
TR-IIS-08-013 

 

Practical Pairwise Key Establishment 

Schemes for Wireless Sensor Networks 

via Constrained Random Perturbation 

 
 
 
 
 

 
 

 
 
 
 

 
 
 

 
 
 

Chia-Mu Yu, Chun-Shien Lu, Sy-Yen Kuo 
 
 

 
 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

 
 

December 17, 2008  ||  Technical Report No. TR-IIS-08-013 
http://www.iis.sinica.edu.tw/page/library/LIB/TechReport/tr2008/tr08.html 



Practical Pairwise Key Establishment Schemes for
Wireless Sensor Networks via Constrained Random

Perturbation
Chia-Mu Yu1,2, Chun-Shien Lu1, Sy-Yen Kuo2

1 Institute of Information Science, Academia Sinica, Taiwan, ROC
2 Graduate Institute of Electrical Eng., National Taiwan University, Taiwan, ROC

ABSTRACT
The resource limitation of sensor nodes poses a great challenge in
designing an efficient key establishment scheme for Wireless Sen-
sor Networks (WSNs). In spite of the fact that many elegant and
clever solutions have been proposed, no practical key establishment
scheme has emerged.

In this paper, a ConstrAined Random Perturbation based pair-
wise keY establishment (CARPY) scheme and its variant, a CARPY+
scheme, for WSNs, are presented. Compared to all existing schemes
which satisfy only some requirements in so-called sensor-key crite-
ria, including 1) resilience to various attacks, 2) directed and guar-
anteed key establishment, 3) resilience to network configurations,
4) efficiency, and 5) resilience to dynamic node deployment, the
proposed CARPY+ scheme meets all requirements. In particular,
to the best of our knowledge, CARPY+ is the first non-interactive
key establishment scheme with great resilience to a large number of
node compromises designed for WSNs. We examine the CARPY
and CARPY+ schemes from both the theoretical and experimen-
tal aspects. They have also been practically implemented on the
TelosB compatible mote to evaluate the corresponding performance
and overhead.

1. INTRODUCTION AND RELATED WORK
A Wireless Sensor Network (WSN) is composed of a large num-

ber of sensor nodes with limited resources. Since WSNs could be
deployed in a hostile environment, designing an efficient key es-
tablishment scheme is of great importance to the data security in
WSNs. Unfortunately, when considering the extremely scarce re-
sources available to each sensor node, the design of an efficient key
establishment becomes a great challenge.

Two classical threshold-based key distribution (TKD) protocols
[1, 2] are considered. As the security of both protocols is com-
pletely broken as long as the number of captured nodes is above a
pre-determined threshold, which is linearly dependent on the net-
work size and the storage overhead, they are considered not to be
suitable for WSNs. To provide resilient security, a useful technique
called probabilistic key pre-distribution (P-KPD), proposed by Es-
chenauer and Gligor [10], has been extensively studied. In a P-KPD
scheme, a key pool consisting of a large number of randomly gen-
erated keys is first prepared. Then, several keys randomly selected
from the key pool are stored in each sensor node to constitute a key
ring. After sensor deployment, when required, a shared-key dis-
covery procedure is performed to find a common key between two
nodes, called shared-key, in their respective key rings. Two nodes,
i and j, that fail to have a shared-key in the shared-key recovery
step perform a procedure, called path-key establishment, in which
the path-key generated by i is relayed along the key path to j and
acts as the common key between i and j. Here, the key path is
a path on which each pair of consecutive nodes has a shared-key.
Motivated by the P-KPD, Chan et al. [4] proposed that, instead of
relying on only one common key, q common keys between two sen-

sor nodes are necessary to construct the shared-key used for further
communications.

Due to the problem that different pairs of nodes could share
the same key, when the number of compromised nodes increases,
the fraction of affected keys increases quickly as well. Aiming at
providing pairwise keys between each pair of nodes, Chan et al.
[4] proposed the random-pairwise keys scheme, which stores pre-
defined pairwise keys, instead of random keys, into certain pairs of
nodes. Liu and Ning [14], and Du et al. [8] also proposed to treat
the keys in the key pool S as bivariate polynomials and matrices,
respectively, to achieve the same goal.

There are some common drawbacks in the P-KPD schemes. For
example, P-KPD schemes cannot guarantee that any two sensor
nodes can have common keys. Moreover, the Merkle puzzle [21]
must be used to guarantee the minimal secret information leak-
age. In view of this, several deterministic key pre-distribution (D-
KPD) schemes such as PIKE [3], expander graph-based scheme
[6], and hybrid design scheme [5] are proposed. D-KPD schemes
can guarantee that there exists at least one key path between two ar-
bitrary nodes. Another common drawback of the P-KPD schemes
is that, two nodes always rely on communications between them to
find their common key. Focusing on reducing such communication
overhead, a strategy, called Pseudo-Random Key pre-deployment
(PRK) [19], has been proposed, in which two nodes can find their
shared-key with certain probability without any communication.

A common problem existing in both P-KPD and D-KPD schemes
is that not every pair of nodes can directly establish their common
key. Zhang et al. recently proposed a Random Perturbation-Based
(RPB) scheme [30] to avoid this, while maintaining resilient secu-
rity.

Usually, one assumes that, prior to sensor deployment, nodes’ lo-
cations are not known by the network planner. When some special
deployment models are considered, prior knowledge about nodes’
locations can be utilized to construct efficient location-aware key
pre-distribution (L-KPD) schemes [7, 12]. In addition, based on
the assumption that there is a short bootstrapping time secure after
a sensor network is deployed, Localized Encryption and Authenti-
cation Protocol (LEAP) [28] is proposed to establish the pairwise
keys between each pair of neighboring sensor nodes.

With the fact that the communication channels in WSNs are
highly noisy [27] and that over 95% of energy consumption comes
from communication [20] in mind, we can know that although nu-
merous key establishment schemes are proposed, all of them, ex-
cept the TKD schemes [1, 2] (which unfortunately cannot achieve
resilient security), are inefficient and highly energy-consuming. Thus,
it is desirable, but extremely challenging, to have a key establish-
ment scheme satisfying both security and energy efficiency.

1.1 Evaluation Metrics
To evaluate the key establishment schemes, five requirements

were recently presented in [30]. Nevertheless, we find that they
are too weak to be utilized, as the security and performance of cer-



tain key establishment schemes have been overestimated. Hence,
motivated by the five requirements in [30], a set of five new re-
quirements is proposed as follows to thoroughly evaluate the key
establishment schemes applied in the real world.

• Resilience to Various Attacks (RVA) – In the literature, only
the node capture attack is considered as an avenue for the
adversary to compromise the security of key establishment
schemes. However, in the real world, a smart adversary can
simultaneously mount several kinds of attacks. For exam-
ple, for P-KPD and D-KPD, after several nodes are captured
by the adversary, all the keys obtained from the captured
nodes can be stored in multiple fabricated nodes with the
IDs given from multiple captured nodes. These fabricated
nodes are then placed back into the network to eavesdrop on
the path-keys more efficiently than the solely node capture
attack does. Such an attack can be thought of as a mixture of
the node capture, Sybil [18], and sink hole [13] attacks. On
the other hand, instead of compromising the security of the
key establishment scheme, the adversary may only want to
hinder the nodes from establishing keys by simply using, for
example, selective forwarding attack [13] . As a result, it is
necessary to consider the resilience and survivability under
various attacks which could be mounted by the adversary,
rather than only the node capture attack.

• Directed and Guaranteed Key Establishment (DGKE) – Each
pair of sensor nodes should be able to establish a common
key by their own effort wherever they reside and whenever
they need, without exposing secrets to or obtaining secrets
from the third parties.

• Resilience to Network Configurations (RNC) – Since the use
of sensor networks is highly application-dependent, the het-
erogeneity, mobility, deployment pattern, density of sensor
nodes, and the network size should not affect the effective-
ness and efficiency of the key establishment schemes. In
other words, key establishment schemes are necessary to be
applicable whatever network configuration is applied.

• Efficiency (EFF) – Key establishment schemes are required
to be performed efficiently in terms of storage, computation,
and communication overhead. Note that the time consumed
for finding the common key could be a metric for evaluating
the efficiency of a key establishment scheme as well. How-
ever, in general, such latency primarily comes from the com-
putation and communication delay; therefore, assessing the
computation and communication overhead is equivalent to
the assessing the latency.

• Resilience to Dynamic Node Deployment (RDND) – The hard-
ware failure or energy depletion of sensor nodes could result
in a WSN which cannot achieve full coverage of the sensing
region, or even becomes disconnected. In light of this, new
sensor nodes are necessary to be deployed in the network.
A desirable key establishment scheme should be applicable
under the consideration of on-the-fly addition of new sensor
nodes.

For convenience, these five requirements are called sensor-key cri-
teria, with which a desirable key establishment scheme for WSN
should be satisfied.

1.2 Contribution
There are two major contributions of the paper:

1. Based on the proposed constrained random perturbation tech-
nique, two constrained random perturbation based pairwise
key establishment schemes, CARPY and CARPY+, are in-
troduced. While all the existing schemes only meet a part of
the sensor-key criteria, CARPY+ is the only scheme satisfy-
ing all the requirements in the sensor-key criteria. In partic-
ular, CARPY+ is the first non-interactive key establishment
scheme with great resilience to a large number of node com-
promises designed for WSNs.

