
TR-IIS-08-005

An Embedded Workflow Framework
for Flexible Robotic Devices

T. S. Chou, S. Y. Chang, Y. F. Lu, Y. C. Wang, M. K. Ouyang,

C. S. Shih, T. W. Kuo, J. S. Hu and J. W. S. Liu

Apr. 21, 2008 || Technical Report No. TR-IIS-08-005
http://www.iis.sinica.edu.tw/page/library/LIB/TechReport/tr2008/tr08.html

 1

Institute of Information Science, Academia Sinica
Technical Report TR-IIS-08-005

An Embedded Workflow Framework for

Flexible Robotic Devices

T. S. Chou, S. Y. Chang, Y. F. Lu, Y. C. Wang, M. K. Ouyang,
C. S. Shih, T. W. Kuo, J. S. Hu and J. W. S. Liu

ABSTRACT

This paper describes the design and implementation of an open source embedded workflow
framework (EMWF). By providing a language for specifying embedded workflow processes
and light weight engines for executing and managing them, EMWF enables us to design and
build service robots and assistive robotic devices on workflow-based architecture. The
embedded process definition language supported by EMWF is called SISARL-XPDL. It is a
subset of the standard process definition language XPDL (XML Process Definition Language)
augmented with elements that are essential for smart embedded devices but not offered by
XPDL. The SISARL-XPDL preprocessor translates augmented elements into either
directives for the engine or compound built-in activities defined in terms of standard XPDL.
EMWF provides two workflow engines, for Linux and Windows CE platforms. Both are
written in C in order to keep the memory footprint and runtime overhead of the engine small.
We use EMWF as a test bed for experimentation with the workflow approach and evaluation
of workflow-based design.

Copyright @ April 2008

T. S. Chou, Y. C. Wang, and J. W. S. Liu are affiliated with Institute of Information Science, Academia
Sinica.Taiwan. Their email addresses are {tschou, wych, janeliu}@iis.sinica.edu.tw

S. Y. Chang, M. K. Ouyang, Y. F. Lu, C. S. Shih and T. W. Kuo are affiliated with Department of Computer
Science and Information Engineering, National Taiwan University, Taiwan. M. K. Ouyang’s email address is
ouyang@iis.sinica.edu.tw, and the email addresses of Y. F. Lu, C. S. Shih and T. W. Ku are {d93023, cshih,
ktw}@csie.ntu.edu.tw
 J. S. Hu is affiliated with Electrical and Control Engineering Department, National Chiao-Tung University,
Taiwan. His email address is jshu@cn.nctu.edu.tw

 2

TABLE OF CONTENTS

ABSTRACT.. 1

TABLE OF CONTENTS.. 2

1 INTRODUCTION ... 3

2 RELATED WORKS .. 5

3 ARCHITECTURE AND COMPONENTS.. 6

3.1 Application Structure .. 6

3.2 Engine Structure.. 9

4 WORKFLOW MANAGER AND PROCESSOR.. 10

4.1 Design Rationales ... 10

4.2 Activity Execution .. 12

4.2.1 Linux Version... 13

4.2.2 Windows CE Version ... 13

5 SISARL-XPDL.. 15

5.1 Subset of XPDL Elements .. 15

5.2 Built-ins for Behavior Coordination ... 17

6 CASE STUDIES.. 18

6.1 Memory and Run-Time Overheads... 19

6.2 Usage and Effectiveness ... 20

7 SUMMARY ... 22

8 ACKNOWLEDGMENT.. 22

8 REFERENCES .. 22

 3

1 INTRODUCTION

In coming decades, we are likely to witness accelerated growth in diversity and use of service
robots and assistive robotic devices (SRARD). Examples include home and personal automation
and assistive devices (e.g., robotic housekeeping aids and mobility assistants [1-5]) and social
and service robots (e.g., robotic pets, object fetchers and intelligent physical-therapy companions
[6-9]). Such devices can help to improve the quality of life and enhance the accessibility and
mobility of their users, make physical exercises and therapy regiment more effective, and so on.
They have become increasingly more essential tools, as world population ages and more and
more elderly individuals need their help to stay well and remain independent. SRARD also
include automation equipment and tools for hospitals and other care-providing institutions (e.g.,
[10-11]). Their use is a way to improve quality and reduce the costs of health and medical care.

Despite vast differences in their functions and appearances, SRARD share many common
characteristics and requirements. Typically, these devices are used at their users’ discretion, and
often for the purpose of complementing and compensating users’ skills and weaknesses [12, 13].
Such a device must be affordable, easy to use. It must be flexible, meaning that it is configurable,
customizable and can adapt: It can be easily configured to work with a variety of sensors and
devices, rely on different support infrastructures and operate in different environments. It should
be customizable according to its user’s preferences. The device may be in use for many years and,
hence, should be able to adapt to changes in its user’s needs, mindset and skills.

Advances in robotic and assistive technologies have made almost all essential SRARD functions
and numerous advanced features feasible. The technology for their design and implementation is
still relatively immature, however. Even today, all but the simplest SRARD devices are
handcrafted. Once built, to configure and customize them is often difficult. This fact has
motivated us to develop the open source embedded workflow framework (EMWF) described in
this paper. Its primary purpose is to reduce the levels of expertise and effort (and consequently
the cost) required for the design and implementation of easily configurable and customizable
smart SISARL devices [14] in general and behavior-based SRARD in particular from reusable
components.

As its name implies, EMWF is based on the try-and-true workflow approach [15] that is widely
used in enterprise computing for automation of business processes. The components of an
application based on this approach are workflows, each of which is composed from elementary
steps called general activities (or simply activities). In workflow-based embedded devices such

 4

as SRARD, some activities are done with executable code; others are carried out manually or by
hardware components. The order and conditions under which activities in a workflow are
executed, the resources needed for their execution, and interactions among activities are
specified in terms of a workflow graph: In essence, it is an executable control and data flow
graph. Each node in it represents an activity. Each directed edge represents a transition from the
source activity to the sink activity, and consequently a precedence relation between the activities.
Each workflow has a start and one or more stop. They are special activities that have no
predecessor and successor, respectively, in the graph.

