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Abstract 

 

This paper presents a novel people counting system for an environment in which a stationary 

camera can count the number of people watching a TV-wall advertisement or an electronic 

billboard without counting the repetitions in video streams in real time. The people actually 

watching an advertisement are identified via frontal face detection techniques. To count the 

number of people precisely, a complementary set of features is extracted from the torso of a 

human subject, as that part of the body contains relatively richer information than the face. In 

addition, for conducting robust people recognition, an online boosted classifier trained by 

Fisher’s Linear Discriminant (FLD) strategy is developed. Our experiment results 

demonstrate the efficacy of the proposed system for the people counting task.  

 

 

Keywords: people counting, video surveillance 
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1. Introduction 

Counting the number of people in a public place (e.g., a street, shopping mall, or subway 

station) over time is very important in many real-world applications. For instance, a crowd 

gathering at a specific place may indicate an unusual situation or event. On the other hand, 

counting the number of people in a shopping mall may provide valuable information for 

optimizing trading hours, as well as evaluating the attractiveness of some shopping areas. In 

this paper, we focus on counting the number of people watching a TV-wall advertisement 

monitor or an electronic billboard. With the advent of intelligent cameras and the increasing 

capabilities of video surveillance, automation of people-counting is now technically possible.  

In recent years, a great deal of research [2-3, 20-21] has been directed at providing more 

accurate people counting methods. Generally, the developed methods can be categorized into 

two types: people detection-based and feature-based approaches. In people-based approaches, 

once people have been detected, they can be counted easily. For instance, in the W4 system 

proposed by Haritaoglu et al. [17], shape information is used to identify individuals; while 

Viola et al. [18] employ boosted classifiers to detect pedestrians by using appearance and 

motion clues. The main problem with these approaches is that their applicability is limited. In 

some cases, such as when people walk next to each other and/or occlude each other, the 

detection/tracking process may fail. In contrast, feature-based approaches do not include a 

people detection step, but try to transform the people-counting problem into some feature 

space using computer vision techniques. Typically, these methods extract features based on 

edge density [19], edge orientation [20], the number of moving pixels [21-22][19], blob size 

[2-3][20], fractal dimension [23] or multiple clues [24] to estimate the number of people in a 

scene. Then, a classifier, such as a trained neural network, is applied to perform classification 

based on the extracted features.  

In existing approaches, the number of people counted is an approximation of the actual 
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number of people in the field of view of the camera. For instance, Chan et al. [3] first localize 

motion areas and then separate the areas into individual blobs. Then, the sizes of blobs are 

estimated to determine the number of people. However, for an electronic advertisement 

billboard, the advertising agent may ask: “How many people actually watched the 

advertisement in the last five hours?” Current people-counting systems cannot answer this 

question. The unique feature of the proposed people-counting system is that it does not 

repeatedly count an individual if he/she watches an advertisement for a long period. Clearly, 

to solve the problem, a face recognition system must be built. This requirement is very 

different from existing people-counting systems.  

 

Fig.1. Overview of the proposed people counting system 

In this paper, we propose a people counting system that comprises a face recognition module 

and a first-in first-out face database. The system architecture is illustrated in Fig. 1. First, the 

system performs a face detection step to identify people who are actually watching the 

advertisement, rather than simply standing in the area. Since some non-facial regions may be 

detected accidentally, we design a face filtering process to verify that a detected region is in 

fact a face part. Then, we extract features directly from that region. However, since the 

information in the pure face portion is insufficient, we extract features from the torso region 

to compensate for the deficiency. To ensure robust people recognition we have developed an 
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online boosted classifier based on Fisher’s Linear Discriminant (FLD) criterion. By using the 

features extracted from the face and part of the torso region, the system can effectively 

execute the people counting task.  

The remainder of this paper is organized as follows. In Section 2 we explain how face 

detection and face filtering are performed. Section 3 describes the feature set used for human 

subject recognition. In Section 4, we discuss the online boosted classifier, which is trained by 

using Fisher’s Linear Discriminant criterion. We then detail our experiment results in Section 

5, and summarize our findings in Section 6. 

2. Face Detection and Face Filtering 

In this phase, we first use the support vector machine based (SVM-based) face detector 

developed by Kienzle et al. [4] to perform the face detection task. Then, we apply the 

proposed filtering process to remove false positives detected by the above face detector.  

2.1 SVM-based Face Detector 

To count the number of people watching an advertisement on a TV billboard, it is necessary 

to detect frontal part of faces because the people are “really watching” the advertisement. 