2. Detailed theoretical studies with respect to the performance
and security of the proposed CARPY and CARPY+ schemes
are provided. In addition, the proposed CARPY and CARPY+
schemes have also been practically implemented on the TelosB
compatible mote to evaluate the performance and overhead.

1.3 Organization
The proposed CARPY and CARPY+ schemes are presented in

Sec. 2. Together with a comprehensive comparison with the other
schemes, the theoretical and experimental results will be shown in
Sec. 3. At last, the conclusion will be presented in Sec. 4.

2. THE PROPOSED METHOD
The proposed schemes, CARPY and CARPY+, are based on

Blom’s concept [1]. Therefore, after describing the system model
in Sec. 2.1, we briefly review Blom’s scheme in Sec. 2.2. After-
wards, CARPY and CARPY+ are described in detail in Sec. 2.3
and Sec. 2.4, respectively. Finally, the methods for constructing
constrained random perturbation will be presented in Sec. 2.5.

2.1 System Model
Network Model. We assume that N low-cost resource-constrained

sensor nodes are deployed over the sensing region and no prior de-
ployment knowledge about the nodes’ locations is known by the
network planner in advance. There is a data collection unit, called
data sink, placed in the network. We do not assume the trustwor-
thiness and authenticity of data sink. Each sensor node is assumed
to have a unique ID, which could be arbitrarily chosen in a general-
purpose sensor node or fixed in a specific sensing hardware. In
addition to static networks, mobile nodes are also allowed in our
methods so that partial or entire nodes could have mobility. More-
over, we also do not assume the network topology. In other words,
the density, deployment pattern, and other characteristics of sensor
nodes could be arbitrary.

Security Model. Sensor nodes are assumed to have no tamper-
resistant hardware so that once the sensor node is captured by the
adversary, the secret information stored in the captured node will
be exposed to the adversary. The adversary can mount attacks im-
mediately after sensor deployment, i.e., the secure bootstrapping
time [28] does not exist in our model. The objective of the adver-
sary is to either compromise the secure communications between
sensor nodes which have not yet been compromised by the adver-
sary or just to hinder the nodes from establishing keys. To achieve
his/her goal, the adversary can simultaneously launch several at-
tacks. In this paper, we assume that four categories of attacks,
which are eavesdropping, node capture, routing layer, and physical
layer attacks, can be mounted by the adversary. They are described
in detail in Sec. 3.4.

2.2 A Review of Blom’s Scheme [1]
Suppose the number of sensor nodes is N . Let Fq = {0, . . . , q−

1}, q > N , be a finite field. For a matrix G, we denote the element
in the i-th row and j-th column of G by Gi,j , i-row of G by Gi,−



and the j-th column of G by G−,j . Assume that a symmetric matrix
D ∈ F

(λ+1)×(λ+1)
q and a matrix G ∈ F

(λ+1)×N
q are randomly

generated. Note that the only requirement for G is that any λ + 1
columns of G should be linearly independent in order to achieve
guaranteed security. Let A = (D · G)T and K = A · G. It can be
easily checked that K is also a symmetric matrix as follows:

A · G = (D · G)T · G = GT · D · G = (A · G)T . (1)

Note that the above operations are all performed in the finite field
Fq . Blom’s idea [1] is that for each node i, the row vector Ai,−
and the column vector G−,i are stored into the node i. Thus, when
two nodes i and j would like to have a common key, they exchange
their columns of G in plaintext and then use their private rows of
A to calculate Ki,j (= Ai,− ·G−,j) and Kj,i (= Aj,− ·G−,i), re-
spectively. Fig. 1 illustrates Blom’s idea. Blom’s scheme achieves
so-called λ-secure [1], which ensures that as long as no more than
λ nodes are compromised, the security can be perfectly preserved.
Intuitively, the security of Blom’s scheme comes from the privacy
of the matrix D, while the matrix G acts as a public information
even for the adversary. When D is totally known by the adversary,
Blom’s scheme becomes insecure. In spite of such guaranteed se-
curity, Blom’s scheme cannot be directly applied to WSNs because
the storage overhead grows rapidly when the security level must be
preserved in a network of large size.

Figure 1: An illustration of the Blom’s scheme.

2.3 The CARPY Scheme
We assume that the network consists of N sensor nodes with IDs,

I = {s1, s2, . . . , sN} and s1 < s2 < . . . , < sN . We also assume
that q > N , where q is a parameter of a finite field Fq , and λ is an
appropriate security parameter independent of N , which leverages
the security level and storage overhead.

2.3.1 Basic Idea of CARPY scheme

In Blom’s scheme, communications become insecure after more
than λ sensor nodes are compromised. The reason for this is that
the row vector Ai,− in the sensor node i is directly related to the
private matrix D. Hence, after collecting a sufficient number of
row vectors of A, the adversary is able to construct the private ma-
trix D by solving a system of linear equations since G is publicly
known. An idea, similar to the one used in [30], to enhance the
security is to break the direct relation between D and A by adding
certain random noise∗ on A to distort Blom’s key. However, if im-
proper random noise is applied, either additional computation and
communication are needed to extract the common bits of distorted
Blom’s key between two sensor nodes, or the common key cannot
be found anymore. To conquer these drawbacks, we propose to ap-
ply constrained random perturbation (CRP). The constrained ran-
dom perturbed Blom’s key, when compared to the original Blom’s
key, will satisfy high signal-to-noise (SNR) ratio, i.e., if the length
∗The terms, random noise and random perturbation, will be used
interchangeably throughout this paper.

of Blom’s key is �, then only the least r (r < �) bits of Blom’s
key are perturbed after the CRP is added. Thus, the first � − r bits
of Blom’s key are retained, resulting in the guaranteed establish-
ment of the common key without the need of additional overhead.
In contrast to the random perturbation [30] that incurs unnecessary
computation and communication overhead, the way of constructing
CRP and the corresponding efficiency gain substantially differenti-
ate our work and [30]. The main idea of CARPY is shown in Fig.
2. Obviously, the execution of each round of the CARPY scheme
can generate � − r bits of a pairwise key. When the bit-length of
desired key is L > (� − r), the CARPY scheme should be ex-
ecuted � L

�−r
� rounds to generate a pairwise key with desired key

length. Although � L
�−r

� rounds of CARPY are required, the over-
all computation overhead, which will be analyzed in Sec. 3.2, is
still affordable for the current generation sensor nodes.

Figure 2: An illustration of the CARPY scheme

There are two steps in the CARPY scheme, the off-line step
and the on-line step. In general, off-line step is performed to de-
termine the desired key length, select appropriate parameters, and
pre-install the keying materials into the sensor nodes, before de-
ployment of sensor nodes. The on-line step is performed for each
pair of sensor nodes required to find the pairwise key in common
after sensor nodes are deployed.

2.3.2 Off-line Step of CARPY scheme

In addition to the parameters such as the size q of the finite field
Fq , the security parameter λ of Blom’s scheme, and the set I of
IDs of sensor nodes mentioned in the previous sections, some other
parameters such as the number r of least bits perturbed by CRP
for the Blom’s key, and the bit-length L of desired key should be
determined by the network planner before off-line step is executed.
Let � be the least number of bits necessary to represent the elements
in Fq . Since the execution of each round of the CARPY scheme can
generate �−r bits of a pairwise key, the CARPY scheme should be
executed ξ (= � L

�−r
�) rounds to obtain a pairwise key with desired

key length L.
The algorithm for the off-line step is shown in Fig. 3. Here, we

explain the off-line step of the CARPY scheme from executing the
t-th round of the CARPY scheme. Note that all the arithmetic oper-
ations in the subsequent descriptions are accomplished in the finite
field Fq unless specifically noted. At first, as in Blom’s scheme, the
network planner randomly generates two matrices D(t) ∈ F

(λ+1)×(λ+1)
q

and G(t) ∈ F
(λ+1)×sN
q such that D(t) is symmetric and any λ + 1

columns of G(t) are linearly independent. After that, we calculate
the matrix A(t) = (D(t) · G(t))T .

Let cmin(�, r) be the value of � which has least r bits of its bi-
nary representation set to 0. Similarly, let cmax(�, r) be the value



Algorithm: CARPY-Off-line-Step(q, r, I, λ, L)
Input: q: the elements of D and G, randomly selected from Fq

r: the least r bits which will be infected by CRP
I: the set of sensor nodes identities
λ: a security parameter
L: the bit-length of desired key

1 Calculate �
2 for t = 1 to ξ (=� L

�−r
�)

3 Randomly generate D(t) and G(t), and Calculate A(t)

4 for u = 1 to |I| (= N )
5 Calculate Φ

(t)
su

6 Randomly select a row vector φ
(t)
su from Φ

(t)
su

7 Calculate W
(t)
su,− = A

(t)
su,− + φ

(t)
su

8 Store W
(t)
su,− and G

(t)
−,su

into the sensor node su

Figure 3: Off-line step of the CARPY scheme.

of � which has least r bits of its binary representation set to 1. For
example, cmin(524, 5) = 512 and cmax(524, 5) = 543. Let Φ

(t)
su

denote the set of CRPs applied on the row vector A
(t)
su for su ∈ I.