A key element of a platform for workflow applications is the workflow engine (or engine for
short). This middleware offers the applications an execution environment. In addition to
executing activities implemented by software components, the engine also provides and executes
built-in activities that start and stop workflows, and once a workflow starts, sequence,
synchronize and coordinate general activities in it as specified by the graph defining the
workflow. By managing control and data flows among general activities and allocating resources
and enforcing policies for them on behalf of the applications, the engine dynamically integrates
the application components.

A reason for the wide adoption of workflow approach for automation of business processes is the
relative ease with which workflow-based applications can be designed and implemented. The
developer of such an application only needs to supply the components that implements activities
and workflow graphs that specify the interconnection and interaction among activities. One can
configure and customize the application by changing the workflow graphs in it and by using
different components for activities in the graphs. Existing standard process definition and
execution languages (e.g., [16 - 19]), together with tools for defining and editing workflow
definitions in diagram and text forms, and for parsing and building them significantly reduce the
effort to do these tasks. They enable business application experts to develop and customize
complex automatic business processes easily themselves without help from IT experts.

EMWF enables us to adopt the workflow-based architecture for SRARD by providing a
language for the specification of embedded workflow applications and choices of light-weight
engines for executing and management them on embedded platforms. Specifically, the workflow
process definition language supported by EMWF is called SISARL-XPDL. It is a variant of the
standard XPDL (XML Process Definition Language) [18]. EMWF provides two versions of
workflow engines for Linux and Windows CE. Both are written in C in order to keep the

 5

memory footprint and runtime overhead introduced by the engine small. We are using EMWF as
a test bed for the experimentation with the workflow paradigm and evaluation of its effectiveness,
merits and shortcomings.

Following this introduction, Section 2 provides an overview of closely related work. Section 3
describes the major components of EMWF and general structure of embedded devices built
within the framework. Section 4 describes the design, architecture and implementation of the
engine software. Section 5 describes the entities and elements of SISARL-XPDL and provides
rationales for their inclusion. Section 6 describes the case studies done to date. Section 7
summarizes the paper and presents future work.

2 RELATED WORKS

As stated earlier, SISARL-XPDL is a small variant of standard XPDL [16]. XPDL was
developed by WfMC (Workflow Management Coalition) to standardize specifications of
workflows and thus, make process definitions interchangeable among modeling tools and
execution engines. SISARL-XPDL contains a subset of XPDL, leaving out most of the entities
and elements in standard XPDL that are not needed for embedded applications. The subset is
augmented with elements essential for SRARD but not provided by standard XPDL. The
SISARL-XPDL preprocessor translates some augmented elements into attributes of activities and
workflows. The engine treats them as scheduling and resource allocation directives. Other
augmented elements are built-in activities (e.g., behavior coordination mechanisms). They are
translated into compound built-in activities defined by workflow graphs in terms of standard
XPDL. In this way, we minimize the impact of incompatibility between SISARL-XPDL and
standard XPDL.

Similarly, numerous modern workflow engines and management environments (e.g., [20 - 22])
are available. Many of them handle in an integrated way automated activities implemented in
software, activities triggered by external events, and activities carried out manually. EMWF is
built on the foundation established by them. Existing engines are designed to run in J2EE
or .NET environments and require resources far exceed amounts available in SRARD and similar
embedded devices. In contrast, the EMWF engines are scaled down to fit embedded platforms.

EMWF has the same goal as many efforts by robotic community aiming at making the creation
and modification of robotic and assistive device software and systems easier. As examples,
building blocks and development environments provided by Microsoft Robotic Studio and
LEGO®MINDSTORMS™ reduce the skills and effort that are required to design and build some

 6

robots [23, 24]. Research projects such as CARMENO, CLARAty, MARIE, MIRO, ORCA,
OROCOS, and Player [25-31] aim to provide component-based software architectures and tools
for building robotic software systems from reusable modules. EMWF aims to further the goal of
Embedded Software Architecture for Intelligent Robots (ESAIR) [32]. ESAIR is an
object-oriented environment designed and developed to support component-based design and
implementation of embedded software of behavior-based robots. By providing a pluggable
component interface and a discovery mechanism, ESAIR enables devices and software modules
to be plugged in and removed from the system without having to redesign and implement the
robot. Many design choices of EMWF were directly influenced by ESAIR.

3 ARCHITECTURE AND COMPONENTS

This section first describes architecture of workflow-based embedded devices focusing on the
applications. It then describes the system from the perspective of the workflow engine.

3.1 Application Structure

In a SRARD device with workflow-based architecture, most parts are built from activities and
workflows. Drivers and event handlers of some components may be hardwired, however.

To illustrate, Figure 1 shows the structure of a representative workflow-based SRARD,
highlighting its application components. The device is an intelligent medication cart designed to
lead its user to patients and assist the user in administration of medications. The cart has
microcontrollers and motors for propulsion, ultrasound range finder and other sensors for
guidance and navigation, RFID reader and bar-code scanner for identification, and so on. Their
drivers, like the workflow engine itself, are not built from workflows; these parts are shown in
dark color in the figure. The other functions, including guidance and propulsion, are provided by
workflows.

In general, a device may contain both non-embedded and embedded workflows. For example,
intelligent medication carts typically support planning and scheduling medication administration
and automatic patient record updates. These components have no embedded modules. Their
workflows are executed just like workflows in enterprise applications, perhaps even by another
engine, not the embedded engine. We will ignore non-embedded workflows hereafter. By
workflows, we mean embedded workflows.