Therefore, face detection is the first important step to be accomplished. To satisfy the 

real-time requirement, we adopt the SVM-based face detector developed by Kienzle et al., 

which can provide fast approximations of support vector decision functions. It has been 

shown that an SVM can provide highly accurate object detection results [26]. Research 

conducted to speed up kernel selection has focused on developing new ways to reduce the 

number of expansions, i.e., the number of support vectors, and the number of operations 

needed to compute the similarities between a support vector and the input.  

To reduce the number of support vectors, we use Burges’ reduced set approach [5]. In an 

SVM, the decision rule for a test pattern X is represented by [5] 
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where {Xi}, [ ]mi ,1∈  is the set of support vectors, yi is the label for each support vector, iα  

is the corresponding coefficient, k is the kernel function, and b denotes the bias. The decision 

surface induced by f is a hyperplane in the reproduced kernel Hilbert space associated with k. 

The corresponding normal can be approximated using a reduced set { }jZ , [ ]',1 mj∈ , where 

the size of the reduced set mm <' . Therefore, the new decision function 'f  of the reduced 

set is denoted by  
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where {βj}, and [ ]',1 mj∈  is a new corresponding coefficient set for the reduced set { }jZ . 

We analyze the complexity of the kernel function as follows. When one classifies image 

patches of size wh×  using features with plain gray values, the decision function requires 

wh×  operations for each pixel. If a filter is linearly separable, the computational complexity 

of the filtering operation can be reduced from ( )whO ×  to ( )whO +  per pixel by 

computing 

[ ] TbaIJ ∗∗= ,                                                 (3) 

where I is an input image; J denotes an output image; and a and b are column vectors 

decomposed from the filter mask H defined by  

TabH = .                                                    (4) 

Eq.(3) decomposes the computation of the convolution of two dimensional patches into two 

independent convolution operations with mask sizes 1×h  and w×1 , respectively. For 

generalization, we consider the singular value decomposition of H:  
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where r is the rank of H; si is the ith singular value of H; and ui and vi denote the ith columns 

of orthogonal matrices U and V, respectively. Accordingly, the linear filter can be evaluated 

as a linear combination of r separable convolutions by 
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.                                            (6) 

As a result, the computational complexity is reduced from ( )whO ×  to ( )( )whrO +⋅ .  

Combining the above two solutions for complexity reduction, the approximation of the 

decision rule can be defined by 
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Therefore 'm  and r allow the system to find a balance between efficiency and accuracy. In 

the experiments, we evaluate the performance of face detection by changing the number of 

separable filters, i.e., to determine the effect of changing the value of r. Figure 2 shows an 

example of face detection using this approach. In the figure, most of the faces can be detected 

correctly, but there are some false positives. Removing false positives from the detected 

frontal face set is necessary since the detected results (no matter whether they are correct or 

incorrect) will be further analyzed to compute the number of viewers. Since the subsequent 

face recognition module will consume a great deal of computational power, a pre-processing 

step to filter out false positive faces is very important. In the next section, we describe an 

effective approach for removing false positives from the set of detected face candidates.  
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Fig.2. Demonstration of face detection using an SVM-based approach [4] 

2.2 Filtering False Positive Faces 

Face detection has attracted a great deal of attention in the past decade. Well-developed face 

detection techniques, such as OpenCV [10] and Kienzle et al. [4], can achieve success rates 

of 80%-90%. However, their detection rate of false positives is in the 10%-20% range. In our 

system, we adopt Kienzle et al.’s approach to detect potential face candidates for our task. To 

distinguish between a real face and non-faces, we need to train the system to know what a 

“real face” looks like. In the follow sub-sections, we first explain how to use a method based 

on principal component analysis (PCA) to better represent a face and a non-face, and then 

describe the verification process.  

A. Training Process 

In the training process, the face detection module extracts face-like images from test videos. 

