
TR-IIS-07-001

Consistency and Feasibility of

Flexible Demand-Supply Constraints

P. H. Tsai and J. W. S. Liu

January 11, 2007 || Technical Report No. TR-IIS-07-001
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2007/tr07.html

1

Institute of Information Science, Academia Sinica

Technical Report TR-IIS-07-001

Consistency and Feasibility of

Flexible Demand-Supply Constraints

P. H. Tsai and J. W. S. Liu

Abstract

A general schedule specification (GSS) defines constraints on sizes and temporal

separation of individual dispatches and upper and lower bounds on the total size of

dispatches in specified time intervals. A dispatch may be a dispensing of medications to

an individual, a delivery of some fresh produce to a green grocer, the transmission of a

multimedia data element to a web surfer, and so on. When given a GSS, the scheduler

can choose any schedule that the meets the constraints defined by the specification. The

GSS is consistent if the constraints defined by it do not conflict with each other and is

feasible if there is a schedule that meets all constraints. This paper describes conditions

and algorithms which the scheduler can use to determine whether the specification is

consistent and feasible and to schedule dispatches according to the GSS.

Copyright @ January 2007

P. H. Tsai is affiliated with Department of Computer Science, National Tsing Hua University, Taiwan. J. W. S.
Liu is affiliated with Institute of Information Science, Academia Sinica, Taiwan.

2

Table of Contents

Abstract ...1

1 Introduction..3

2 Constraint Parameters and Their Consistency ...4

3 Feasibility Test Based on Minimum Demand Schedule................................7

4 Feasibility Test Based on Maximum Supply Schedule...............................14

5 Heuristic Scheduling Algorithms..16

6 Relative Performance ..18

7 Summary ..20

Acknowledgements ..21

References ..21

3

1 Introduction

Flexibility is a desirable attribute of schedules of many widely disparate activities. Examples

include schedules for dispensing medications to individuals, produce deliveries to green grocers

and multimedia data transmissions to web surfers. Many individuals today take multiple

medications on a long term basis to control chronicle conditions and maintain health. It would be

a hardship for even the most disciplined and conscious user to adhere to a rigid, inflexible

schedule, day in and day out. Fortunately, directions of most medications allow some variations

in sizes of doses and separations between doses. A smart medication dispenser such as the one

described in [1] can take advantage of the allowed variations to make its user’s medication

schedule flexible, conforming to the user’s life style and habits whenever possible. Similarly, by

using flexible schedules that take full advantage of tolerable variations in amounts and times of

deliveries, the schedulers in commodity-flow management and web hosting systems can help the

suppliers to better meet the conflicting demands of their customers.

 Hereafter, we use the term dispatches, rather than application specific terms such as doses

and deliveries, except for where it is necessary to be specific. In addition to ranges of sizes and

temporal separations of individual dispatches, there may also be bounds on the total size of

dispatches over specified time intervals. We refer to these parameters collectively as a general

schedule specification (GSS). It is a subset of the medication schedule specification introduced in

[2, 3] to capture directions of multiple medications managed by a smart medication dispenser for

a user. The constraints defined by the individual parameters in a GSS are consistent if they do not

conflict with each other. We call a schedule that meets all the constraints a feasible schedule and

say that the constraints, and hence the specification, are feasible if there is a feasible schedule. A

GSS is consistent and feasible if the constraints defined by it are consistent and feasible.

In each of the above examples, the scheduler is given a GSS. Before it proceeds to schedule

dispatches according to the specification, the scheduler must make sure that the specification is

consistent and feasible. This paper describes conditions and algorithms which the scheduler can

use for this purpose. The demand versus supply test (DST) described here is a more accurate

feasibility test than the dosage demand test [1]. As a by-product, the DST test produces a feasible

dispatch schedule when it finds the specification feasible. The paper also describes heuristic

scheduling algorithms and evaluates their performance along different dimensions.