 7

Workflow engine

D
riv

er
s

an
d

ev
en

t h
an

dl
er

s

Scheduler and planner
Environment
Interaction

Guidance and propulsion

Dispenser control
Navigation

Command the cart to moveCommand the cart to move

Sense edgeSense edge

Sense contactSense contact

Check the routeCheck the route

on edge?
No

contacted? No

Yes

on route?
Yes

No

EdgeEdge

20Hz

ContactContactContact

10Hz

TrackTrackTrack

2Hz

Yes

OS kernel

Figure 1. Structure of a workflow-based device

Figure 2 shows the guidance and propulsion module of the cart in its entirety to illustrate a
distinguishing characteristic of embedded workflows: Only some activities in the module are
executed by the engine on a CPU; we will call them software activities when we need to be
specifics. An embedded workflow also has external activities: They are carried out manually, or
by sensor devices, special-purpose hardware, and mechanical parts. In our example, external
activities are in dotted boxes labeled environment interaction and cart components.

Environment
Interaction Workflows Cart Components

Sense edgeSense edge

Sense contactSense contact

Check the routeCheck the route

Command the cart to moveCommand the cart to move

On edge? No
Yes

contacted? No
Yes

on route?

Yes

No

EdgeEdge

20Hz

ContactContactContact

10Hz

TrackTrackTrack

2Hz

Track
maneuver

Track Track
maneuvermaneuver

Move the cartMove the cartMove the cart

Back & random
move

(Contact maneuver)

Back & random Back & random
movemove

(Contact maneuver)(Contact maneuver)

Follow edge
(Edge maneuver)
Follow edgeFollow edge

(Edge maneuver)(Edge maneuver)

Figure 2. Guidance and propulsion workflows

 8

In this and subsequent workflow graphs, we use rectangular boxes to represent general activities
of the application. Table 1 lists examples of built-in activities. The left column lists generic
built-ins required by typical embedded applications, including start, stop, listen, if else and merge

(implicitly indicated by multiple edges directed to a single activity in order to save space) shown
in Figure 2. The right column lists built-in activities EMWF provides specifically for
behavior-based robotic applications. We will return to discuss these choices in Section 5. The
symbols used to represent generic built-ins are from Windows Workflow Framework [22]. When
there is no need to be specific, we use dotted circles to represent all built-in activities

Table 1 Examples of built-in activities

Start
Stop
Repeat point
While

If else
Delay /Timeout
Throw
Exception

Invoke workflow
Execute workflow
Invoke component command
Listen component event

Generic built-ins Built-ins for BCA

Arbiter

Voter

Superposition

Push data

Pull data

Mode change

S

V

A

P

R

-

+

Before moving forward to describe engine structure, it is important to note that procedures and
executables for general software activities must not make blocking calls, and each has a single
entry and a single exit. In essence, all activities that alter the flow path of a workflow are
built-ins. This requirement is not unduly restrictive for embedded workflows as exemplified by
the module in Figure 2. In behavior-based robotic devices, such as the ones targeted by ESAIR
[32], activities are behaviors. With one exception, they meet this requirement naturally. The
exception is when behaviors share sensor devices; a behavior needs to send the data it reads to
receiving behavior(s). Having the sender block and wait for the receiver to be ready is not
acceptable. The ESAIR provides a behavior supervisor to facilitate communication: A sending
behavior can send data asynchronously to the middleware component. The supervisor holds the
data and delivers the data to the receiver when the receiver is ready. The EMWF workflow
engines also provide this kind of service.

 9

3.2 Engine Structure

Figure 3 shows a different view of the structure of a workflow-based device. Its focus being on
the engine, the figure depicts the applications as workflow instances. Workflow definitions and
attributes are represented internally as workflow scripts. Scripts are stored in .wfs files, which
when loaded into memory, are processed by the engine. We omit the other aspects of the scripts
because they are unimportant for our discussion here.

.wfs

.xpdl

Executables (.dll or .exe) D
riv

er
s

an
d

E
ve

nt
 H

an
dl

er
s

Workflow Manager

Built-in activity accelerator

Work queues

Worker threads
Time

manager

Configuration Interface

XPDL parser

Workflow loader

SISARL-XPDL preprocessor

Workflow Processor

General activity scheduler

Engine
Manager

Workflow
Instances

Workflow
Instances

Workflow
Instances

Workflow
instances

Workflow variables,
participants &

attributes

Figure 3. Major embedded engine components

The XPDL term participant in the upper right refers to a resource such as a hardware device (e.g.,
bar-code scanner, motor, sensor and even CPU), people, and so on. When assigned to do the
work, participants carry out external activities. They are declared in workflow definitions along
with participants that implement software activities, including computer programs, executables
and interfaces, Resources exclusively owned and used by individual software activities are not
thus declared, however.

The engine has three major components: workflow manager, workflow processor and engine
manager. The workflow manager processes the workflow scripts and has the workflow processor
execute activities according to the scripts. We will return to describe these components in the
next section.

The engine manager manages the configurations of both the engine and application workflows

 10

and is responsible for the initialization of the engine and loading workflow scripts of applications
during initialization. It is also responsible for handling user requests and managing access to
workflow-related definitions and optional contextual information.

The diagram of the engine manager in Figure 3 is that of an engine used for development within
EMWF. A developer can tune the engine via the configuration interface by changing its
configuration parameters, which include the maximum number of threads and timer resolution.
The engine manager has SISARL-XPDL preprocessor and XPDL parser locally, as shown in the
figure, or can access the tools remotely. These tools make it possible for the developer to add
new workflows defined in terms of SISARL-XPDL, translate them into standard XPDL, parsed
XPDL definitions into workflow scripts and stores the scripts as .wfs files. We show these tools
and .xpdl files of workflow definitions in dotted shapes to indicate the fact that a typical device,
even one as complex as an intelligent medication cart, do not have these tools. By requiring
XPDL definitions to be parsed off-line, the engine does not incur the substantial memory space
and power required to run the tools.

The current versions of EMWF engines allow workflow script files defining workflows to be
added and removed. The engine must be restarted for the configuration changes to take effect.
This means that all the workflows a device needs to operate in multiple modes or adapt while
running must have already been in the system and initialized before the device starts to run.