For our experiments, we randomly selected 200 face images and 200 non-face images as 

training images. The images were then scaled down to 64×64 pixels, and the intensity was 

normalized by 
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where the suffix i denotes a face class (F) or a non-face class (NF); Ai,j and A'i,j represent the 

j-th original image and the j-th normalized image, respectively; and μi,j and σi,j are the mean 

and standard deviation of Ai,j, respectively. The goal of performing intensity normalization is 

to reduce the error caused by varying lighting conditions and backgrounds [11]. The average 

images (Āi) of a face class and a non-face class are calculated according to 
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where M=200. We then apply PCA to calculate the set of eigenfaces corresponding to the 

training data. Related works on eigenfaces can be found in [11-14]. Using the source code in 

[11] to calculate the eigenfaces directly, we obtain 200 eigenfaces ( Fφ ) and 200 

non-eigenfaces ( NFφ ). The weighting vectors of all the training images are measured by 

( )
NF}, {F,   ,]   [

,
T

,,2,,1,,,

,,,,

∈=Ω

⋅−′=

i

AA

Njijijiji

kiijikji

ωωω

φω

L
                          (10) 

where ki,φ  denotes the k-th eigen-image, and ωi,j,k and Ωi,j represent the k-th weighting value 

and the weighting vector of Ai,j, respectively. Every weighting vector consists of 200 

weighting values; hence, N=200.  

B. Verification Process 

The verification process proceeds as follows. Each examined image is scaled down to 64×64, 

and the intensity is normalized by applying Eq.(8). According to Eq.(10), to measure two 

weighting vectors of the images ΩF and ΩNF for face and non-face classes, respectively, we 

calculate the Euclidean distances between ΩF and ΩF,j and select the minimum distance (εF). 

Similarly, the minimum distance (εNF) is computed from the Euclidean distances between 

ΩNF and ΩNF,j. The minimum distance can be derived by 
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If εF is smaller than εNF, the image under examination is a face; otherwise, it is a non-face. 

3. Feature Extraction 

When counting the number of people actually watching an advertisement on a TV billboard, 

some strict criteria need to be satisfied. First, one has to make sure the people are really 

“watching.” Second, some people may like the advertisement very much and watch it for a 

long while, but they cannot be double counted. In these circumstances, the extracted faces 

should have a frontal orientation and the chosen feature set should have strong discriminative 

power so that correct assessments can be made. Since each person only has a few distinct 

facial features (eg., nose, mouth and eyes), we propose extracting a separate set of features 

from part of the torso so that the complete feature set will contain richer information. As 

people usually adopt a frontal orientation when watching a public TV advertisement, we 

extract features from the front of each individual’s torso. The features extracted are the shape 

context [7] and the kernel weighted region saliency. We describe these features in Section 3.1 

and Section 3.2, respectively.  

 
3.1 Shape Context [7] 

The shape context descriptor for a point on a shape is the histogram of relative polar 

coordinates of all other points on the shape. Basically, this descriptor provides global 

discrimination. The corresponding points on two similar shapes usually have similar shape 

contexts. This characteristic enables us to solve the shape correspondence problem as an 

optimal assignment problem. Point correspondences between two shapes are thus established 

by minimizing the point matching costs, i.e., the x2 test statistic for histograms. Global 

optimal correspondences can be found by minimizing the sum of the individual matching 
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errors. The above-mentioned correspondence matching problem can be solved by a bipartite 

graph matching algorithm that enforces a one-to-one point matching process. Therefore, the 

shape distance, D, [7] is estimated as the weighted sum of the image appearance distance Dac, 

the shape context distance Dsc, and the bending energy Dbe as follows:  

bescac DwDwDwD 321 ++= ,                                       (12) 

where wi denotes the weighting of its corresponding distance. Dac is the appearance cost, 

defined as the sum of squared brightness differences in Gaussian windows around 

corresponding image points:  
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where IP and IQ are the gray-level images corresponding to P and Q, respectively; Δ  

denotes some differential vector offset; G is a windowing function, which is usually a 

Gaussian and{Pi}, [ ]ni ,1∈  is a point set of P. The distance is computed after the thin plate 

spline (TPS) transformation T has been applied to warp the images into alignment as much as 

possible; and ( )iπ  is the permutation of points q(i) of Q resulting from minimizing the costs 

of all pairs of points of P and Q.  

  Dsc is used to measure the shape context distance between shapes P and Q as the 

symmetric sum of the shape context matching costs over the best matching points, i.e.,  
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hi(k) and hj(k) denote the K-bin normalized histogram at pi and qj, respectively. The distance 

of the bending energy Dbe corresponds to the minimal amount of transformation needed to 
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align the shapes P and Q; thus, it is equivalent to minimizing the bending energy If 
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and the kernel function U(s)=s2logs2 and U(0)=0. iη  is a weighting for the point (xi,yi) and 

⋅ denotes the 2-norm operation. The detailed derivation of the above method can be found in 

[8].  

  We use the shape context to match the shapes of parts of the torso, as shown in Fig. 3. Figs. 