The problem on feasibility of GSS resembles the schedulability analysis problems treated in

real-time systems literatures (e.g. [4-6]). The purpose of schedulability analysis is to determine

whether a given set of real-time tasks that share resources has a feasible schedule. The tasks may

4

be infeasible because they demand more resources than what are available. We can also caste our

feasibility test problem as that of determining whether the available supply is sufficient to meet

the demands. This is where the similarity between the problems ends, however. The problem of

scheduling dispatches with size and temporal separation constraints resembles pin-wheel

scheduling problems (e.g., [7, 8]) that arise in real-time systems and machine maintenance. An

important difference is the requirements defined by bounds on the total size of dispatches in

specified intervals, and these bounds are the reason that a consistent GSS may not be feasible.

Pin-wheel scheduling is not concerned with such constraints. According to the models used for

supply chain assignment and scheduling (e.g., [9]), customers make one-time orders. The goal is

to find schedules with minimum weighted total production and distribution cost, subject to some

constraints on lead and completion times. It will become evident in later sections that the

problem differs significantly from the problem addressed here.

Following this introduction, Section 2 presents a formal definition of GSS and the necessary

conditions that a GSS must satisfy to be consistent. Sections 3 and 4 describe the parts of a

feasibility test, called demand versus supply test, and discuss the conditions under which the test

is accurate. Section 5 describes heuristic algorithms for dispatch scheduling. Section 6 defines

figures of merit used to measure the performance of the algorithms and present simulation data

on their relative performance. Section 7 is a summary and discusses future work.

2 Constraint Parameters and Their Consistency

Again, our focus is on schedules of activities such as dispensing a medication, delivering a kind

of produce, etc. Fig. 1 gives a partial list of parameters provided by a GSS for such a schedule.

N: Name of items to be dispatched

g: Granularity of dispatches

: Basic unit of time

[dmin, dmax]: Minimum and maximum sizes of dispatches

[smin, smax]: Minimum and maximum temporal separations between

(consecutive) dispatches

[Tmin, Tmax]: Minimum and maximum schedule durations

(B, R): Supply rate defined by budget B (maximum total size) over

a specified time interval given by replenishment delay R

(L, P): Demand rate defined by lower bound L on total size over a

specified time interval of length P

Fig. 1 Constraint Parameters

The name N identifies the kind of items to be dispatched and provides physical

5

characteristics and other attributes needed by the scheduler and the application. The granularity g

specifies the absolute minimum amount to dispatch each time. For example, a granule of a

medication may be a tablet or caplet, or some number of milligrams or cubic centimeters, etc.

while a granule of a produce may be a crate or a kilogram. Similarly, the basic unit of time is

application dependent. It may be 15 minutes, 1/2 hour or an hour for medication administration,

but is an hour, a day or a week for schedules of produce and commodity deliveries.

Dispatch size is the number of granules to be dispatched at a time. Separation is the length of

time interval, measured in terms of number of time units, between any two consecutive

dispatches. The specification constrains the size of each dispatch to be in the range [dmin,, dmax]

delimited by the minimum dispatch size dmin and maximum dispatch size dmax. Similarly, the

specification constrains the separations between consecutive dispatches to be within the range

[smin, smax] delimited by the minimum separation smin and the maximum separation smax. All of

these parameters are integer valued. This paper focuses on the special case where both the size

range [dmin,, dmax] and separation range [smin, smax] are contiguous. In general case, each of these

ranges may consist of multiple disjoint ranges. We will discuss the general case in Section 7.

A schedule can be defined in general by a list of 2-tuples (ti, di) of time instants ti and

dispatch size di, for i = 0, 1, … , K. Both ti and di are integers. The list is sorted in ascending

order according to ti. The time origin t0 = 0 is the time of the first dispatch; it is the start of the

schedule. The presence of (ti, di) in the list means that a dispatch of di granules is scheduled at ti

time units from the start. For example, if the list is the schedule of a medication that comes in

tablet form, ti and di give, respectively, the time in minute or hour and the number of tablets of

the ith dose according to the schedule. The total number K of dispatches is a function of the

duration T of the schedule. T must be in the range delimited by the minimum duration Tmin and

the maximum duration Tmax.

Fig.1 also gives an upper bound and a lower bound on combinations of dispatch sizes and

separations. The supply rate (B, R) bounds from above the total dispatch size over an interval of

time: No more than B granules of N can be dispatched in any time interval of length R time units.