4 WORKFLOW MANAGER AND PROCESSOR

The workflow manager and workflow processor form the core of the engine. They contribute the
bulk of memory footprint and context switch overheads of the engine. Needless to say that it is
important to keep these overheads small. This objective is more challenging for embedded
engines than engines used for enterprise computing. The execution times of general activities can
be very small, especially for low-level embedded components. It follows that time spent to
context switch between threads scheduling and executing general and built-in activities can be a
large percentage of the overall run-time of such components.

4.1 Design Rationales

An obvious way to minimize context switches is to have a single-threaded workflow processor
execute all software activities: The thread alternatively invokes general activities and built-in
activities as procedures and in-line functions. The workflow manager decides which activity of
which workflow to execute based on the scheduling policy requested by the application. We

 11

ruled out having single-threaded workflow processor by default. A reason is that embedded
workflows can block on CPU, waiting for completion of external activities or user intervention,
and any means to better utilize the CPU involves the use of additional threads. By making the
maximum number of workflow-processing threads a configuration parameter of the engine, the
developer can always choose the single-threaded configuration when it works for the device.

There are two ways to structure a multi-threaded workflow processor:

1. All activities in each workflow are executed by thread(s) dedicated to the workflow.

2. Activities from multiple workflows are queued as work items and executed by worker
threads serving the queues.

To make good use of the respective thread models and APIs supported by the operating systems,
the current version of the Linux EMWF engine, called LIWWE (Light-Weight Workflow Engine)
in [37], uses the first strategy. The Windows CE engine uses the second. We will return to
provide further details on the designs shortly.

typedef struct activity_t {
BuildinActivity; // TRUE for a built-in
BuildinActivityType;
* ActivityExe; // function name or .exe
* Transitions; // array of transitions
* ParticpantListHead; // Resources …

} ACTIVITY;
typedef struct workflow_t {

* WorkflowScript; // Workflow definition
…

} WORKFLOW;
typedef struct package_t {

* Workflows; // array of wf in pkg
* Activities; // array of activities…

} PACKAGE;
typedef struct activity_instance_t {

ACTIVITY* ThisActivity;
Autorun; // automatic or manual
isRunning;
PriorityIncrement;
…

} ACTINSTANCE;
typedef struct package_instance_t {

PACKAGE ThisPackage;
WFINSTANCE* RunningWorkflow;
* PkgWideVariables;

}

typedef struct worflow_instance_t {
WORKFLOW* ThisWorkflow;
WorkflowStatus;
* StartTrigger; // start event or timer
* EndTrigger; // end event or timer
WfPriority; // base priority of wf
ACTINSTANCE* RunningActivities;
…
* WfWideVariables;

} WFINSTANCE;

activity instances

package
instances

workflow instances

wf-wide variables

pkg-wide variables

Run-time data

Figure 4. Workflow and activity data structures

 12

Figure 4 shows the structures of run-time data maintained by the engine on activity, workflow
and package types and instances. (The XPDL term package means a container for grouping
entities common in multiple workflow definitions to avoid duplicate definitions.) We omit data
types in order to save space when there is no ambiguity.

Most fields of structures in the figure are self-explanatory. Among the noteworthy ones is the

AutoRun flag used to capture an execution control attribute of an activity. Its value being TRUE

indicates that the engine is to start and finish the activity automatically. The opposite indicates
manual mode; the execution of the activity requires explicit user interaction. In similar vein,
StartTrigger and EndTrigger give the synchronization objects, if any, that signal to start the
workflow and end the workflow process. As examples, the starts of workflows in Figure 2 are
triggered by timers firing periodically at the specified rates.

The current versions of both EMWF engines trade off in favor of run-time overheads, sometimes
at the expense of memory footprint. As stated earlier, the engine manager loads intermediate .wfs

files of all workflows during initialization. This allows the workflow manager to dynamically
allocate memory for all instances of activities and workflows during initialization. Many
low-level embedded components (e.g., the workflows in Figure 2) have stringent timing
requirements. For them, this is exactly what the system should do.

Threads executing general activities and built-in activities of a workflow and a package of
related workflows must be able to communicate. This is done by via workflow-wide and
package-wide variables WfWideVariables and PkgWideVariables that are accessible by all threads
working on the workflows. Each workflow instance has a priority, given by the value of
WfPriority field in the workflow instance. This field captures the contextual information on
execution and resource allocation priority of the workflow provided by its definition. This is the
default priority of all activities in the workflow: The definition optionally provides each activity
with a priority relative to other activities in the workflow, and this information is captured by the
field PriorityIncrement within the activity instance.

4.2 Activity Execution

Again, in both EMWF engines, the workflow manager creates and initializes threads needed to
execute software and built-in activities when the engine is initialized, a group of POSIX threads
in the Linux engine and user-mode threads in the Windows CE version. All threads execute at
fixed priorities.

 13

4.2.1 Linux Version

As stated earlier, workflows are executed by dedicated threads in the Linux engine LIWWE. The
workflow manager attaches a thread to each workflow when it initializes the workflow and
schedules the thread to execute both general and built-in activities in the workflow. The thread
inherits the priority of the workflow.

The workflow manager keeps track of the relationship between threads and workflows. When a
thread executes an end activity, it is de-attached from the workflow and returned to the thread
pool. On the other hand, when the EndTrigger of the workflow being executed signals to
terminate the workflow process, the workflow manager may terminate the thread(s) attached to
the workflow.

A workflow may contain built-in split and merge activities. The former splits an activity into
multiple successor activities, and latter merge multiple predecessor activities into a single
successor. When a split occurs, the manager selectively attaches additional threads to execute the
successors. When multiple threads join for a merge activity, the last thread that reaches the merge
executes the merge operation.