3(a) and 3(b) are the same part of a person’s torso taken automatically at different time 

instants. Although the shapes are similar, there are some subtle differences. Compared to 

Fig.3(a), Fig.3(b) is blurred and has a translation to up-right. After proper bending by 

minimizing Dbe, we obtain the image in Fig.3(d), which is the warped shape of Fig.3(a). The 

shapes in Fig.3(d) and Fig.3(b) match well, as shown in Fig.3(c). In this case, the person 

shown in Fig.3(a) and Fig.3(b) would be considered the same person.  
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Fig. 3. Demonstration of shape matching using shape contexts. Point correspondences 
between two shapes are found by minimizing the point matching costs. (a) and (b): the same 

part of the torso taken at different time instants; (c) shape matching using the shape of (b) 
and the warped version in (d).  

 

3.2 Kernel Weighted Region Saliency 

In addition to the edge-based shape context feature, a region-based color feature is extracted 

by computing both the global region saliency and the local color information. We propose a 

technique that performs template matching by matching the salient regions between distinct 

templates. We use the kernel weighted region saliency to generate a compact template 

signature. The process for deriving the kernel weighted region saliency is illustrated in Fig. 4. 

First, the original image I is thresholded to a binary image by using a non-parametric and 

unsupervised method of automatic threshold selection [9]. An optimal threshold is selected 

by maximizing the discriminant measure of separability of the resultant gray level histogram. 

The resultant binary image is shown in Fig. 4(b). We then apply the Euclidean distance 

transform on the binary image as follows:  
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where P is the region with intensity value 0 and pixel (i,j) belongs to the region with intensity 

value 1. Fig. 4(c) shows the transformed image I~  after applying the Euclidean distance 

transform. The salient regions are the areas with binary intensity value 1; thus, we compute a 

new image whose pixel value is inversely proportional to that of I~  by 

( ) ( )( ) ( )yxIeyxI yxI ,,ˆ ,~
⋅= − ,                                         (18) 

where I(x,y) is the original pixel intensity of image I . It is used as a weighting function to 

characterize the color information. The resultant new image, Î , i.e., the kernel weighted 

region saliency, is illustrated in Fig. 4(d). In this figure, the salient regions in the template are 

well localized. The examples in Figs. 4(e)-4(g) are salient regions extracted from different 

individuals. Clearly, these regions provide sufficient information to make distinctions. Figure 

5 shows a pair of processed templates. The image in Fig.5(b) is blurred and the human 

subject is translated and scaled from Fig.5(a). However, the resulting kernel weighted salient 

regions of the image pair are still similar, which indicates that the proposed feature has good 

discriminating power based on color regions.  

To match shapes by using salient regions, a distance measure drs is defined as  

( ) ( ){ }∑
=

∈−=
b

i
iqprs ByxyxIyxId

1
,,ˆ),(ˆ ,                           (19) 

where pÎ  and qÎ  are the templates obtained after applying Eq.(18). Bi is the block 

obtained by first normalizing a template to a pre-defined size and then partitioning it into b 

blocks of equal size. By using the distance measure, the difference in the spatial relationships 

of region saliency between a pair of templates, i.e., pÎ  and qÎ , can be computed. In 

addition, by controlling the parameter b, we can adjust the degree of tolerance in translation 

and scaling.  
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Fig. 4. Demonstration of the proposed kernel weighted region saliency: (a) original image; (b) 
an adaptively binarized image; (c) the Euclidean distance transform of (b); (d) the resulting 
kernel weighted region saliency. (e)-(g) the salient regions possess effective discriminative 

abilities.  
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4. Online Boosted People Counting 

An intrinsic characteristic of a video-based people counting system is that the pose of a 

human target inevitably changes over time. Most existing methods need to address the pose 
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person filmed at different time instants will exhibit some appearance changes. To resolve this 

problem, we propose a template matching algorithm that has online appearance learning 

ability. We describe the learning algorithm in Section 4.1, and then discuss the corresponding 

database that supports the online learning mechanism in Section 4.2. 

     
Fig. 6. Even the same person filmed at different time instants will exhibit some changes in 

appearance. 
 

4.1 Online Learning Algorithm 

We use Fisher’s Linear Discriminant criterion [15] to determine a projection orientation so 

that the two classes will be properly separated. Under Fisher’s criterion, each element of a 

feature vector is viewed as a coordinate in a high-dimensional feature space. A linear 

projection based on the criterion is used to project a torso template from the original 

high-dimensional space to a new feature space with much smaller dimensions. In the new 

feature space, the ratio of the determinant of the between-class scatter to that of the 

within-class scatter is maximized. 

