous Systems, Vol. 42, 2003. 

[10] “Speci-Minder autonomous hospital robots,” http://robots.net/article/2156.html, 2007 

[11] http://www.informatics.nhs.uk/cgi-bin/item.cgi?id=1155, “Washington hospital implements 
drug dispensing robots,” February 2005. 

[12] Grudin, J., “Three faces of human-computer interaction,” IEEE Annals of the History of 
Computing, Vol. 27, No. 4, 2005.  

[13] Coradeschi, S. and A. Saffiotti, “Symbiotic robotic systems: humans, robots and smart 
environments,” IEEE Intelligent Systems, 2006. 

[14] SISARL (Sensor Information Systems for Active Retirees and Assisted Living), 
http://sisarl.org  

[15] Workflow definition, http://en.wikipedia.org/wiki/Workflow 

[16] XPDL (XML Process Definition Language) Document, 
http://www.wfmc.org/standards/docs/TC-1025_xpdl.2.2005-10-03.pdf, October 2005  

[17] YAWL (Yet Another Workflow Language), http://yawlfoundation.org/  



 

 24

[18] BPEL (Business Process Execution Language), http://en.wikipedia.org/wiki/BPEL 

[19] Open Source Java XPDL editor, http://www.enhydra.org/workflow/jawe/index.html  

[20] Windows Workflow Foundation, 
http://msdn2.microsoft.com/en-us/netframework/aa663328.aspx. 

[21] WfMC: Workflow Management Coalition, http://www.wfmc.org/ and WfMOpen, 
http://wfmopen.sourceforge.net/. 

[22] Enhydra Shark, http://forge.objectweb.org/projects/shark  

[23] Microsoft Robotic Studio Developers Center, “Introduction to Microsoft Robotic Studio,” 
http://msdn2.microsoft.com/en-us/library/bb483024.aspx. 

[24] Baum, D., M. Gasperi, R. Hempel and L. Villa, Extreme MINDSTORMS, APRESS™ 
publication, 2000. 

[25] Montemerlo, M., N. Roy and S. Thrun, “Perspectives on standardization in mobile robot 
programming: the CARMEN toolkit,” Proceedings of IEEE/RSJ International Conference on 
Intelligent Robots and Systems, Vol. 3, 2003. 

[26] Nesnas, I. A. D. et al., “CLARAty and challenges in developing interoperable robotic 
software,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and 
Systems, vol. 3, 2003. 

[27] Cote, C., et al., “Robotic software integration using MARIE,” International Journal of 
Advanced Robotic Systems, vol. 3, 2006.  

[28] Utz, H., S. Sablatnog, S. Enderle, and G. Kraetzschmar, “MIRO – middleware for mobile 
robot applications,” IEEE Transactions on Robotics and Automation, vol. 18, 2002. 

Makarenko, A., A. Brooks, and T. Kaupp, “ORCA: components for robotics,” Proceedings of 
IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Robotic 
Standardization, 2006. 

[30] Bruyninckx, H., “Open robot control software: the OROCOS project,” Proceedings of 
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001. 

[31] Vaughan, R. T., B. P. Gerkey and A. Howard, “On device abstractions for portable reusable 
robot code,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and 
Systems, vol. 3, 2003.  

[32] Huang,Y. L., E. C. Hsia, and J. S. Hu, “The design and implementation of an embedded 
software architecture for intelligent robots,” submitted to 2007 IEEE/RSJ International 
Conference on Intelligent Robots, 2007 



 

 25

[33] Chang, S.Y., Y. F. Lu, T. W. Kuo, and J. W. S. Liu, “The design of a light-weight workflow 
engine for embedded systems," Presented at Workshop on Software and Systems for Medical 
Devices and Services, December 2007. 

[34] Schmidt, D. C. et al., “Leader/followers: a design pattern for efficient multithreaded event 
de-multiplexing and dispatching,” 
http://ftp.icm.edu.pl/packages/ace/ACE/PDF/lf-PLOPD.pdf  

[35] Lenser, S. and M. Veloso, “Behavior overview,” October 2003. 
http://www.cs.cmu.edu/~robosoccer/cmrobobits/lectures/behavior-overview.pdf  

[36] P. Pirjanian, “Behavior coordination mechanisms – state-of-the-art,” Institute for Robotics 
and Intelligent Systems Technical Report IRIS-99-375, 1999.  

[37] J. Jones and D. Roth, Robot programming: a practical guide to behavior-based robotics, 
McGraw-Hill/TAB Electronics, 2003. 

[38] T.Y. Chen, P. H. Tsai, T. S. Chou, C. S. Shih, T. W. Kuo, and J. W. S. Liu, “Component 
Model and Architecture of Smart Devices for the Elderly,” Proceedings of the 7th Working 
IEEE/IFIP Conference on Software Architecture, pp. 51 – 60, February 2008. 

 

 

 