B stands for budget, and R stands for replenishment delay. Before the first dispatch, the current

budget of N is B. When a dispatch of size d is made at time t, d granules of the current budget are

consumed, and the d-granule chunk will be replenished at time t + R. At the time of any dispatch,

the dispatch size can be no more than the current budget. This way of controlling the total size of

dispatches over time resembles the way some sporadic servers in real-time systems control the

processor bandwidth consumed by aperiodic tasks [10-12]. As examples, the direction of a pain

killer whose effect takes 24 hours to dissipate typically includes something like “no more than 6

6

tablets in 24 hours” to prevent overdose. The supplier of a produce that takes two weeks to

mature may impose an upper limit of “at most 100 crates in 14 days” to prevent exhaustion of the

supply. These supply rate limits are specified as (6, 24) and (100, 14), respectively, in the GSS

for the pain killer and produce.

For some medications (e.g., antibiotics), it is important that a certain amount of the

medication is at work at all times. Such a medication typically has a demand rate constraint

specified by a 2-tuple (L, P): This constraint requires that the total size of dispatches within any

interval of length P (time units) to be at least equal to the lower bound L granules. Such a

constraint is also appropriate for produce deliveries. A green grocer would want to have a lower

limit, such as “at least 20 crates in any 7 consecutive days” or “at least 20 crates every week”.

These limits are specified as (20, 7)-uniform and (20, 7)-periodic, respectively, in the GSS. The

definition of demand rate given above is for the (L, P)-uniform variant. The definition of the

periodic variant (L, P)-periodic segments time into periods of length P and requires that the total

size of dispatches in any period be at least L. This variant is less stringent. In the green grocer

example, a schedule that delivers 20 crates on Monday of a week and 20 crates on Friday of the

following week satisfies the (20, 7)-periodic demand rate constraint but not the (20, 7)-uniform

constraint. We focus on the uniform variant throughout the paper but will discuss when it is

necessary to relax the requirement to the periodic variant. Since there is no source of ambiguity,

we will omit mentions of time unit and granularity hereafter.

As stated earlier, a GSS is consistent if the constraints defined by the constraint parameters

given by the specification are not in conflict with each other. Here, by a conflict, we mean some

difference or incompatibility in one or more parameters that the scheduler cannot resolve

automatically. When given a GSS, the scheduler first checks whether the specification is

consistent. It proceeds to check for feasibility and try to compute a feasible schedule if the

specification is consistent. Otherwise, it requests conflict resolution, either manually by persons

who negotiated the specification or automatically by some specification tools.

The following theorem lists the conditions that constraints must satisfy to be consistent. An

inform proof of the theorem can be found in [1].

Theorem 1: The constraints given by a GSS are consistency if they satisfy all of the

following conditions:

(1) Valid size range: 0 dmin dmax

(2) Valid separation range: 0 smin smax

(3) Valid limit parameters: dmax B and smax P Tmin

(4) Feasible supply rate: dmin Floor[R/smax] B

7

(5) Feasible demand rate: Ceil[L /dmax] Floor[P/smin]

(6) Consistent dispatch rate limits: B/R L/P

where Ceil[x] and Floor[x] denote the ceiling and floor of x, respectively..

Example 1 below illustrates that the conditions (1) – (6) are not sufficient to ensure feasibility

of the GSS in general.

Example 1: [dmin , dmax] = [5, 6], [smin , smax] = [45, 46], (B, R) = (10, 79), (L, P) = (17, 159)

The parameters satisfy these conditions. However, no schedule can satisfy all the constraints

defined by them: It is not possible to meet the demand rate constraint with four dispatches of size

5, because some interval of length 159 contains only three dispatches with a total size 15. If three

dispatches are used to satisfy the demand rate constraint, their sizes must be equal to or larger

than 5, 6 and 6. But such a schedule cannot meet the supply rate constraint (10, 79) because

consecutive dispatches of sizes 5 and 6 or 6 and 6 can be separated by at most 46.

Conditions (1) – (6) are sufficient, however, in the special cases listed in the following

corollary.