When the t-th round of the CARPY scheme is performed, each
CRP φ

(t)
su ∈ Φ

(t)
su must satisfy the following constraints:

(A
(t)
su,− + φ(t)

su
) · G(t)

−,sv
≥ cmin(A

(t)
su,− · G(t)

−,sv
, r) (mod q)

(2)

(A
(t)
su,− + φ(t)

su
) · G(t)

−,sv
≤ cmax(A

(t)
su,− · G(t)

−,sv
, r) (mod q)

(3)

φ(t)
su

(k) ∈ Z, (4)

where u �= v, 1 ≤ u, v ≤ N , 1 ≤ k ≤ (λ + 1), and φ
(t)
su (k) is the

k-th element of φ
(t)
su . Note that a CRP φ

(t)
su is a (λ+1)-dimensional

row vector. Eqs. (2) and (3) mean that after CRP is added to A
(t)
su,−

of the sensor node su, the most significant � − r bits of the cor-
responding Blom’s key are retained for every other sensor node
sv . These two constraints guarantee the existence of the common
part of constrained random perturbed Blom’s keys without needing
computation or communication overhead resulting from additional
checks. The constraint indicated in Eq. (4) should be satisfied be-
cause in CARPY the elements of CRPs are constrained to be inte-
gers. As a whole, every φ

(t)
su that satisfies Eqs. (2)∼(4) is one of

the elements in Φ
(t)
su .

Following the construction of Φ
(t)
su , for every su ∈ I, a CRP

φ
(t)
su is randomly and independently selected from Φ

(t)
su . Then, the

matrix W (t) is constructed by calculating W
(t)
su,− = A

(t)
su,− + φ

(t)
su

for 1 ≤ t ≤ ξ, 1 ≤ u ≤ N . After the matrix W (t) is constructed,
the row vectors W

(t)
su,− together with the column vectors G

(t)
−,su

are
stored into each node su.

2.3.3 On-line Step of CARPY scheme

Assume that two sensor nodes, sû and sv̂ ∈ I, want to share
a pairwise key. When the t-th round CARPY scheme is executed,
they first exchange their columns of G(t), G(t)

−,sû
and G

(t)
−,sv̂

. Then,

sû and sv̂ calculate κ
(t)
sû,sv̂ = W

(t)
sû,− ·G(t)

−,sv̂
and κ

(t)
sv̂,sû = W

(t)
sv̂,− ·

G
(t)
−,sû

, respectively. We can see from Eqs. (2)∼(4) that the distor-
tion of the constructed constrained random perturbed Blom’s keys
between two nodes is guaranteed to be limited within their least r

bits, and, thus, the t-th part of pairwise key between sû and sv̂ is
X

(t)
sû,sv̂ = f�,r(κ

(t)
sû,sv̂ ) = f�,r(κ

(t)
sv̂,sû), where f�,r(x) is the most

significant � − r bits of �-bit binary representation of a number x.
Eventually, the pairwise key Xsû,sv̂ between nodes sû and sv̂ is
X

(1)
sû,sv̂ ||X(2)

sû,sv̂ || · · · ||X(ξ)
sû,sv̂ . The algorithm for the on-line step

of the CARPY scheme is depicted in Fig. 4. An example illustrat-
ing the execution of CARPY is shown in Example 1.

Algorithm: CARPY-On-line-Step
Scenario: sensor nodes sû and sv̂ wants to agree a pairwise key
Note: this algorithm is executed by the sensor node sv̂

1 for t = 1 to ξ (= � L
�−r

�)
2 Send G

(t)
−,sû

to the sensor node sv̂

3 Receive G
(t)
−,sv̂

from the sensor node sv̂

4 Calculate κ
(t)
sû,sv̂ = W

(t)
sû,− · G(t)

−,sv̂

5 Calculate X
(t)
sû,sv̂ = f�,r(κ

(t)
sû,sv̂ )

6 Calculate Xsû,sv̂ = X
(1)
sû,sv̂ ||X(2)

sû,sv̂ || · · · ||X(ξ)
sû,sv̂

Figure 4: On-line step of the CARPY scheme.

Example 1. Given that q = 210 − 3, N = 4, λ = 3, I =
{1, 2, 3, 4}, r = 5, and L = 5. The main idea of CARPY is shown
in Fig. 2. In this example, � = 10 can be calculated. Since �− r =
L, performing the CARPY scheme once is sufficient to generate
a key with length L. Moreover, W1,− comes from A1,− + φ1,−,
where A1,− is shown in Fig. 1 and φ1,− is randomly chosen as
a row vector

[ −1 1 0 0
]
, satisfying Eqs. (2)∼(4). W3,−

can be obtained similarly by having A3,− + φ3,−, where φ3,− =[ −1 −1 0 1
]
, as also shown in Fig. 2. Though K′

1,3 =
W1,− · G−,3 �= W3,− · G−,1 = K′

3,1, their most significant � −
r = 5 bits are the same, i.e., X1,3 = f10,5(228) = (000111)2 =
f10,5(218) = X3,1. Hence, X1,3 (= X3,1) can be used as the
pairwise key between sensor nodes with IDs 1 and 3.

2.4 Towards Communication-Free CARPY
(CARPY+) scheme

In the CARPY scheme, two sensor nodes communicate with
each other only for exchanging the respective column of G, which
can be known by the adversary. If each column of G can be gener-
ated by each sensor node, then communications will no longer be
necessary. Recall that the only requirement for G is that any λ + 1
columns of G should be linearly independent. Thus, the Vander-
monde matrix is most suitable for our use because, if ϕ is the primi-
tive element of Fq , then any λ+1 columns of Vandermonde matrix,
which is generated by only one element ϕ, are linearly indepen-
dent [17]. Note that such Vandermonde matrix is of the form that
the i-th column is generated by

[
1 ϕi (ϕi)2 · · · (ϕi)λ

]T ,
where λ is a security parameter independent of N . Therefore, com-
munication overhead can be eliminated if the matrix G of CARPY
is selected as a Vandermonde matrix. For convenience, the CARPY
scheme with G being a Vandermonde matrix is called CARPY+.
The off-line and on-line steps of the CARPY+ scheme are depicted
in Fig. 5 and Fig. 6, respectively.

2.5 Constructing Constrained Random Pertur-
bation

In this section, we deal with the problem of calculating the set
Φ

(t)
su of CRPs for 1 ≤ t ≤ ξ and 1 ≤ u ≤ N . A straightfor-

ward method for obtaining Φ
(t)
su is to adopt an exhaustive search.



Algorithm: CARPY+-Off-line-Step(q, r, I, λ, L)
Input: q: the elements of D and G, randomly selected from Fq

r: the least r bits which will be infected by CRP
I: the set of sensor node identities
λ: a security parameter
L: the bit-length of desired key

1 Calculate �
2 for t = 1 to ξ (=� L

�−r
�)

3 Select ϕ and G(t)

4 Randomly generate D(t), and calculate A(t)

5 for u = 1 to |I| (= N )
6 Calculate Φ

(t)
su

7 Randomly select a row vector φ
(t)
su from Φ

(t)
su

8 Calculate W
(t)
su,− = A

(t)
su,− + φ

(t)
su

9 Store W
(t)
su,− and ϕ into the sensor node su

Figure 5: Off-line step of the CARPY+ scheme.

Algorithm: CARPY+-On-line-Step
Scenario: nodes sû and sv̂ want to agree on a pairwise key
Note: this algorithm is executed by the sensor node sû

1 for t = 1 to ξ (= � L
�−r

�)
2 Calculate G

(t)
−,sv̂

3 Calculate κ
(t)
sû,sv̂ = W

(t)
sû,− · G(t)

−,sv̂

4 Calculate X
(t)
sû,sv̂ = f�,r(κ

(t)
sû,sv̂ )

5 Calculate Xsû,sv̂ = X
(1)
sû,sv̂ ||X(2)

sû,sv̂ || · · · ||X(ξ)
sû,sv̂

Figure 6: On-line step of the CARPY+ scheme.

Specifically, given a finite field Fq , all the qλ+1 possible (λ + 1)-
dimensional vectors are examined in terms of Eqs. (2)∼(4). An
exhaustive search can be accomplished in computational complex-
ity O(ξ · qλ+1 · N), is inefficient. In this section, we present two
algorithms, SinLP and TwiLP, for constructing φ

(t)
su , which are less

time-consuming than the exhaustive search is in most of the cases
of CARPY and CARPY+. Since our approaches take advantage
of the efficiency of the linear programming, we first briefly review
some terminology. After that, the algorithms, SinLP and TwiLP,
will be presented.