For a template, suppose we have a set of n (n=n1+n2) d-dimensional feature vectors f1,…fn, 

which consist of n1 positives of F1 and n2 negatives of F2. If we form a linear combination of 

the components hi, we can obtain the scalar dot product by  

i
t

i fvz = ,                                                    (20) 

and a corresponding set of n projected points z1,…,zn divided into two subsets, Z1 and Z2. 

Geometrically, if ||v|| = 1, each zi is the projection of the corresponding hi onto a line in the 

direction of v. The Fisher Linear Discriminant process employs the linear function shown in 
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Eq. (20) for which the criterion function  
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is maximized. The v maximizing ( )⋅J  yields the best separation between the two projected 

sets. Here, μi is the mean of the projected feature vector (Zi) of set Fi; and 2
is , the scatter of 

the projected feature vectors, is defined by 
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Thus, ( )( )2
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2
1/1 ssn +  is an estimate of the variance of all the feature vectors, and 2

2
2
1 ss +  is 

the total within-class scatter of the projected samples.  

According to the generalized Rayleigh Quotient [16], the objective function ( )⋅J  in Eq.(21) 

can be defined as 
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vSv
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V
t

B
t

= ,                                                (23) 

where SV is the within-class scatter matrix defined by  
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iiiV
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−−=+= μμ,21 ,                       (24) 

and SB is the between-class scatter matrix defined by  

( )( )tBS 2121 μμμμ −−= .                                       (25) 

Therefore, we can obtain the solution for v that optimizes ( )⋅J  by 

( )21
1 μμ −= −

VSv .                                             (26) 

Fig.7 illustrates the principle of Fisher’s criterion. The accumulated positive and negative 

samples captured by our system over time can be well separated by projecting their 

high-dimensional feature vectors on to an optimized projection line.  

In our approach, the templates collected from the same person are labeled positive samples 
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and those collected from other subjects are labeled negative samples. Thus, a one-against-all 

binary classifier is learned online for each person (class) when he/she appears in the field of 

view. When a new template x appears, it is first examined by all classifiers to determine if it 

belongs to one (or more than one) of them. If x belongs to more than one class, its class C(i) 

is determined by  

i
t

ii
bxviC += maxarg)( ,                                       (27) 

where bi is the bias of the ith classifier. However, if x does not belong to any of the classes, a 

new class is formed. In the training process, it is essential that a template database be 

maintained for training classifiers. In the next section, we explain how this database is 

maintained.  

 

 

Fig. 7. Classification of input data using Fisher’s Linear Discriminant function: a 
high-dimensional feature vector combined with shape contexts and kernel weighted region 

saliency is projected on to the projection line to separate positive and negative samples. 
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To maintain the dynamic template database (tDB), we develop an update rule. Since the 

processing time is one of the major concerns of this system, the template database cannot be 
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too large; otherwise, the template matching process will require too much time. We assume 

the maximum size of the template database is equal to the maximum number of people that 

can stand in a camera’s field of view. For the data structure of the database, we use the 

first-in first-out queue mechanism. Therefore, if someone stands in front of a camera for an 

extended period, he/she will not be counted repeatedly. On the other hand, if someone leaves 

the field of view for a short time such that and his/her old template has been removed from 

the queue, then he/she will be counted again. Fig. 8 shows the algorithm devised for handling 

the proposed dynamic template database. In the algorithm, the process Match(Oi,t ,Oj) is an 

important step because it determines if a template Oi,t is reliable enough to be selected as a 

training sample for the same person. The similarity between two templates is measured by  

( ) ( )ts DD
jti eOO ⋅+⋅−= 21,,

ααη ,                                     (28) 

where αi is the weight for its ith corresponding distance. Ds is the spatial distance defined 

by rss dDD ⋅+⋅= 21 ββ , which is a linear combination of the distance of the shape context D 

and the kernel weighted region saliency drs with weights β1 and β2, respectively. The 

weighting sets α and β are determined empirically based on extensive experiments; and Dt is 

the time interval between Oi,t and Oj. If ( )⋅⋅,η  is larger than a pre-defined threshold, a new 

template, i.e., a new human subject, is found. We then add it to the queue if there is room. 