An obvious advantage of this design is that most of the transitions between activities incur no
context switch. Another important advantage is that the workflow manager does not need to
handle blocking built-in activities (e.g., delay and listen) specially. It can simply let the thread
executing a workflow wait when it executes such a built-in. It is expensive for threads to change
priority, however. For this reason, the current version of LIWWE does not support
varying-priority within workflow: Priority increments of activities are ignored.

4.2.2 Windows CE Version

The bottom half of Figure 3 shows the structures of workflow manager and workflow processor
in the Window CE version of the EMWF engine. A configuration parameter is the number of
priorities the engine supports. The workflow manager maintains a FIFO queue per priority. When
a general software activity is ready to be executed, it is wrapped as a work item and placed in the
queue at the priority of the activity (i.e., the sum of workflow priority and priority increment of
the activity). The workflow manager has at least one worker thread dedicated to execute work
items in each queue at the priority of the queue. In other words, ready activities are executed
according to their priorities with ties among equal priority activities broken in FIFO order.

Threads in the workflow manager and workflow processor interact in more or less the

 14

leader/followers pattern [34], worker threads being followers. Let us focus first on the simple
case where the workflows have no start, end and intermediate triggers [16], i.e., no blocking
built-in activities. If the device were to have only such workflows, the workflow manager might
have just one leader thread and let the leader execute at the highest priority. The leader process
workflow scripts, queues ready general activities as work items, supervises their completion,
executes built-in activities, which in turn leads to more activities be queued. Almost all built-in
activities are simple. As depicted by the figure, they are not queued as work items. Rather the
leader executes them itself; this allows functions for most built-in activities to be in-line. These
functions of the leader are depicted as general activity scheduler and built-in activity accelerator
in Figure 3.

Specifically, worker threads signals the leader thread upon the completion of each general
activity by setting a manual-reset completion event. When awaken by the event, the leader
checks the completion status of pending (i.e., queued but yet to be completed) activities in
priority order, starting from the one with the highest priority. For each completed activity it finds,
the leader executes the successor built-in activity, queues the actuality or activities readied by the
completion of the built-in activity. After it completes the work for that flow path, it continues to
check the pending general activities and serves them until it find no more completed activities
waiting for its attention. It then resets the completion event and return to wait.

Clearly, the simple pattern with a single leader does not work because many generic built-ins
(e.g., delay, listen) are blocking. A simple way is to have the leader dispatch a new leader just
before it goes to wait. This scheme can work for a simple device, but can use more threads than
necessary for complex SRARD devices like intelligent medication carts.

The current workflow manager takes advantage of the fact that workflows are known before the
engine starts and that a thread can wait simultaneously for multiple objects to reduce the number
of threads needed to help the leader wait for them. For example, the time manager shown in
Figure 3 is a helper thread that assists the leader by setting and waiting for all timers used for all
running workflows. The engine also uses at least one helper thread to monitor events, rules,
result tokens, etc. that standard XPDL allows to be triggers for which workflows may wait at the
start and end, as well as within them.

An advantage of this engine is that it can easily support varying priority within workflows. Every
transition from one general activity to another incurs at least one context switch. This is one of
the major disadvantages when compared with the Linux engine.

 15

5 SISARL-XPDL

The WfMC standard XPDL [16] has been widely used for not only business applications but also
many industrial applications (e.g., factory and warehouse management) with embedded
components. There is no question that we can use the full XPDL for defining workflows in
SRARD and similar devices. A design decision of SISARL-XPDL, the embedded workflow
definition language supported by EMWF, involves the selection of XPDL elements to be parsed
into workflow scripts for execution by EMWF engines. It makes sense to start with a minimal
SISARL-XPDL. We can add more elements into it as needed in the future without having to be
concerned with backward compatibility. By excluding XPDL elements not essential for SRARD,
we aim at keeping the EMWF XPDL parser simple and resultant workflow scripts generated by
parser small.

5.1 Subset of XPDL Elements

Table 2 lists examples of standard XPDL elements included in SISARL-XPDL. The table divides
the elements for definitions of workflows and their related attributes into three parts: workflow
data, workflow structure, and workflow control. How some elements listed here are to be used
can be readily deduced from their names. We have talked about some of the elements in passing
in earlier sections.

Table 2. Examples of XPDL elements in SISARL-XPDL

Resources ParticpantType, Participant, Application
FormalParameter, ActualParameter,

Extensions Period, ExtendedAttributes

Workflow
Data

TypeDeclaration, DataType, BasicType,
SchemaType, DeclaredType, RecordType
DataField, InitialValue

Workflow
Structure

Package, Pool, Lane, WorkflowProcess,
Activity, BlockActivity, SubFlow, Task,
Application, Implementation

Workflow
Control

Transitions,TransitionRef,TransitionRestriction,
Route, Join, Split, StartEvent, EndEvent,
Condition, IntermediateEventTrigger, Deadline,
Priority

Class
A

Class
B

Class
C

We use Figure 5 to help us explain some more. The figure depicts a simplified diagram of a
system consisting of a smart medication dispenser and its user. The diagram is in a style similar
to the ones used by some workflow graph editors. The outermost rectangle represents a package,
i.e., a container for holding common entities. The package here contains two workflow processes:

 16

Each process has one or more workflows. Here, the dispenser process has three interacting
workflows; they are notify_workflow, timer_workflow, and schedule_workflow. The bottom
rectangle encircles the manual workflow process of user activities. Associated with each
workflow definition is the declaration of participants needed by the workflow. Examples here are
user and sched () needed by the manual and schedule workflows, and alarm and clock needed
by the notify workflow.

A sub-flow is a workflow called synchronously by another workflow, e.g., schedule_workflow is
a sub-flow of notify_workflow. A workflow may also be called asynchronously, as exemplified by
how notify and timer workflows here interact.