A linear program (LP) of n variables is composed of a linear
objective function of the form, c1x1 + c2x2 + · · · + cnxn, where
c1, . . . , cn are constant numbers; and a number of linear equal-
ity and inequality constraints of x1, . . . , xn. The so-called linear
programming is a technique for optimizing the objective function
subject to the constraints. In other words, linear programming aims
at finding the best assignment of x1, . . . , xn such that the objective
function is optimized while the constraints are satisfied. For a LP,
any solution x1, . . . , xn satisfying both the objective function and
constraints is a feasible solution. Usually, a feasible solution can
be thought of as a point in R

n. Thus, geometrically, all the feasible
solutions constitute a region, called feasible region, in R

n. It can be
shown that the feasible region must be a convex set if it is bounded.
On the other hand, an integer linear program (ILP) is a LP with
integrality constraints. As for the computational complexity, LP is
shown to be solvable in polynomial time while ILP turns out to be

NP-hard [11].

2.5.1 SinLP Algorithm

Recall that our objective is to find more than two CRPs, φ
(t)
su ,

satisfying Eqs. (2)∼(4), for 1 ≤ t ≤ ξ and 1 ≤ u ≤ N . Unfortu-
nately, to our knowledge, other than the exhaustive search, there is
no technique useful for finding the solutions. An observation here
is that, though the consideration of Eqs. (2)∼(4), which consti-
tute the so-called CRP criteria, can provide all the possible CRPs,
in fact, the consideration of a restricted version of Eqs. (2)∼(4),
called weak CRP criteria, is sufficient for our use in most cases of
CARPY and CARPY+. The weak CRP criteria are given as:

−φ(t)
su

· G(t)
−,sv

≤ αu,v,r (5)

φ(t)
su

· G(t)
−,sv

≤ βu,v,r (6)

−A
(t)
su,k ≤ φ(t)

su
(k) ≤ q − 1 − A

(t)
su,k (7)

φ(t)
su

(k) ∈ Z, (8)

where u �= v, 1 ≤ u, v ≤ N , 1 ≤ k ≤ (λ + 1), φ
(t)
su (k) is the k-th

element of φ
(t)
su ,

αu,v,r = (A
(t)
su,− · G(t)

−,sv
) − cmin(A

(t)
su,− · G(t)

−,sv
, r), (9)

and

βu,v,r = cmax(A
(t)
su,− · G(t)

−,sv
, r) − (A

(t)
su,− · G(t)

−,sv
). (10)

An immediate observation is that the solutions satisfying the weak
CRP criteria are a subset of the solutions satisfying the CRP cri-
teria, because the weak CRP criteria can be regarded as the CRP
criteria without considering the modular arithmetic. In particular,
Eqs. (5) and (6) are, respectively, the same as Eqs. (2) and (3) ex-
cept that the modular arithmetic is abandoned. Eq. (7) should be
added to the weak CRP criteria. Otherwise, if an improper φ

(t)
su is

found, the constructed pairwise keys Xsu,sv and Xsv,su could be
inconsistent between two nodes su and sv . From an ILP point of
view, all the CRPs can be thought of as the set of all the feasible
solutions in the feasible region formed by the linear constraints of
Eqs. (5)∼(8). In other words, finding a CRP amounts to finding a
point in the feasible region. Thus, by introducing an arbitrary ob-
jective function, a CRP can be constructed by finding an optimum
solution of the corresponding ILP. Recall that, since Φ

(t)
su is com-

posed of several CRPs, the strategy we use here is to discover a
CRP one by one. Once more than two CRPs are found, the con-
struction of Φ

(t)
su is considered successful. In the following, we

explain the construction of φ
(t)
su , an element of Φ

(t)
su .

Although solving an integer linear programming problem is known
to be NP-hard, a feasible solution, instead of optimizing an ob-
jective function, is sufficient for our use. In this aspect, standard
techniques of handling the integer programming problem such as
linear programming relaxation (LP-relaxation) [24] and random-
ized rounding [23] can be utilized to find the feasible solutions.
The idea of SinLP is as follows. First, randomly select a (λ + 1)-
dimensional integer column vector c, and then construct an objec-
tive function φ

(t)
su · c. Thus, by considering two matrices A(t) and

G(t), together with φ
(t)
su · c as an objective function, we can con-

struct an ILP, ILP (c), as shown in the following.



Integer Linear Program ILP (c)

minimize φ(t)
su

· c (11)
subject to

− φ(t)
su

· G(t)
−,sv

≤ αu,v,r (12)

φ(t)
su

· G(t)
−,sv

≤ βu,v,r (13)

− A
(t)
su,k ≤ φ(t)

su
(k) ≤ q − 1 − A

(t)
su,k

(14)

φ(t)
su

(k) ∈ Z (15)

Second, the LP-relaxation of ILP (c) is conducted. Specifically,
instead of solving ILP (c), we solve the corresponding linear pro-
gram, LP (c), by using standard techniques such as the Simplex
method [15] and Interior Point Method [15]. Here, the linear pro-
gram LP (c) is the same as ILP (c) but without the constraint
of the feasible solutions being limited to integers. Assume that
a (λ + 1)-dimensional rational vector π is the optimum solution,
which is of course one of feasible solutions to the linear program
LP (c). Third, randomized rounding is conducted to transform the
rational vector π into an integer vector π̃. In particular, π̃k =
	πk
 with probability πk − 	πk
 and π̃k = �πk� with probability
1−πk +	πk
 for 1 ≤ k ≤ (λ+1), where πk and π̃k, respectively,
denote the k-th element of the vectors π and π̃.

At first glance, SinLP looks efficient. However, it is, in gen-
eral, inefficient because it is difficult to guarantee the number of
the vectors π̃ coming from the rounding of π which are still feasi-
ble in ILP. Although iteratively applying randomized rounding on
π can eventually find one of feasible solutions, there could be the
case that most of the vectors π̃ are not feasible solutions anymore
and, therefore, a large number of trials are required. An example of
such a case is given in Example 2. For simplicity, we assume the
existence of the bounded feasible region and at least one feasible
solution to ILP in the subsequent discussion.
Example 2. Consider the following integer linear program:

Integer Linear Program (ILP-EX-1)
minimize − 3x1 − 2x2 (16)
subject to

3x1 + x2 ≤ 9 (17)
x1 + 32 ≤ 7 (18)
− x1 + x2 ≤ 1 (19)
x1, x2 ≥ 0, x1, x2 ∈ N (20)

By using LP-relaxation, we can know that the optimum solution
for x1 and x2 is (2.5, 1.5). Unfortunately, in this case, only one
rounding result (2, 1) is still a feasible solution, while the other
three possible rounding results, (2, 2), (3, 1), and (3, 2) are not
feasible solutions anymore, as depicted in Fig. 7.

2.5.2 TwiLP Algorithm

Geometrically, the rounding of an optimum solution in LP is
equivalent to the shift of the corresponding point in the space. A
possible explanation for the inefficiency of SinLP is that the op-
timum solution π is usually already in the close proximity of the
boundary of the feasible region. For this reason, the point repre-
senting the optimum solution after the shift easily escapes from the
feasible region. By assuming two objective functions O1 and O2

are opposite each other, we propose an algorithm, called TwiLP,
in which LP-relaxation is used twice to find the two optimum so-
lutions with respect to O1 and O2 in LPs and then performs ran-
domized rounding on the point resulted from averaging those two

Figure 7: A bad example of directly using LP-relaxation and
randomized rounding.

optimum solutions to search for a feasible solution of ILP. A more
detailed description is as follows.

By a simple calculation, one can calculate the optimum solution
πLP (c) for the LP-relaxation of ILP (c). Let the column vector
d = −c. Considering the integer linear program ILP (d), one can
also calculate the optimum solution πLP (d) for the LP-relaxation of
ILP (d). Then, the average π̄ = (πLP (c) + πLP (d))/ω, where ω
is an integer randomly selected, is calculated. Finally, randomized
rounding is applied on the vector π̄. The pseudo code of the TwiLP
is shown in Fig. 8.

Algorithm: TwiLP(A(t),G(t))
Scenario: The network planner wants to calculate a CRP, φ

(t)
su

1 Randomly select an integer vector c
2 Set d = −c
3 Construct two ILPs, ILP (c) and ILP (d)
4 Construct two LP-relaxations, LP (c) and LP (d)
5 Calculate πLP (c) and πLP (d)

6 Calculate π̄ = (πLP (c) + πLP (d))/ω
7 do
8 Apply randomized rounding on π̄ to obtain the vector V
9 until the vector V is a feasible solution of ILP (c)

Figure 8: TwiLP Algorithm.

Since the feasible region of a LP is a convex set, all the points
on the line segment connecting two arbitrary points within the fea-
sible region are within the feasible region. Thus, it can be known
that π̄ is located within the feasible region. From the assumption of
the existence of at least one feasible solution to ILP, it can also be
known that at least one feasible solution can be found by rounding
π̄, resulting in the effectiveness of the TwiLP. On the other hand,
since π̄ comes from averaging two opposite points near the bound-
aries of the feasible region, geometrically, π̄ is located near the
center rather than the boundary of the feasible region. The num-
ber of integer feasible solutions surrounding π̄ will be increased,
guaranteeing the efficiency of TwiLP. Thus, we argue the TwiLP
algorithm is effective and more efficient than exhaustive search and



SinLP. An example illustrating the superiority of TwiLP is shown
in Example 3.