Corollary 2: In each of the following special cases, a GSS is consistent and feasible if

the constraints it defines satisfy conditions (1)-(6) listed in Theorem 1:

(1) L/P = 0, or B/R =

(2) dmax divides B, R divides P, and the separation range includes R dmax / B

Condition (1) means either the demand rate or the supply rate is not constrained. The fact that a

consistent specification is also feasible is obvious in this case. Case (2) permits a periodic

schedule which uses a constant dispatch size of dmax and separations equal to Floor[R dmax / B]

and Ceil[R dmax / B] alternately. Such a schedule satisfies both the supply rate and demand rate

constraints, as illustrated by Example 2.

Example 2: [dmin , dmax]= [3, 5], [smin , smax] = [35, 46], (B, R) = (10, 79), (L, P) = (17, 158)

The schedule that makes dispatches of size 5 at 0, 39, 79, 118, 158, and so on satisfies both

variants of the demand rate constraint as well as the supply rate constraint.

3 Feasibility Test Based on Minimum Demand Schedule

We describe in this section and the next section the demand versus supply test for determining

whether a GSS is feasible in the general case. The steps in the test are listed below.

8

Demand versus Supply Test (DST):

1. Check whether the given set {[dmin, dmax], [smin, smax], (Tmin, Tmax), (B, R), (L, P)} of

parameters satisfies all the conditions in Theorem 1. If some condition in Theorem

1 is not satisfied, declare the specification inconsistent and return.

2. Check whether either condition in Corollary 2 is satisfied. If yes, declare the

specification feasible and return.

3. Carry out one of the following steps to check the specification for feasibility:

(a) Case R P: Find the minimum demand schedule of the specification and the

required supply of the schedule. If the required supply is no greater than the

budget B, declare the specification feasible and return the minimum demand

schedule. Else, declare that the specification may be infeasible and return.

(b) Case R < P: Find the maximum supply schedule of the specification and the

available supply of the schedule. If the available supply is no less than L,

declare the specification feasible and return the maximum supply schedule.

Else, declare that the specification may be infeasible and return.

This section defines the terms referred to in 3(a) and provides the rationale behind the step. We

will define in the next section maximum supply schedule and available supply of the schedule

and describe the rationale for Step 3(b).

To define minimum demand schedule, we need a few additional definitions. We call a

periodic schedule that has k dispatches per period a k-dispatch schedule and denote the total size

of dispatches in each period by (k), and the length of the period by (k). Each period of such a

schedule can be defined by the sequence {(t0, d0), (t1, d1) … (ti, di,) …. (tk-1, dk-1)} of k dispatch

times and sizes. t0 is the start of the period and the time of the first dispatch in the period.

Subsequent dispatches in the period are made at times t1, t2 … tk-1, for t0 < t1 < …< tk-1, relative to

the start of the period. For the sake of convenience, we let tk denote the end of the period. tk = t0

+ (k) is the start of the next period; the size dk of the dispatch at time tk is d0. Finally, let xi = ti –

ti-1, for i = 1, 2 … k, denote the separations between consecutive dispatches in each period.

For a given consistent set {[dmin, dmax], [smin, smax], (B, R), (L, P)} of constraint parameters, a

k-dispatch schedule, defined by {(t0, d0), (t1, d1), … , (tk, dk)} and xi = ti – ti-1, for 0 i k, is a

k-dispatch minimum demand schedule when the dispatch sizes and separations in each period are

solutions of the following two-part problem.

k-Dispatch Minimum Demand Problem:

(1) Find integers x1, x2 … xk that maximizes (k) = 1 j k xj subject to the

constraints s min xi s max for i = 1, 2, … k and (k) P.

9

(2) Find integers d0, d1 … dk-1 that minimizes (k) = 0 j k-1 dj subject to the

constraints d min di d max for i = 1, 2, … k and (k) L.

In other words, a k-dispatch minimum demand schedule has a longer period and a smaller total

dispatch size than any k-dispatch schedule that meets the demand rate constraint (L, P). We call

the schedule MinDS(k) for short.