Dispense
dose(s) &
set timer

notify_workflow

Notify
user by
alarm

timer_workflowR

schedule_
workflow

Send
email

trg_1

Compute
next dose time &

medication(s)

trg_2

Follow
direction

Report
arrival

timer_workflow

notify_workflow

schedule_workflow

Update
record

S
ch

ed
()

late

W
or

kf
lo

w
P

ro
ce

ss
di

sp
en

se
r

al
ar

m
, c

lo
ck

 …

Figure 5. Workflows in medication dispenser

The example has only a two-way XOR split (i.e., an if-else built-in activity) depicted as a circle
labeled R in notify_workflow graph. In general, the Route activity can have arbitrary numbers of
incoming and outgoing transitions. When used with transition restriction, Route can implement
arbitrary complex flow logic, including combination of conditional XOR and AND split of
outgoing transitions and join of incoming transitions.

XPDL Event activity is a general primitive for alternating the courses and timing of a workflow
process. An event trigger can be time, timer, rule, results, result errors, and so on. The manual
process illustrates the use of StartEvent. In this case, it is an alarm event (trg_2). When sounded,
it triggers the start of the manual workflow: The user reports to the dispenser, which in turn sets
the intermediate event (trg_1) used by notify_workflow.

 17

Finally, XPDL schema provides a standard way for introducing user specific extensions. We have
not yet fully exploited this aspect to add workflow attributes, such as rate and latency, which
when declared can be used to help the engine better service workflows with rate and deadline
constraints.

5.2 Built-ins for Behavior Coordination

Another design decision of SISARL-XPDL involves the choices of mechanisms for behavior
coordination to be included as special-purpose built-in activities supported by EMWF: The
special-purpose built-in activities provided by the current version of SISARL-XPDL are listed in
the left half of Table 1. EMWF makes these commonly used building blocks of behavior-based
robotic devices available and easily reusable.

To justify their inclusion, we digress momentarily to observe ways in which a workflow-based
design and implementation may map basic operations of a behavior-based robotic device to
activities and workflows. Basic operations can be divided into reactions and behaviors (or
reactive behaviors versus deliberative behaviors according to the definition in ESAIR [32]). A
reaction is a simple basic operation (e.g., stop, spin) during which the system keeps no state.
Even a simple robotic device (e.g., an automatic vacuum cleaner) can have a large number of
reactions. A behavior is a sequenced set of reactions. The reactions in the set execute one or few
at a time and thus perform a more complex operation together. This way of combining reactions
into behaviors is called sequencing. It is the way advocated by authors of [35] and used in
ESAIR.

In a small grain workflow-based design and implementation, each reaction is an activity. A
behavior is a compound activity or a workflow. It is then defined by a workflow graph in which
nodes are reactions and edges (transitions) are sequencing of reactions. It is common to manage
transitions between reactions according to a finite state machine, executed from start to finish
with or without external intervention.

Alternatively, in a large grain workflow-based design, activities are behaviors. In other words,
each behavior, once starts, runs to completion without requiring engine attention. EMWF
currently supports this option. In this case, some transitions between activities are coordination
of behaviors.

As shown in Figure 6, there are two major types of behavior coordination mechanisms:
arbitration and command fusion [35]. At each selection time, an arbitration mechanism selects

 18

one behavior from a group of behaviors competing for the control of the robot. A command
fusion mechanism selects multiple behaviors and let them contribute to the control of the robot.

Behavior coordination mechanisms

Arbitration Command Fusion

Priority-
based

State-
based

Winner-
take-all

Voting Superposition FuzzyMultiple
objectives

Figure 6. Taxonomy of behavior coordination mechanisms

Arbitration mechanisms are further divided into priority-based, state-based and winner-take-all.
Fixed priority, variable priority and subsumption mechanisms are priority-based, with the
fixed-priority mechanism being the simplest of all mechanisms. When multiple behaviors send
commands to the arbiter, the arbiter sends only the command of the highest priority behavior. In
essence, subsumption is a generalization of fixed priority arbitration. Its disadvantages include
that behaviors cannot cooperate and control structure is hardwired, and its advantages over
fixed-priority arbitration are not sufficient to warrant its added complexity and variability [36,
37]. For similar reasons, variable priority is also not widely used. This is the reason that EMWF
supports only fixed priority arbitration for now.

There are four major categories of command fusion mechanisms: voting, superposition, multiple
objective behavior coordination and fuzzy command fusion. We chose to support voting and
superposition. Like fixed priority arbiter, voter and superposition mechanism can be
implemented using route activity.

We mentioned earlier that behaviors sometimes need to send and received data. Push and pull
data built-in activities allow them to do so asynchronously. The mode change activity enables
the device to reconfigure while running to a limited extent. The limitation arises from that the
current version of EMWF requires all workflow scripts be loaded at initialization. We will work
to remove this limitation in a future version.

6 CASE STUDIES

We are evaluating the workflow-based design for SRARD, and for smart personal and home
automation devices in general, along multiple dimensions to seek answers to many questions,
including the ones listed below:

 19

1 Are the higher memory and runtime overheads of workflow-based devices within acceptable
ranges?

2 Is the workflow approach indeed effective in reducing the time and effort needed for design
and building of component-based SRARD and configure and customize the devices after
they are built?

3 Can the paradigm enable developers with minimal expertise in robotics build robotic devices
from reusable components with quality comparable to handcrafted ones?

4 What other uses are there of workflow definitions, engines, management environments and
tools?

The case studies summarized here hardly scratch the surface of the experimentation and
evaluation work required to answer these questions. What we found from our initial experiments
are encouraging enough for us to move forward and do more.

6.1 Memory and Run-Time Overheads

The purpose of the first experiment carried out on LIWWE as soon as the preliminary version of
the engine became available was to assess the overheads introduced by the engine and
application workflows. EMWF and the workflow approach supported by it are not the way to go
when optimizing run-time performance, size and power consumption is the primary design goal.
Most SRARD and similar devices are not demanding in these aspects: Still, it is important to be
sure that overheads one must endure for flexibility is acceptable.