Example 3. Consider the integer linear program ILP (c). Recall
that the optimum solution to its LP-relaxation is (2.5, 1.5). Con-
sider the following integer linear program whose objective function
is in the opposite direction of that of ILP-EX-1 (Example 2):

Integer Linear Program (ILP-EX-2)
minimize 3x1 + 2x2 (21)
subject to

3x1 + x2 ≤ 9 (22)
x1 + 32 ≤ 7 (23)
− x1 + x2 ≤ 1 (24)
x1, x2 ≥ 0, x1, x2 ∈ N (25)

It is obvious that the objective function considered now is oppo-
site the objective function shown in Example 2. The optimum solu-
tion to the corresponding LP-relaxation is (0, 0) by a simple cal-
culation. The possible results by applying randomized rounding on
the averaging result (1.25, 0.75) = ((2.5, 1.5)+ (0, 0))/ω, where
ω = 2, could be (1, 0), (1, 1), (2, 0), and (2, 1). This time, these
four possible results, as shown in Fig. 9, are all feasible solutions.

Figure 9: An example showing the effectiveness of efficiency by
using TwiLP.

2.5.3 Implementation Issues

It can be observed that TwiLP could fail to find the CRPs even if
several iterations are performed. From the implementation perspec-
tive, there exists another way to construct CRPs. The observation
here is that if the elements of G(t) are relaxed to small floating point
numbers instead of integers, then Eqs. (5)∼(8) can be easily satis-
fied. Specifically, G(t) can be constructed as described in Sec. 2.4,
followed by a division using a large integer γ (e.g., γ ≥ 100). Note
that after such scalar division, the property of G(t) that any λ + 1
columns are linearly independent can still be kept. The algorithm
of constructing CRPs is described as follows. At first, an integer
vector φ

(t)
su is randomly generated. For φ

(t)
su , we examine if Eqs.

(5)∼(8) are satisfied. The above procedure is repeated until a sat-
isfiable vector is found. Despite its similarity to exhaustive search,
in practice, after the relaxation of G(t), such a simple randomized
algorithm is very efficient and effective for generating CRPs. For

Table 1: Storage Overhead of CARPY and CARPY+ (in Byte).

Scheme Flash Memory RAM
CARPY 1070 2244

CARPY+ 1224 2176

Table 2: Computation Overhead of CARPY and CARPY+.
Scheme Time (in seconds) Cycle Count
CARPY 0.2379 1903747

CARPY+ 0.2620 2096170

example, when q = 216 − 15, λ = 128, and r = 14, only 10
seconds are needed to generate a CRP.

3. PERFORMANCE EVALUATION
The prototypes of both the CARPY and CARPY+ schemes have

been implemented on the TelosB compatible mote (Micro-Controller:
TI MSP430F1611; Flash Memory: 48KB+256B; RAM: 10KB;
Radio Chipset: ChipCon CC2420). The programming tool we used
is the native C compiler on IAR Embedded Workbench† 3.40.1.9,
instead of TinyOS. In our experiments, the parameters were set as
follows. The number N of sensor nodes was 1024 and the desired
key length L was 128. In addition, q = 216 − 15, λ = 128, and
r = 14. We used the diagnostic and profiling outputted from IAR
Embedded Workbench to estimate storage and computation over-
head. It should be noted that the elements of G(t) used in the ex-
periments were selected and represented in floating points for ease
of implementation.

3.1 Storage Overhead
If CARPY is used, then, for sensor node su, the row vectors

A
(t)
su,− and column vectors G

(t)
−,su

are needed to be stored. Since ξ
rounds of CARPY need to be performed independently, the storage
overhead is therefore O(2 · ξ · λ). If CARPY+ is used, for sen-
sor node su, only row vectors A

(t)
su,− and an element s need to be

stored. Since the CARPY+ scheme also needs to be performed ξ
rounds, the storage overhead for CARPY+ is, thus, O(ξ · λ). The
details of storage overhead in our experiment are shown in Table 1.

3.2 Computation Overhead
For different su and sv , λ + 1 multiplications and λ additions

are needed to carry out the multiplication of Asu,− and G−,sv in
each round of CARPY. The computation overhead of CARPY+
is larger than that of CARPY because each node calculates the
needed column vectors by itself. From the su point of view, af-
ter the calculation of ϕsv , which needs at most sv multiplications,
λ + 1 multiplications and λ additions are sufficient to simultane-
ously carry out the generation of G−,sv , and the multiplication of
Asu,− and G−,sv by using Horner’s rule in each round of execu-
tion of CARPY+. The computation overhead obtained from our
experiments is shown in Table 2.

3.3 Communication Overhead
In CARPY, the communications happen only when two sensor

nodes exchange their respective column vectors. As the length of a
column vector is O(λ) and the expected hop distance between two

†Availiable at: www.iar.com



arbitrary nodes in a random flat network is O(
√

N), the commu-
nication overhead is therefore O(ξ · λ · √N). On the other hand,
it can be easily observed from the scheme described in Fig. 6 that
there is no communication needed in the CARPY+ scheme.

3.4 Security Analysis
In this paper, we assume that four categories of attacks could be

mounted by the adversary. They are eavesdropping attack, node
capture attack, routing layer attack, and physical layer attack. The
resilience of CARPY and CARPY+ to these four possible attacks
is described in Sec. 3.4.1∼Sec. 3.4.4, respectively. In addition to
the aforementioned attacks, Denial of Service (DoS) is a common
strategy mounted by the adversary to attack networks. While DoS
attack has no direct impact on the information leakage of the key
establishment schemes, an ill-designed key establishment scheme
easily allows DoS attack. The immunity of CARPY and CARPY+
to DoS attack will be described in Sec. 3.4.5. The mixed attack is
considered in Sec. 3.4.6. In the following, we denote the nodes in
control of the adversary as insider nodes, while the legitimate nodes
are the nodes having not been compromised by the adversary.

3.4.1 Eavesdropping Attack

In our assumption, a global eavesdropper is involved in the net-
work so that all the traffic on the network will be immediately
known by the adversary. In the CARPY scheme, the message ex-
changed between nodes is only the column vectors of the matrix G,
which is assumed to be publicly known by everyone including the
adversary. On the other hand, there is no message exchanged be-
tween nodes during the key establishment of the CARPY+ scheme.
Thus, the adversary gains nothing about the pairwise key between
each pair of nodes by using eavesdropping attack.

3.4.2 Node Capture Attack

The CARPY and CARPY+ schemes can be regarded as a gen-
eralization of Blom’s scheme. In particular, the construction of the
matrix W (t) in CARPY and CARPY+ comes from the elements of
the matrix A(t) of Blom’s scheme, on which the CRPs are applied.
Due to this observation, directly inherited from Blom’s scheme, the
security of both CARPY and CARPY+ can be perfectly guaranteed
before λ+1 sensor nodes are captured by an adversary. Therefore,
we only consider the case where the number x of captured nodes is
larger than λ + 1, i.e., x ≥ λ + 1.

After CRPs have been applied to A(t) to construct the matrix
W (t), the relation between the matrices A(t) and D(t) in Blom’s
scheme does not exist any more. Here, a metric, called breaking
complexity (BC), for evaluating the difficulty of recovering D(t) is
defined. While the least number of nodes necessary to be compro-
mised, which is easily known to be λ+1 for CARPY and CARPY+,
acts as a metric for evaluating the hardness of recovering D(t) in
terms of physical attack, breaking complexity is defined in terms of
computational effort the adversary needs to pay. A lemma describ-
ing the breaking complexity of compromising the matrix D(t) is as
follows.

Lemma 1. Given that |Φ(t)
su | ≥ ρ, 1 ≤ t ≤ ξ, and 1 ≤ u ≤ N ,

the breaking complexity (BC) for recovering the matrices D(t) is
Ω(ξ · ρλ+1) for both the CARPY and CARPY+ schemes.

The intuition behind Lemma 1 is that, after capturing a set X ⊂
I of λ+1 nodes the adversary must guess the correct CRPs apply-
ing on the row vectors of λ + 1 captured nodes. Since a success-
ful guess for one attempt is with probability O(1/

∏
b∈X |Φ(t)

b |)
and there are ξ rounds of CARPY and CARPY+ needed to be per-
formed, if |Φ(t)

su | ≥ ρ for all u and t, the required computational

effort is Ω(
∑ξ

t=1

∏
b∈X |Φ(t)

b |) = Ω(ξ · ρλ+1). A formal proof is
as follows.
Proof: (sketch) Since the matrices W

(t)
su,− are constructed inde-

pendently for each round t = 1 . . . ξ, the breaking complexity for
different matrices is the same. Recall that W

(t)
su,− = A

(t)
su,− + φ

(t)
su

holds. After x sensor nodes, {sz1 , . . . , szx} ⊂ {s1, . . . , sN}, are
captured by the adversary, a system of linear equations is obtained
as follows:

W (t)
szσ ,ς =A(t)

szσ ,ς + φ(t)
szσ

(ς) (26)

=

λ+1∑

k=1

(G(t))T
szσ ,k · D(t)

k,ς + φ(t)
szσ

(ς), (27)

where 1 ≤ σ ≤ x, 1 ≤ ς ≤ λ + 1, and (G(t))T
szσ ,k denotes

the element on the szσ -th row and k-column of the matrix trans-
pose of G(t). In the linear system shown in Eq. (27), W

(t)
szσ ,ς and

(G(t))T
szσ ,k are known by the adversary while D

(t)
k,ς and φ

(t)
szσ ,ς are

unknown to the adversary. It can be seen that the total number of
linear equations is x(λ + 1) and the total number of unknowns is
x(λ + 1) + λ(λ + 1)/2. Obviously, finding a unique solution for
D(t) is impossible.