However, if the queue is full, the template that has stayed for the longest time must be 

removed. In addition, a post-processing step is proposed to prevent counting noise, which 

occurs when a candidate appears and then suddenly disappears from the camera’s view. A 

distance DN is devised to measure whether a candidate causes noise, where 

( )∑ −=
s

OO
i

N sitiO
D

,,

1 ττ .                                        (29) 

Here, τ  is the instant that the template Oi appears; and | Oi | is a counter that counts how 

many times Oi has appeared already. By using the updating rule, we can maintain the 
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dynamic database efficiently.  

 

Fig. 8. The algorithm for maintaining the dynamic template database 

5. Experiment Results 

We used an empirical method to determine the number of separable filters that should be 

used in face detection. In our experiment, we used between 1 and 5 filters. Fig. 9 shows the 

performance of the face detector in terms of precision and recall when different numbers of 

separable filters were used. Considering the tradeoff between the precision and recall rates, it 

is clear that the best performance was achieved when both precision and recall were 87% and 

the number of separable filters was 3. Examples of face detection results using different 

settings of r are shown in Fig. 10.  

Template Database Updating Rule  
IInnppuutt  

NNTTDDBB::  tthhee  ssiizzee  ooff  TTeemmppllaattee  DDBB  ((ttDDBB))  iiss  pprree--ddeeffiinneedd  
                                                //**IItt  ccaann  bbee  aaddjjuusstteedd//ttrraaiinneedd  bbaasseedd  oonn  hhooww  llaarrggee  tthhee  

ccaammeerraa’’ss  ffiieelldd  ooff  vviieeww  iiss..**//  
{{OOii,,tt}}::  ddeetteecctteedd  ffaacceess  iinn  tthhee  ccuurrrreenntt  ffrraammee  tt  

OOuuttppuutt  
            NNuummbbeerr  ooff  PPeeooppllee::  PPeeoopplleeCCoouunntteedd  
AAllggoorriitthhmm  
          iiff  MMaattcchh((  OOii,,tt  ,,  OOjj  )),,  tthheenn  uuppddaattee  tthhee  ttiimmee  ffllaagg  TTOOjj  ooff  OOjj  ((TTOOjj  ==tt))  
                                                                                //**  {{OOjj}}  iiss  tthhee  sseett  ooff  tteemmppllaatteess  iinn  ttDDBB  **//  
          eellssee                                                                  //**  aa  nneeww  ppeerrssoonn  iiss  ddeetteecctteedd**//  
                      iiff  ||ttDDBB||<<  NNttDDBB  

                              PPuusshh  OOii,,tt  ttoo  ttDDBB;;    
                      eellssee                                                  //**  ttDDBB  iiss  ffuullll..  RReemmoovvee  tthhee  tteemmppllaattee  tthhaatt  

hhaass  ssttaayyeedd  
lloonnggeesstt  **//  

                              RReemmoovvee  tthhee  OOjj  wwiitthh  tthhee  ssmmaalllleesstt  ttiimmee  ffllaagg  TTOOjj  ffrroomm  ttDDBB;;  
        PPuusshh  OOii,,tt  ttoo  ttDDBB;;  
                      eenndd  
                      PPeeoopplleeCCoouunntteedd  ==  PPeeoopplleeCCoouunntteedd  ++  11;;  
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Fig. 9. Determining the number of separable filters in the face detector by evaluating the 
precision and recall rates  

 

 

                      (a) r = 1                  (b) r = 2 

  

                      (c) r = 3                  (d) r = 4 

Fig. 10. Faces detected using different numbers of separable filters. 
 

To evaluate the performance of the face detector, 5,071 candidates were detected from the 

test video, which contained 4,538 faces and 533 non-faces. In the experiment, we used 

different videos for training and testing. In addition, we applied a PCA-based method to filter 

out non-faces that were accidentally included by the face detection process. The performance 
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results of the face filtering process are listed in Table 1. The proposed method correctly 

recognized 4,430 faces and 477 non-faces among the 5071 test images. The success rate was 

96.77%, which was higher than the initial success rate of 89.49%. (Originally, only 4,583 

faces and non-faces were correctly recognized, as the proposed face filtering process was not 

applied). On the other hand, 108 faces and 56 non-faces were falsely recognized. This result 

is also better than the initial results. (Originally, the false detection rate was 10.51%, and the 

new false detection rate was 3.23%). The face filtering process successfully removes the 

majority of false positives and significantly reduces the computation time required by the 

subsequent face recognition process.  