In this experiment, we measured the resident memory sizes and total CPU times of two small
workflow-based applications: One includes processes with route activity between general
activities. In other words, it has splits and joins in its control path. The processes in the other
applications contain only general activities and straight line transitions. Both applications have
no blocking built-in activities. We used top command to measure the total resident memory size
of application workflows and the engine and time command to measure their total CPU time. We
then implemented the applications with customized programs and measured their residence
memory sizes and total CPU times.

Table 3 summarizes the results from the measurements. One can see that the workflow-based
applications and the engine consume up to 50% more memory space than customized codes. The
executable code of the engine itself is only 64 KB. However, the engine must maintain data
structures of loaded packages and workflows and they take up much more space than the engine.

 20

Table 3. Comparison of memory sizes and execution times

Maximum resident memory size in megabits

Workflows & engine Customized code

Application without route

Application with route

Average CPU time in seconds

Workflows & engine Customized code

Application without route

Application with route

38

39

25

26

5.7796

6.4020

5.5174

6.3474

On the other hand, we can also see from the table that the total run time overhead of the
workflow application and the engine is only slightly larger than that of the customized code for
both applications. This is what we expect. As stated earlier, LIWWE uses dedicated threads to
execute workflows and hence does not introduce context switches between general and built-in
activities.

We will repeat this measurement as soon as the Windows CE engine is stable enough for this
experiment. Because the bulk of the memory space is taken up by application data structures and
they are independent of the engine, we expect that memory space overheads are comparable for
both engines. However, the run-time overhead of workflow applications on Windows CE engine
may be higher because the engine uses different threads to execute general and built-in activities.

6.2 Usage and Effectiveness

Our experimentations on application of workflow-based design and implementation paradigm to
smart automation and robotic devices are too limited to give definitive answers to the remaining
questions posted above. However, from what we have done so far, we are convinced that
componentization comes naturally with workflow-based design of such embedded devices, as
advocates of workflows say about enterprise applications. Indeed, the workflow engine provides
a flexible platform for integrating reusable components. One can easily build devices with
different functionalities from components by modifying the graphs defining their workflow
processes and/or using different participants for activities. To illustrate, Figure 7 shows the graph
of workflows in an automatic vacuum cleaner. The figure is almost the same as in Figure 2,
except that the workflow graphs in them are different. Indeed, many of the software activities in
them are essentially the same. (Of course, the robot components used for intelligent medication

 21

cart and vacuum cleaner differ significantly.) If we want to build a toy sumo, we can do so
simply by replacing the back and random move maneuver by a move back and hit maneuver.

Environment Interaction Workflows Robot Components

Move the robotMove the robotMove the robotWait for the moveWait for the move

Edge maneuverEdge maneuverEdge maneuver

Sense edgeSense edgeEdgeEdge

20Hz

ContactContactContact

10Hz

TrackTrack

2Hz

Sense contactSense contact

Find obstacleFind obstacle

Track maneuverTrack maneuverTrack maneuver

On
edge? No

Yes

Contacted? No
Yes

Obstacle
found?

Yes

No

Back & random
move

(Contact maneuver)

Back & random Back & random
movemove

(Contact maneuver)(Contact maneuver)

Figure 7. Workflows in a automatic vacuum cleaner

We are also using workflows for the specification of the operations of the devices, especially
semi-automatic devices that rely on their users to perform critical operations. Specifically,
according to the SISARL component model [38], a device is specified by an operational
(behavior) view specification, in addition to a traditional, structural view specification on how
the device is to be built. The operational view specification of a device is written in terms of
workflow graphs. The graphs define the actions of the user(s) and collaborations between the
user and the device in the same way as they define the work by the device.

Returning to Figure 5, we note that the definitions of timer, notify, and schedule workflows are
parts that define the implementation of the medication dispenser. Together with the definition of
the user workflow process, they provide a rigorous specification of how a smart medication
dispenser works, how its user may act and how the device and its user interact.

In many ways, the workflow-based specifications are more intuitive and easily understandable
than the more commonly used state machine specifications. Other advantages of workflow-based
specification are that specifications are executable and map directly to implementation. In a
parallel effort, we are developing a simulation environment that will enable us to experiment
with and evaluate new device designs and prototypes as soon as they are specified and during

 22

their development. In particular, by executing the operational specification of a new device with
user activities based on validated user models, the environment can help us to better assess the
usability of the device throughout its development process.

7 SUMMARY

We have described in earlier sections the design and implementation of EMWF. The embedded
workflow framework provides light-weight engines for Linux and Windows CE platforms. It
also provides a small but extensible language, called SISARL-XPDL for defining embedded
workflow processes. The SISARL-XPDL preprocessor translates special-purpose built-in
activities into standard XPDL. Unlike some existing engines, the EMWF engines cannot execute
XPDL directly. Commonly used execution languages such as BPEL are unsuitable for our
purpose. For these reasons, EMWF also has a XPDL parser that translates workflow process
definitions into workflow scripts for the engine.

Both engines, SISARL-XPDL preprocessor and EMWF XPDL parser will be released under
GPL license later this year. We chose to build the current version of the above mentioned
simulation environment on Windows Workflow Foundation because we want a prototype
environment for experimentation in minimal time. We will port part of the environment to
EMWF in the near future.

The work on case studies reported here is only the tip of the iceberg of all the work to be done to
demonstrate that workflow paradigm is indeed an excellent way to build smart and robotic
devices for personal and home use and for automation in care providing institutions. We do not
yet have working workflow-based device prototypes from which we can systematically extract
benchmarks for performance measurement. We will repeat the experiment described above to
better quantify overhead penalties of workflow-based designs as benchmarks become available.

8 ACKNOWLEDGMENT

This work is partially supported by the Taiwan Academia Sinica thematic project SISARL,
Sensor Information Systems for Active Retirees and Assisted Living.