To illustrate, we consider the following example:

Example 3: [dmin , dmax] = [3, 10], [smin, smax] = [45, 55], (B, R) = (29, 220), (L, P) = (17, 158)

There must be at least 2 dispatches to make up the total size of 17, and there can be at most three

dispatches within a demand rate constraint period of 158. A 2-dispatch minimum demand

schedule MinDS(2) is given by {(0, 9), (55, 8), (110, 9), …}, that is, x1= x2 = 55, d0 = 9, d1 = 8,

period (2) = 110, and total size (2) = 17. A 3-dispatch minimum demand schedule is MinDS(3)

= {(0, 6), (52, 6), (105, 5), (158, 6), …} with period (3) = 158 and total size (3) = 17.

We say that a k-dispatch schedule, {(0, d0), (x1, d1), (x1 + x2, d2) … (x1 + x2 …+ xk, d0)}, with

period (k) and total dispatch size per period (k), is well-formed if d0 d1 … dk-1; x1

x2 … xk ; and for all 0 i k-1 , di equals either Floor[(k)/k] or Ceil[(k)/k], and for all 1 i

k, xi equals either Floor[(k)/k] or Ceil[(k)/k]. In other words, according to a well-formed

schedule, the sizes of the dispatches differ by at most one, separations between dispatches differ

by at most one, and the larger dispatches are make closer together earlier in the period.

The following lemma is true for Example 3. It is true in general because all the coefficients

of the terms in the objective functions of the k-dispatch minimum demand problem are equal

Lemma 3: If the k-dispatch minimum demand problem admits a solution, then there is a

a well-formed MinDS(k).

Hereafter, by a MinDS(k), we mean the well-formed k-dispatch minimum demand schedule

except for where it is stated otherwise.

The required supply of a MinDS(k) is the total size of all the dispatches within the

replenishment interval [0, R) when P R . A minimum demand schedule (MinDS) of a general

schedule specification is a schedule that has the minimum required supply among MinDS(k) for

all feasible values of k.

To illustrate, we return to the specification in Example 3. The replenishment delay R given by

the specification is 220. The required supply of the 2-dispatch minimum demand schedule

MinDS(2) is 2 17 = 34. The first period of the 3-dispatch minimum demand schedule MinDS(3)

10

falls within [0, 220). The first two dispatches of size 6 in the second period also fall in this

interval. Therefore, the required supply of MinDS(3) is 17 + 12 = 29, and the minimum demand

schedule MinDS of this specification is MinDS(3).

Fig. 2 gives a pseudo-code description of the functions for finding separations and dispatch

sizes that are solutions of the k-dispatch minimum demand problem. The functions take constant

time. The worst case time required to find the minimum demand schedule of the specification is

in order of the maximum of the widths of the separation range and the dispatch size range.

find_MinDS_separations (smin, smax, P, k, x, period)

{
// Inputs are separation range, demand rate constraint interval, the
// number k of dispatches, pointer to separation array x of size k
// and the pointer to period;
// Output is either succeeded or failed.
remainders = 0;
* period = 0;
if (k * smin > P) goto quit;
x[0] = P/k; //Try first to make the period equal to P.
if (x[0] > smax) {

*period = k * smax ; // period is less than P
for (j = 0; j < k; j = j + 1) {

x[j] = smax ;
}

} else {
*period = k * x[0];
remainders = P – k * x [0]; // remainders < k
for (j = 1; j < k; j = j + 1) {

x[j] = x[0];
}
if (x[0] < smax) {

for (j = k - 1; j > k – 1 – remainders; j = J – 1) {
x[j] = x[j] +1;

}
*period = * period + remainders;

}
}

quit:
if (*period == 0) return = failed;
else return = succeeded;

find_MinDS_dispatch_sizes (dmin, dmax, L, k, d, total_size)

{
// Inputs are dispatch size range, demand size limit, the number k of
// dispatches, pointer to dispatch size array d of size k and the
// pointer to total_size;
// Output is either succeeded or failed.
remainders = 0;
* total_size = 0;
if (k * dmax < L) goto quit;
d[0] = L/k; // Try first to make total_size equal to L.
if (d[0] < dmin) {

*total_size = k * dmin ; // total_size is larger than L
for (j = 0; j < k; j = j+1) {

d[j] = dmin ;
}

} else {
remainders = L – k * d [0]; // remainders < k
if (d[0] == dmax) && (remainders != 0)) goto quit
*total_size = k * d[0];
for (j = 1; j < k; j = J + 1) {

d[j] = d[0];
}
if (d[0] < dmax) {

for (j = 0; j = remainders – 1; j = j + 1) {
d [j] = d[j] + 1;

}
*total_size = *total_size + remainders;

}
quit:

if (*total_size == 0) return = failed;
else return = succeeded;

Fig. 2 Algorithm for finding MinDS(k)

The following lemma allows us to say that since the budget B given by the specification in

Example 3 is 29, which equals the required supply of its MinDS, the specification is feasible.