A strategy possibly adopted by the adversary to find a unique
solution for D(t) in the linear system shown in Eq. (27) is to
reduce the number of unknowns. Since the elements in D(t) are
chosen from the finite field Fq arbitrarily and independently, the
number of unknowns coming from D(t) cannot be reduced and is
still λ(λ + 1)/2. The remaining possibility for the adversary is to
select a group Λ ⊂ I of w + 1 sensor nodes {sẑ1 , . . . , sẑw+1}
with row vectors {W (t)

sẑ1
, . . . , W

(t)
sẑw+1

} on which the same CRP
is applied. In this case, the number of unknowns due to CRPs
can be reduced by w(λ + 1). Define such a kind of group as an
ill-perturbed group. According to this observation, the adversary
may identify one or more ill-perturbed groups to reduce the num-
ber of unknowns in the linear system shown in Eq. (27) so that a
unique solution for D(t) can be determined. The probability that
an ill-perturbed group is found is O(1/(

∏
b̃∈Λ |Φ(t)

b̃
|)), because

CRPs are randomly and independently applied on the matrix A(t).
Assume that ζ ill-perturbed groups {G1, . . . , Gζ}, each of which
consists of Sη nodes, 1 ≤ η ≤ ζ, are identified by the adver-
sary. To recover D(t), it is necessary to satisfy

∑ζ
η=1(Sη − 1) ≥

λ + 1. As a result, the probability for breaking a matrix D(t) is the
same as the probability of correctly identifying these ζ ill-perturbed
groups, which can be calculated as 1/(

∏ζ
ε=1

∏
b̂∈Gε

|Φ(t)

b̂
|). Since

the adversary needs to recover ξ independently constructed ma-
trices, D(t), the probability of correctly identifying these ζ ill-
perturbed groups for those ξ matrices, D(t), can be calculated as
1/(

∑ξ
j=1

∏ζ
ε=1

∏
b̂∈Gε

|Φ(j)

b̂
|). It results in the

Ω(

ξ∑

j=1

ζ∏

ε=1

∏

b̂∈Gε

|Φ(j)

b̂
|) (28)

computational complexity. For simplicity, under the assumption
that |Φ(t)

su | ≥ ρ, we have

1/

ξ∑

j=1

ζ∏

ε=1

∏

b̂∈Gε

|Φ(j)

b̂
| ≤ 1/ρλ+1, (29)

and thus the breaking complexity can be written as Ω(ξ · ρλ+1).



Table 3: Relation Between Various Parameters
L q � λ r |Φ(t)

su | ξ BC

128 216 − 15 16 32 14 ≥ 2 64 ≥ 236

128 216 − 15 16 64 14 ≥ 2 64 ≥ 270

128 216 − 15 16 128 14 ≥ 2 64 ≥ 2135

128 232 − 5 32 128 28 ≥ 2 32 ≥ 2134

The security levels under different settings can be found in Table
3. In addition to recovering the matrices D(t), the adversary may
also try to derive the CRP applied on each captured node by using
the methods described in Sec. 2.5. Given |Φ(t)

su | ≥ ρ, if λ+1 nodes
have been captured, since λ+1 CRPs should be simultaneously and
correctly guessed, exhaustive search incurs Ω(ξ · ρλ+1) computa-
tion overhead, which is infeasible for the adversary. On the other
hand, TwiLP algorithm can be utilized by the adversary. However,
the parameters, c, d, and ω, used in TwiLP are only known by the
network planner and unknown by the adversary. The adversary is
forced to examine Ω(ξ · ρλ+1) possibilities for the captured nodes.
Therefore, it is also inefficient for the adversary to find CRPs by
using TwiLP.

3.4.3 Routing Layer Attack

Routing layer attacks typically focus on disrupting the routing
mechanisms. The adversary may not gain information about the
pairwise key by directly mounting routing layer attacks. However,
routing layer attacks could be used to either hinder the legitimate
nodes from key establishment or even strengthen the effectiveness
and efficiency of node capture attack. Accordingly, attention to
the study of the resilience of key establishment schemes to routing
layer attacks is of primary importance.

In general, according to different goals, routing layer attacks can
be divided into three categories. 1) Attacks on the route discov-
ery process: In such attacks, the adversary prevents the legitimate
nodes from establishing routing paths by sending or flooding bo-
gus routing information. In an extreme case, this type of attack can
achieve DoS-like effect on the networks. 2) Attacks on the route
selection process: Instead of preventing legitimate nodes from es-
tablishing routing paths, the adversary uses this type of attack to
increase the probability that the insider nodes become a part of the
routing path between legitimate nodes. After joining one routing
path, the insider nodes can either eavesdrop or even manipulate the
messages transmitted through the path. For example, Sybil attack
and sink hole attack belong to this category, where the former takes
advantage of the malicious node with multiple IDs and the latter
utilizes the fake routing information to attract traffic. 3) Attacks
after establishing the routing paths: This type of attack primar-
ily aims at hindering the legitimate nodes from using the routing
paths which have been established. For example, the black hole
attack [13], in which all the packets transmitted through the mali-
cious nodes will be dropped, belongs to this category. An overview
of routing layer attacks in WSNs can be found in [13].

All the key establishment schemes for WSNs proposed in the lit-
erature suffer from routing layer attacks because communications
are necessary in the key establishment procedure. For CARPY,
since two nodes establish their pairwise key by exchanging their
respective column vectors of G, CARPY is not resilient to routing
layer attacks either. Nevertheless, when the CARPY+ scheme is
exploited, since no communication is required for establishing the
pairwise key, routing layer attacks cannot disrupt the key establish-
ment procedure. Hence, the resilience of CARPY+ against routing

layer attacks can be guaranteed.

3.4.4 Physical Layer Attack

Physical layer attack usually means a jamming attack [25], in
which the adversary disrupts the capability of transmitting and re-
ceiving packets for some specified nodes through radio frequency
interference. Solely exploiting physical layer attack cannot help
the adversary gain the information about the pairwise key, but it
can block the communications among a group of selected nodes so
that the key establishment has the possibility of not being accom-
plished.

Since communications are involved in establishing keys for all
the key establishment schemes for WSNs proposed in the litera-
ture, after physical attacks are applied on a group of selected nodes
by the adversary, all the nodes in the group will be unable to es-
tablish the keys with the other nodes, which are probably outside
of the group. The CARPY scheme encounters the same circum-
stance, i.e., key establishment cannot be accomplished, because the
column vectors of G should be exchanged between two nodes that
would like to have a key sharing. Fortunately, the CARPY+ scheme
is considered to be robust to the physical layer attacks since the
pairwise key can be calculated without the need of communication.

3.4.5 Denial of Service (DoS) Attack

Though a DoS attack [25] cannot be directly used to help the
adversary acquire the key between two legitimate nodes, the net-
works exploiting certain KPD schemes could attract a great threat
of DoS attacks. In particular, most of P-KPD schemes suffer from
DoS attacks. Note that in this paper, we only emphasize the DoS
attack incurred by applying key establishment schemes. The so-
called path-based DoS (PDoS) attack [9] is a strategy adopted by
the adversary to exhaust nodes’ limited resources by overwhelm-
ing sensor nodes with useless or spurious packets. In this paper,
PDoS attack is defined such that the adversary sends a bogus mes-
sages, claiming to perform either shared-key discovery or path-key
establishment with a victim node. Consider that P-KPD is used
in the networks. If the bogus message sent from a PDoS attack
claims to perform path-key establishment, the nodes on the path to
the victim node consume their energy by not only decryption and
re-encryption, but also forwarding the futile message. If the bo-
gus message claims to perform shared-key discovery, the nodes on
the path to the victim node waste their energy to forward the futile
message and the victim node will be busy with the decryption and
comparison of a large number of the received futile Merkle puz-
zles. In general, PDoS attack can affect all the key establishment
schemes that need communications between sensor nodes. Note
that, although the authentication scheme [29] may be exploited to
mitigate the effect of PDoS attacks, it is useless under the consid-
eration of insider nodes.

Since communications are required in CARPY, a PDoS attack
can be launched so that not only the radio function of the nodes
should be turned on to receive the packets but also the calculation
for key establishment is performed. Although the energy waste in
CARPY, compared with the existing schemes, is slightly reduced,
a PDoS attack involves a moderate level of energy waste to the net-
work. However, because no communication or interaction between
nodes is required for establishing the pairwise key, in CARPY+,
PDoS attacks can be resisted.

3.4.6 Mixed Attack

As stated in Sec. 1.1, the adversary could simultaneously mount
several kinds of attacks to compromise the security of the key es-
tablishment schemes more efficiently than a single attack does.