Table 1. The results of face filtering with the proposed method 

 Face Non-face 

Face 4430 56 
Test 

Non-face 108 477 

Total 4538 533 

 

    

Fig. 11. A test dataset containing several people with varied appearances and frequent 
occlusions 

 
To evaluate the overall performance of the proposed people counting system, we used a long 

test video that contained many events. Fig. 11 shows some frames of test video. In the test 

video, a large number of human subjects moved frequently in the field of view, and mutual 

occlusions between the subjects occurred frequently. We implemented the proposed system 

using Matlab 7.0 with a 1.83GHz Intel CPU. The frame rate of the video was approximately 
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3-5 fps. Figure 12 shows a snapshot of the people counting process. In the figure, the 

horizontal axis represents the frame number of the test dataset, and the vertical axis 

represents the accumulated number of people counts. The blue, red, and green curves indicate 

the counts without post-processing, the counts with post-processing, and the ground truth, 

respectively. Without using post-processing to filter out noise, it is clear that the accumulated 

number of people counts would vary abruptly with a sudden increase and decrease of counts. 

For instance, in the interval between frame 300 and 400, two peaks appear almost 

consecutively. While applying the post-processing step, the accumulated number of people 

counts increased smoothly without abrupt variations because candidates that only appeared 

for a short time were labeled as noise and filtered out. Therefore, our system executes the 

people counting task in a stable and accurate manner.  
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Fig. 12. Demonstration of the proposed people counting mechanism 
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Fig. 13. Demonstration of the process for maintaining the dynamic template database. The 
templates enclosed by blue bounding boxes are at the top of tDB and will therefore be 

removed if space is required for new templates.  
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Fig.13 shows how the dynamic template database is updated during the people counting 

process. In this experiment, we assume that the maximum number of people that can stand in 

the field of view is five (the preset capacity of the queue indicated by the green dotted line). 

It is clear that the number of templates (the blue solid line) in the queue increases when a 

new template is detected and decreases when a template is regarded as noise. Moreover, at 

the bottom of Fig.13, a snapshot of the states of the queue illustrates how the push and pull 

operation works. A template with a blue bounding box indicates that it is at the head of the 

queue and will be removed if space is required for a new template (in a red bounding box). In 

this test video, 8 human subjects moved frequently in the field of view and 4 of them left the 

field for a short time and then returned. Therefore, the ground truth of the total number of 

counts should be 12. Our system returned a result of 13 because one of the subjects changed 

his appearance by removing his coat. The system was affected by this action because it relies 

on the color and shape of the torso. We ran simulations (using videos) for a large amount of 

test data, and the average successful detection rate was close to 90%.  

Fig. 14 shows the GUI interface of the proposed people counting system. The accumulated 

number of people counts is shown on the left-hand side. For statistical purposes, the 

“watching time” of each person is illustrated with a bar chart at the bottom (left-hand side) of 

the GUI. On average, the precision of the people counting system was about 89% (verified 

by a manual counting process). In addition, our system was set up at an exhibition conference 

site (SecuTech 2008) for three days and the accumulated number of people counts was 187 

(April 16, 2008), 206 (April 17, 2008) and 163 (April 18, 2008). The system ran real-time 

demonstrations and the ground truth was counted manually by two individuals working 

independently (8 hours per day). The average success rate was close to 90% over the 3-day 

period. The environment setting and system demonstration of our people counting system at 

SecuTech are shown in Fig. 15.  
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Fig. 14. The GUI interface of our people counting system  
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Fig. 15. System demonstration and exhibition environment setting at the SecuTech Expo 

2008  

 

6. Conclusion 

We have proposed an online boosted people counting system in which an efficient face 

detector combined with our proposed face filter is employed for the subsequent real-time 

application. In addition, we developed a new feature set and use it to recognize human 

subjects in the camera’s field of view. To achieve robust recognition of people, we employ an 

online boosted classifier trained by using Fisher’s Linear Discriminant (FLD) criterion. In 

this study, we applied the proposed scheme to people watching a TV-wall advertisement, and 

showed that the people counting task can be performed effectively by recognizing part of the 

face and part of the torso. Our experiment results demonstrate that the proposed system can 

achieve an 89% success rate in real-time.  

 

References 

[1] R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade, “Algorithms for Cooperative 



 27

Multisensor Surveillance,” Proc. of IEEE, Vol. 89, No.10, pp. 1456-1477, Oct. 2001. 

[2] D. Roqueiro and V. A. Petrushin, “Counting People using Video Cameras,” 

MDM/KDD'06, August 20, 2006. 