Lemma 4: A given GSS {[dmin, dmax], [smin, smax], (B, R), (L, P)}, where R P, is feasible

if the budget B is equal to or larger than the required supply of the minimum demand

schedule MinDS of the specification.

Proof: By definition, all dispatch(s) within the interval [0, R) can be scheduled according to the

MinDS if the required supply of the minimum demand schedule is not larger than B. We need to

11

show that dispatches after R can also be made according to the schedule. Without loss of

generality, let us suppose that the required supply of the MinDS is equal to B. Let (t, d) denote

the time and size of the last dispatch before R, and (t’, d’) be the time and size of the first

dispatch at or after R. The initial segment of the schedule is then {(0, d0), (t1, d1) … (tk-1, dk-1),

((k),, d0), ((k) + t1, d1) ... (t, d), (t’, d’) …}.

Also by definition, the current budget immediately after t is zero. At time R + t0 t’, the

current budget is replenished by d0. Because MinDS is well-formed, d0 is at least equal to d’,

making the dispatch (t’, d’) feasible. The current budget is replenished again R + t1,, … , R + tk-1,

R + (k),, R + (k) + t1, and so on by d1, … , dk-1, d0, d1, and so on, respectively, just in time and

by amounts sufficient for the dispatches after t’ to be scheduled according to the MinDS.

Fig. 3 illustrates graphically the feasibility the MinDS of the GSS in Example 3. The top

time line shows the first 3 and half periods of the schedule: The dark lines at 0, 52, 158, 210, and

so on represent dispatches of size 6. Narrow boxes at 105, 263, and so on represent dispatches of

size 5. The dotted line illustrates how the current budget varies as dispatches are made. It

becomes zero after the dispatch at 210. The chunk of budget of size 6 consumed at time 0 is

replenished at time 220. The bottom time line indicates the subsequent replenishments of size 6,

indicated by dark lines, and of size 5, indicated by narrow boxes, at times 272 (220 + 52), 325

(220 + 105), …. and so on. We can see that the current budget is always sufficient to meet the

demand of the MinDS.

0

20

10

52 105 158 210 263 316 368 421 4740

23

17

12

6 6

1

7

220

6 6

29

526 579

7
6 6

272 325 378 430 4830 220 536

Budget
replenishment

Fig. 3 MinDS of the specification in Example 3

The following corollary states a special case for which the DST test based on Lemma 4 is

accurate, i.e., the condition stated by the lemma is both necessary and sufficient.

Corollary 5: If according to the minimum demand schedule of a GSS {[dmin, dmax],

12

[smin, smax], (B, R), (L, P)}, where R P, all dispatches have identical sizes and all

pairs of consecutive dispatches have equal separations, then the GSS is feasible if and

only if the budget B is equal to or larger than the required supply of the schedule.

A fair question at this point is whether the sufficient condition stated in Lemma 4 is

necessary in general. Is it possible for a GSS to have a feasible schedule when the budget B is

less than the required supply of the specification? To get some insight to this question, we

consider the GSS in the following example:

Example 4: [dmin , dmax] = [2, 3], [smin, smax] = [5, 5], (L, P) = (10, 20), (B, R) = (B, 26)

The replenishment delay is 26. We want to determine the minimum value of B for this

specification to be feasible. The top time line in Part (a) of Fig. 4 shows a well-formed minimum

demand schedule: It is a 4-dispatch schedule with period 20 and dispatches of sizes 3, 3, 2 and 2.

(Again, dark lines and narrow boxes represent dispatches of sizes 3 and 2, respectively.) The

required supply is 16. Lemma 4 tells us that the specification is surely feasible if B is equal to or

larger than 16. The schedule in Part (a) supposes that B is equal to 16. After the dispatch of size 3

is made at time 25, the current budget is exhausted. Three units of budget are replenished at time

26. This replenishment, followed by another three units at time 31 and subsequent

replenishments at times indicated by the bottom time line, allows the periodic schedule to

continue as shown.