From the previous discussions, it can be observed that when the
pairwise key can be established without needing communications,
the key establishment scheme is resilient to the mixed attack. In
other words, simultaneously mounting several attacks gains noth-
ing more than solely mounting node capture attack.

3.5 Energy Consumption
In this section, we utilize a model similar with the one considered

in [22] and [26] to estimate the energy consumption of CARPY and
CARPY+, and then compare it with the other schemes. In general,
we consider the networks composed of N sensor nodes, in which
the packet loss rate ploss of each link between any two neighboring
nodes is the same. In other words, delivery of single packet will
fail with probability ploss. Assume that the byte-length of the max-
imum payload in a packet is Lpacket. The expected length of the
shortest path connecting two arbitrary nodes in the network is as-
sumed to be h. Let ee and ed be the energy consumption for encryp-
tion and decryption, respectively. Denote the energy consumption
of transmitting and receiving one packet as et and er , respectively.
In the following, we first formulate the energy consumption for key
establishment between two nodes that are not neighboring in the
P-KPD, D-KPD, RPB, CARPY, and CARPY+ schemes. Then, a
comparison among them will be presented.

Probabilistic Key Pre-Distribution. The schemes [4, 7, 8, 10,
14] are all within the same framework of P-KPD. Without loss of
generality, we consider only the scheme proposed in [10], but the
evaluation results can be naturally extended to [4, 7, 8, 14]. We
show how to calculate the energy consumption Eprob for P-KPD,
which is composed of the energy consumption Ecomm

prob of commu-
nications and the energy consumption Ecomp

prob of computation, as
follows.

Suppose the P-KPD scheme [10] is applied to the network. Let
the key ring size for each node be m, let the key pool size be S,
and let the key ring of the sensor node su be a set {ksu

1 , . . . , ksu
m }.

The probability pc that two nodes share at least one common key
in their respective key rings can, thus, be computed as 1− ((

(
S

2m

) ·(
2m
m

)
)/(

(
S
m

)2
)). For simplicity, we assume that each node has es-

tablished either the shared-key or the path-key with its neighboring
nodes after sensor deployment. Let Lz be the byte-length of Merkle
puzzle packet which is of the form,

〈id,ℵ1, Ekid
1

(ℵ1), . . . ,ℵm, Ekid
m

(ℵm)〉, (30)

where ℵ1, . . . ,ℵm are random words. To have a common key with
the node sv , the node su tries to find their shared-key by sending
the Merkle puzzle packet to sv . With probability pc, the energy
consumption of communications for the shared-key discovery be-
tween su and sv is h · ( et

1−ploss
+ er) · (� Lz

Lpacket
�+ 1). However,

after the above communications, with probability 1 − pc, they find
that they do not have the shared-key so that the path-key estab-
lishment is necessary, resulting in additional energy consumption
h · ( et

1−ploss
+ er) · (� L

8·Lpacket
�+ 1) required for transmitting the

path-key. Thus, the energy consumption Ecomm
prob of communica-

tions for P-KPD can be estimated as:

h · ( et

1 − ploss
+ er) · (� Lz

Lpacket
� + 1)

+(1 − pc) · h · ( et

1 − ploss
+ er)(� L

8 · Lpacket
�). (31)

The energy consumption Ecomp
prob of computation for probabilistic

KPD can be estimated as:

m · ee + m2 · ed + (1 − pc) · h · (ee + ed), (32)

because m encryptions in su and m2 decryptions for finding the
matching key in sv are required in shared-key discovery while in
path-key establishment each pair of consecutive nodes on the key
path performs one decryption and re-encryption. It should be noted
that for simplicity certain hidden costs are ignored in our calcu-
lation, for example, the energy consumption for establishing the
shared-key or path-key between two neighboring nodes.

Deterministic Key Pre-Distribution. Here, we consider the
two-dimensional PIKE scheme proposed in [3]. Note that the eval-
uation results can be easily extended to the other deterministic KPD
schemes [5, 6]. From the key assignment of each node, the prob-
ability pc that two nodes share a common key in the deterministic
key establishment schemes can usually be directly derived. For ex-
ample, pc = 2(

√
N−1)/(N−1) is derived in the two-dimensional

PIKE scheme. We also assume that each node has established ei-
ther the shared-key or the path-key with its neighboring nodes after
sensor deployment. With probability pc, nodes su and sv have a
shared-key; thus, no communication is needed. With probability
1 − pc, the path-key establishment is required to be performed be-
tween nodes su and sv . Consequently, the energy consumption
Edeter = Ecomm

deter + Ecomp
deter for deterministic KPD can be derived

by calculating the energy consumption Ecomm
deter of communications

as:

2 · h · (1 − pc)(
1

1 − ploss
· et + er) · � L

8 · Lpacket
�, (33)

and the energy consumption Ecomp
deter = 2·(ee+ed) of computation.

Random Perturbation Based Key Establishment. The Ran-
dom Perturbation Based (RPB) scheme [30] is the only scheme to
take advantage of random perturbation to strengthen security and
reduce communication overhead. The energy consumption of the
RPB scheme is ERPB = Ecomm

RPB + Ecomp
RPB . Since executing RPB

one time derives a part of the pairwise key, without loss of gener-
ality, we assume that ξ rounds of RPB also need to be performed.
In addition, a security parameter needed in the RPB scheme is also
assumed to be λ for simplicity. Since the key sharing between each
pair of nodes is guaranteed and proven in [30], the energy con-
sumption Ecomm

RPB of communications for the RPB scheme can be
easily estimated as:

h · ( et

1 − ploss
+ er) · � LM

Lpacket
�, (34)

where LM is the byte-length of a hash. When the node su wants
to establish a pairwise key with sv , the primary energy consump-
tion Ecomp

RPB of computation for RPB scheme can be estimated as
ξ · λ · (ea + em) + ξ · ee + (ξ − 1) · eXOR for su, and ξ · λ ·
(ea + em) + 3 · ξ · ee + 3ξ · eXOR for sv , where ea and em,
respectively, denote the energy consumption of accomplishing the
addition and multiplication of two integers, and eXOR means the
energy consumption of accomplishing ex-clusive OR (XOR) oper-
ation between two bit-strings. Here, as in the experiment conducted
in [30], the energy consumed for calculating a hash is replaced by
the energy consumed by a block cipher.

CARPY and CARPY+ schemes. We calculate the energy con-
sumptions ECARPY and ECARPY + for both CARPY and CARPY+,
respectively. ECARPY can be estimated as ECARPY = Ecomm

CARPY +
Ecomp

CARPY . Here, Ecomm
CARPY is calculated as:

2 · h · ξ · � � · (λ + 1)

8 · Lpacket
� · ( et

1 − ploss
+ er), (35)

because the respective column vectors of G of two nodes su and
sv need to be exchanged. As for Ecomp

CARPY , it can be computed as
2 · ξ · ((λ + 1) · em + λ · ea), as the primary task needed to be



performed by two ends is to calculate an inner product.
Since, in the CARPY+ scheme, a pairwise key can be directly

constructed between any pair of nodes without the need of com-
munication, the energy consumption Ecomm

CARPY + is zero. As to the
computation needed for the construction of the common key be-
tween two nodes su and sv , the node su should first generate the
corresponding column vector G

(t)
−,sv

, requiring ξ · log(sv +1) mul-

tiplications if the set {ϕ2i |i ∈ N, 2i ≤ sN} is stored in each node.
After that, the computation of the inner product, which is similar
to the one used in the CARPY scheme, is carried out to construct
the common key. As a result, if the maximum id of nodes is N , the
energy consumption Ecomp

CARPY + of the CARPY+ scheme for the
computation is at most

ξ((2(λ + 1) + log(sN + 1))em + 2λea). (36)

Energy Calculation. We consider the energy consumption of
several operations implemented on the TelosB mote. CC2420 con-
sumes 18.8 mA current for receiving and 17.4 mA for transmis-
sion. If the battery voltage and the data rate are set to 3.6V and
250kbps, respectively, then the energy for receiving one byte needs
2.1658μJ and the energy for transmitting one byte needs 2.0045μJ.
If the default setting of TinyOS packet is considered, er and et

can be calculated as 77.9688μJ and 72.162μJ, respectively. Note
that, although the default packet size is 36 bytes in TinyOS, only
29 bytes are used for payloads, i.e., Lpacket = 29. We compare
these schemes in two cases‡: Lpacket = 29 and Lpacket = 102.
In [16], it shows that ee = 9μJ for AES-128. When counter mode
(CTR mode) is used, energy consumption for both decryption and
encryption is the same. Here we assume that CTR mode is used
and, therefore, ed = 9μJ. In our experiments, ea, em, and eXOR

are about 0.2164μJ, 0.2405μJ, and 0.0132μJ, respectively. Since
AES-128 is considered, we assume that the random words in the
Merkle puzzle packet are selected to be L = 128 bits. For simplic-
ity, we assume that LM is 16 bytes (128 bits). In a network whose
N nodes are evenly and randomly deployed, the expected hop dis-
tance is O(

√
N), i.e., h = O(

√
N). For P-KPD, assume that

m = 75 and S = 10, 000. For the RPB, CARPY, and CARPY+
schemes, assume that � = 64, ξ = 8, and λ = 16. Under the
setting of ploss = 30%, the results of the energy consumption of
the P-KPD, D-KPD, RPB, CARPY, and CARPY+ schemes are de-
picted in Fig. 10. Note that, due to a simplified assumption used
in P-KPD and D-KPD that each node has established the key with
each of its neighbors, their energy consumption could be dramati-
cally larger than those shown in Fig. 10 when, for example, the net-
work is loosely connected or the energy consumption for the route
discovery used in path-key establishment is taken into account.