8 REFERENCES

[1] iRobot Home Robots, http://www.irobot.com/

 23

[2] Forizzi, J. and C. DiSalvo, “Service robots in domestic environment: a study of Roomba
vacuum in the home,” Proceedings of ACM/IEEE International Conference on HRI, March
2006.

[3] Kulyukin, V. A. and C. Gharpure, “Ergonomics-for-one in a robot shopping cart for the
blind,” Proceedings of ACM/IEEE International Conference on HRI, March 2006

[4] Kaneshige,Y., M. Nihei, and M. G. Fujie, “Development of new mobility assistive robot for
elderly people with body functional control,” Proceedings of IEEE/RAS-EMBS,, February
2006.

[5] Lin, C. H., Y. Q. Wang and K. T. Song, “Personal assistant robot,” Proceedings of IEEE
International Conference on Mechatronics, July 2005.

[6] Mataric, M. J., J. Eriksson, D. J. Feil-Seifer, C. J. Winstein, “Socially Assistive Robotics for
Post-Stroke Rehabilitation,” Journal of Neuroengineering and Rehabilitation, Vol. 4, No. 5,
2007

[7] Gockley R., and M. J. Mataric, “Encouraging physical therapy compliance with hand-off
mobile robot,” Proceedings of ACM/IEEE International Conference on HRI, March 2006.

[8] Thrun, S., “Toward a framework for human-robot interaction,” Human-Computer Interaction,
Vol. 19, 2004.

[9] Fong, T., I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive robots,”
Robotics and Autonomous Systems, Vol. 42, 2003.

[10] “Speci-Minder autonomous hospital robots,” http://robots.net/article/2156.html, 2007

[11] http://www.informatics.nhs.uk/cgi-bin/item.cgi?id=1155, “Washington hospital implements
drug dispensing robots,” February 2005.

[12] Grudin, J., “Three faces of human-computer interaction,” IEEE Annals of the History of
Computing, Vol. 27, No. 4, 2005.

[13] Coradeschi, S. and A. Saffiotti, “Symbiotic robotic systems: humans, robots and smart
environments,” IEEE Intelligent Systems, 2006.

[14] SISARL (Sensor Information Systems for Active Retirees and Assisted Living),
http://sisarl.org

[15] Workflow definition, http://en.wikipedia.org/wiki/Workflow

[16] XPDL (XML Process Definition Language) Document,
http://www.wfmc.org/standards/docs/TC-1025_xpdl.2.2005-10-03.pdf, October 2005

[17] YAWL (Yet Another Workflow Language), http://yawlfoundation.org/

 24

[18] BPEL (Business Process Execution Language), http://en.wikipedia.org/wiki/BPEL

[19] Open Source Java XPDL editor, http://www.enhydra.org/workflow/jawe/index.html

[20] Windows Workflow Foundation,
http://msdn2.microsoft.com/en-us/netframework/aa663328.aspx.

[21] WfMC: Workflow Management Coalition, http://www.wfmc.org/ and WfMOpen,
http://wfmopen.sourceforge.net/.

[22] Enhydra Shark, http://forge.objectweb.org/projects/shark

[23] Microsoft Robotic Studio Developers Center, “Introduction to Microsoft Robotic Studio,”
http://msdn2.microsoft.com/en-us/library/bb483024.aspx.

[24] Baum, D., M. Gasperi, R. Hempel and L. Villa, Extreme MINDSTORMS, APRESS™
publication, 2000.

[25] Montemerlo, M., N. Roy and S. Thrun, “Perspectives on standardization in mobile robot
programming: the CARMEN toolkit,” Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, Vol. 3, 2003.

[26] Nesnas, I. A. D. et al., “CLARAty and challenges in developing interoperable robotic
software,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 3, 2003.

[27] Cote, C., et al., “Robotic software integration using MARIE,” International Journal of
Advanced Robotic Systems, vol. 3, 2006.

[28] Utz, H., S. Sablatnog, S. Enderle, and G. Kraetzschmar, “MIRO – middleware for mobile
robot applications,” IEEE Transactions on Robotics and Automation, vol. 18, 2002.

Makarenko, A., A. Brooks, and T. Kaupp, “ORCA: components for robotics,” Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Robotic
Standardization, 2006.

[30] Bruyninckx, H., “Open robot control software: the OROCOS project,” Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001.

[31] Vaughan, R. T., B. P. Gerkey and A. Howard, “On device abstractions for portable reusable
robot code,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 3, 2003.

[32] Huang,Y. L., E. C. Hsia, and J. S. Hu, “The design and implementation of an embedded
software architecture for intelligent robots,” submitted to 2007 IEEE/RSJ International
Conference on Intelligent Robots, 2007

 25

[33] Chang, S.Y., Y. F. Lu, T. W. Kuo, and J. W. S. Liu, “The design of a light-weight workflow
engine for embedded systems," Presented at Workshop on Software and Systems for Medical
Devices and Services, December 2007.

[34] Schmidt, D. C. et al., “Leader/followers: a design pattern for efficient multithreaded event
de-multiplexing and dispatching,”
http://ftp.icm.edu.pl/packages/ace/ACE/PDF/lf-PLOPD.pdf

[35] Lenser, S. and M. Veloso, “Behavior overview,” October 2003.
http://www.cs.cmu.edu/~robosoccer/cmrobobits/lectures/behavior-overview.pdf

[36] P. Pirjanian, “Behavior coordination mechanisms – state-of-the-art,” Institute for Robotics
and Intelligent Systems Technical Report IRIS-99-375, 1999.

[37] J. Jones and D. Roth, Robot programming: a practical guide to behavior-based robotics,
McGraw-Hill/TAB Electronics, 2003.

[38] T.Y. Chen, P. H. Tsai, T. S. Chou, C. S. Shih, T. W. Kuo, and J. W. S. Liu, “Component
Model and Architecture of Smart Devices for the Elderly,” Proceedings of the 7th Working
IEEE/IFIP Conference on Software Architecture, pp. 51 – 60, February 2008.