[3] A. B. Chan, Z. S. Liang, and N. Vasconcelos, “Privacy Preserving Crowd Monitoring: 

Counting People without People Models or Tracking,” Proc. IEEE Conf. on Computer 

Vision and Pattern Recognition, June 2008. 

[4] W. Kienzle, G. Bakir, M. Franz and B. Scholkopf, “Face Detection - Efficient and Rank 

Deficient,” Advances in Neural Information Processing Systems, Vol. 17, pp. 673-680, 

2005.  

[5] C. J. C. Burges, “Simplified support vector decision rules,” Proc. of International 

Conference on Machine Learning, pages 71–77, 1996. 

[6] P. Viola, and M. Jones, “Robust Real-Time Face Detection,” International Journal of 

Computer Vision, 2004. 

[7] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object Recognition Using 

Shape Contexts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 

24, No. 24, pp. 509-522, April 2002.  

[8] F. L. Bookstein, “Principal Warps: Thin-Plate Splines and Decomposition of 

Deformations,” IEEE Transactions on Pattern Analysis and Machine Learning, Vol. 11, 

No. 6, pp. 567-585, June 1989. 

[9] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE 

Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62-66, Jan. 1979. 

[10] Open source computer vision library, http://www.intel.com/technology/ computing/ 

opencv/.  

[11] Eigenface tutorial, http://www.pages.drexel.edu/~sis26/Eigenface%20Tutorial.htm. 

[12] L. Sirovich and M. Kirby, “Low-Dimensional Procedure for The Characterization of 



 28

Human Faces,” Journal of the Optical Society of America A, vol.4, no.3, pp.519–524, 

March 1987. 

[13] M. Kirby and L. Sirovich, “Application of The Karhunen-Loeve Procedure for The 

Characterization of Human Faces,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol.12, no.1, Jan. 1990. 

[14] M. A. Turk and A. P. Pentland, “Face Recognition Using Eigenfaces,” Proc. IEEE Conf. 

on Computer Vision and Pattern Recognition, pp.586-591, June 1991. 

[15] R. A. Fisher, “The Use Multiple Measures in Taxonomic Problems,” Annals of Eugenics, 

Vol. 7, pp.179-188, 1936.                                                               

[16] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, John Wiley and Sons, 

Inc., 2001.  

[17] I. Haritaoglu, D. Harwood, and L. S. Davis, "W4: Real-Time Surveillance of People and 

Their Activities," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 

22, No.8, August 2000. 

[18] P.Viola, M.J. Jones, and D. Snow, "Detecting Pedestrians Using Patterns of Motion and 

Appearance," International Conference on Computer Vision, 2003. 

[19] S.-Y. Cho, T. W. S. Chow, and C.-T. Leung, "A Neural-Based Crowd Estimation by 

Hybrid Global Learning Algorithm," IEEE Transactions on Systems, Man, and 

Cybernetics - Part B, Vol. 29, No. 4, August 1999. 

[20] D. Kong, D. Gray, and H. Tao, "Counting Pedestrians in Crowds Using Viewpoint 

Invariant Training," British Machine Vision Conference, 2005. 

[21] R. Ma, L. Li, W. Huang, and Q. Tian, "On Pixel Count Based Crowd Density 

Estimation for Visual Surveillance," Proc. Conference on Cybernetics and Intelligent 

Systems, Singapore, 1-3 December 2004. 

[22] N. Paragios, and V. Ramesh, "A MRF-based Approach for Real-Time Subway 



 29

monitoring," Computer Vision and Pattern Recognition, 2001. 

[23] A. N. Marana, L. F. Costa, R. A. Lotufo, and S. A. Velastin, “Estimating Crowd Density 

with Mikowski Fractal Dimension,” International Conference on Acoustics, Speech, and 

Signal Processing, 1999. 

[24] C. S. Regazzoni, A. Tesei, “Distributed data fusion for real-time crowding estimation,” 

Signal Processing, Vol. 53, pp 47-63, 1996. 

[25] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: A literature 

survey,” ACM Computing Surveys, Vol. 35, No. 4, pp. 399 – 458, Dec. 2003. 

[26] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-Based Object Detection in 

Images by Components,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 23, No. 4, pp. 349-361, April 2001.   

 

Acknowledgements 

This work is supported in part by the Ministry of Economic Affairs under Contract No. 

96-EC-17-A-02-S1-032, and the National Digital Archives Program under Contract No. NSC 

96-2422-H-001-001. 