Due to the fact that CARPY incurs larger packet overhead, CARPY
consumes more energy than D-KPD and RPB. Note that if the pa-
rameters, such as �, r, and ξ, are chosen properly, the overhead can
be further reduced. Fortunately, it can be easily observed that the
energy consumption in the proposed CARPY+ scheme is substan-
tially smaller than all the known schemes chosen for comparisons.
For example, in a network with 104 nodes, the energy consumption
of P-KPD [10] is about 100 times greater than that of CARPY+.
In particular, the scalability of CARPY+ is superior to the other
schemes because only the energy consumption of CARPY+ is in-
dependent of the network size.

3.6 Comparisons
We present a comprehensive comparison among CARPY, CARPY+,

‡The default maximum payload size in TinyOS is 29 bytes and the
maximum payload size in IEEE 802.15.4 is 102 bytes.
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Figure 10: Energy Consumption for different key establish-
ment schemes (The number in the parenthesis indicates the
payload size).

Table 4: Comparisons Between Different Key Establishment
Schemes (In Terms of The Sensor-Key Criteria)

RVA DGKE RNC EFF RDND
TKD [1, 2] � � � �
P-KPD [4, 8, 10, 14] �
D-KPD [3, 5, 6]
RPB Scheme [30] � �
L-KPD [7, 12] �
LEAP [28] �
CARPY scheme � � �
CARPY+ scheme � � � � �

and the other key establishment schemes, from the sensor-key crite-
ria point of view. The results are shown in Table 4 and are described
in detail in the following.

Resilience to Various Attacks (RVA). Even without consider-
ing the mixed attack, since the key or message could be known by
the intermediate nodes between two nodes that want to achieve key
sharing if path-key establishment is applied, the P-KPDs [4, 8, 10,
14], D-KPDs [3, 5, 6], L-KPDs [7, 12], and LEAP [28] are all vul-
nerable to the node capture attack. For TKD schemes, which do
guarantee key establishment for any pair of nodes without needing
to perform path-key establishment, the guaranteed security depends
on a pre-determined threshold, which is not usually large enough
for adequate protection of WSNs. As the RPB scheme guarantees
key sharing for any pair of nodes, it relies on the communications to
establish pairwise keys. However, it is not considered to be resilient
to various attacks because the key establishment always fails when
attacks, such as jamming [25] and selective forwarding attack [13],
are mounted by the adversary. In addition, the RPB scheme is also
susceptible to DoS attacks, because the adversary can always send
spurious packets and force the victim node to proceed with a large
number of futile computations.

Our proposed CARPY scheme also suffers from the same prob-
lems the RPB scheme encounters. For CARPY+, since there is no



need of communications in key establishment, all the eavesdrop-
ping, node capture, routing layer, and physical attacks cannot de-
grade the security between a pair of nodes having not been com-
promised. Even better, for the same reason, key establishment can
be guaranteed to be successfully accomplished whenever the afore-
mentioned attacks occur. This implies the strongest survivability.
In addition, it does not incur DoS attacks in that key establishment
is carried out in a spontaneous way. Thus, a message claiming the
request for establishing keys will simply be dropped. Hence, the
proposed CARPY+ scheme is considered to be a key establishment
scheme satisfying RVA.

Directed and Guaranteed Key Establishment (DGKE). Due
to the storage limitations of each sensor node, pre-determined keys
cannot be preloaded into each pair of nodes if P-KPDs, D-KPDs,
and L-KPDs are applied, leading to the partial connectivity of key
sharing. Hence, there always exists pairs of nodes that do not
have shared-keys and require path-key establishment. For LEAP,
a node can establish common keys with its neighbors only. How-
ever, we can know from the descriptions of the proposed CARPY
and CARPY+ schemes in Fig. 4 and Fig. 6 that key sharing can be
always established between any two nodes.

Resilience to Network Configurations (RNC). While L-KPDs
and LEAP obviously cannot be applied to mobile networks, the ef-
ficiency for establishing key sharing will be significantly decreased
if P-KPDs and D-KPDs are considered in the mobile networks. In
fact, the P-KPDs, D-KPDs, and L-KPDs are also subject to the
density of the network. This can be observed by simply consider-
ing an extreme case, i.e., a network in which each node has only
a few, say 2 or 3, neighboring nodes. The effectiveness and effi-
ciency of key establishment in such networks will be substantially
degraded. The RPB scheme, though, is guaranteed to be applica-
ble in mobile networks and can be applied on the networks with
diverse topologies. However, the advantages come from sacrific-
ing its applicability to heterogeneous networks because the IDs of
sensor nodes in the RPB scheme should be artificially assigned.
In heterogeneous networks, assigning or modifying IDs to certain
devices is not always feasible because IDs could have been fixed
in the sensing hardware like the MAC address in current network
interface cards (NICs). Moreover, the number of bits required for
representing IDs of nodes could be dramatically increased in a net-
work with a large number of nodes, implying an inefficient use of
remaining packet size to carry data.

For both CARPY and CARPY+, the keying materials are always
at most one row vector of length λ + 1 plus one column vector of
length λ+1. It works irrespective of the network scale. In addition,
key establishment is performed independent of deployment knowl-
edge. In fact, CARPY and CARPY+ can be carried out with arbi-
trary network topology, because the pairwise key is calculated by
the node itself without the knowledge of network topology. Finally,
the CARPY and CARPY+ schemes do not assume the knowledge
of hardware; thus, they can be considered to be hardware indepen-
dent and are applicable in heterogeneous networks.

Efficiency (EFF). It can be easily observed that at least com-
munications are necessary for any two nodes without having the
shared-key as long as the requirement of DGKE in the sensor-key
criteria cannot be satisfied. For both the RPB and the proposed
CRPV schemes, although the key sharing can be achieved for any
pair of nodes, the exchange of the publicly known keying materials
is required. In a randomly flat network with N nodes, the average
hop distance between two arbitrary nodes is O(

√
N). The com-

munications for establishing the keys not only at least consumes
the other O(

√
N) nodes’ energy, but also incurs tremendous la-

tency for key establishment because of the high packet loss rate and

long path length. As for the efficiency of the CARPY+ scheme, it
does not require any message exchange and only involves a con-
stant number of additions and multiplications. Hence, the energy
saving resulted from the communication-free property of CARPY+
scheme is very significant.

Resilience to Dynamic Node Deployment (RDND). In D-KPDs,
key sharing between nodes usually relies on some fixed structures,
such as the hypercube in [3], the expander graph in [6], and the
symmetric design in [5]. If the construction of the underlying struc-
ture does not consider the nodes to be deployed in the future, on-
the-fly addition of nodes is usually infeasible. A possible solution
is to construct the structure with the consideration of a large num-
ber of nodes, but it also increase the storage overhead. Compared
with D-KPDs, on-the-fly addition of nodes can be supported by
also taking a large number of nodes to be deployed in the future
into account prior to the initial node deployment. Fortunately, ir-
respective of the number of nodes considered, the size of keying
materials necessary to be stored in each node is the same. Ac-
cordingly, by considering the nodes to be deployed in the future
in the construction of W (t) and G(t), our proposed CARPY and
CARPY+ schemes are resilient to dynamic node deployment

3.6.1 Other Advantages

Another unique feature possessed by CARPY+ is that it is trans-
parent to the other network services, that is, CARPY+ can work
well in cooperation with the other network services such as routing
and power saving mechanisms. For example, as sensor nodes are
usually powered by batteries, one method for prolonging the net-
work lifetime is to turn off the radio function of sensor nodes. If
the other existing key establishment schemes are used, communi-
cations are needed due to either shared-key discovery or path-key
establishment. However, for the efficiency of key establishment,
the nodes should be always in the active mode to deliver the pack-
ets with minimal latency, resulting in the faster energy depletion of
sensor nodes. On the other hand, for the efficiency of power con-
sumption, the nodes occasionally turn off the radio, leading to an
unstable route between nodes and, therefore, larger latency in es-
tablishing keys. Fortunately, since the proposed CARPY+ scheme
does not require communications, it does not incur such a problem.

4. CONCLUSION
Two ConstrAined Random Perturbation based pairwise keY es-

tablishment (CARPY and CARPY+) schemes are constructed via
a novel constrained random perturbation technique. In terms of
the so-called sensor-key criteria, while all the existing schemes
only satisfy a few requirements, the proposed CARPY+ scheme
meets all the requirements. In particular, CARPY+ is the first
non-interactive key establishment scheme with great resilience to a
large number of node compromises designed for WSNs. Together
with a comprehensive comparison, theoretical and experimental re-
sults are provided to validate the performance of the CARPY and
CARPY+ schemes.
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