(a)

0
0 26

Budget
replenishment

0
0

(c)

26
0

0

(b)

26

Budget
replenishment

Fig. 4 Example illustrating the tightness of the condition in Lemma 4

The top time line in Part (b) of Fig. 4 shows the initial segment of another 4-dispatch

13

minimum demand schedule. Unlike the well-formed MinDS in Part(a), dispatches of size 2 are

made before the dispatches of size 3 according to this schedule: The initial segment is given by

the 2-tuples (0, 2), (5, 2), (10, 3), (15, 3), (20, 2) and (25, 2). A budget of 14 is sufficient for these

dispatches. Suppose that B is equal to 14. Just prior to the first replenishment at 26, the current

budget is 0. The amounts of budget replenished at 26 and 31 are 2, however. They are

insufficient to support two dispatches of size 3 at 30 and 35, forcing the sizes of dispatches at

these time instants to be 2. The dispatch schedule allowed by the supply rate of (14, 26) is shown

in part (b). Unfortunately, it satisfies neither variants of the (10, 20) demand rate constraint. Part

(c) shows yet another 4-dispatch minimum demand schedule: Dispatches of sizes 2, 3, 3, 2, 2,

and 3, are made at time 0, 5, 10, 15, 20 and 25. So, suppose that B is equal to 15, sufficient for

these dispatches. The bottom time line shows the replenishments starting at time 26. The

resultant schedule is given by the top time line. This schedule also does not satisfy the uniform

variant of the demand rate constraint (10, 20), but it satisfies the periodic variant.

The condition stated in Lemma 4 appears to be tight for Example 4. Our conjecture is that it

is both sufficient and necessary in general, even when dispatches have different sizes and

separations according to minimum demand schedule(s) of the specification. Lemma 6 stated

below is a weaker statement on the accuracy of the test.

Lemma 6: A GSS {[dmin, dmax], [smin, smax], (B, R), (L, P)}, where R P, has no

periodic feasible schedule if the required supply of its MinDS is larger than B.

Proof: Suppose that a GSS has a periodic feasible schedule F, but the test according to Lemma 4

fails. In other words, the required supply of the MinDS is larger than the budget B.

In contrast, the fact that F is feasible implies that the required supply F (i.e., the total size of

all dispatches in [0, R)) of F is at most equal to B. Let n denote the number of dispatches per

period according to F, F denotes the total size of the n dispatches in each period, and F denotes

the length of the periods. Let m (= Floor [R/ F]) be the number of periods that lie entirely within

the replenishment interval [0, R), and t = m F is the end of the latest of these periods. The top

time line in Fig. 5 illustrates the relationship between these time instants.

F 0
F 2 F Rt = m F

MinDS(n)

0 (n) 2 (n) R t’t’ R

0 (n) 2 (n) Rt’
t’ R

Fig. 5 Periods of F and MinDS(n)

14

The fact that F has n dispatches per period implies that the n-dispatch minimum demand

problem has a solution MinDS(n). We only need to consider the case that MinDS(n) is different

from F, since MinDS(n) being identical to F contradicts our supposition.

By definition of MinDS(n), the required supply (n) of MinDS(n) is at least equal to the

required supply of MinDS. It follows from our supposition that (n) > B. Furthermore, the

total dispatch size (n) and period (n) according to MinDS(n) is such that (n) > L, (n) < P,

F (n), and F (n). We can, therefore, conclude that the end t’ = m (n) of the m-th period

according to MinDS(n) is equal to or later than t. The bottom two time lines in Fig. 5 illustrate

the two cases, t’ R and t’ R, when t’ is compared with R:

In the former case, the fact R – t R – t’ follows from the inequality F (n). Let F denote

the total size of all dispatches in the interval [t, R) according to F. (n) denotes the total size of all

dispatches in [t’, R) according to MinDS(n). By supposition (n) > > F and the property F

 (n) of MinDS(n), we have (n) > F. Since the schedules are periodic, this inequality implies

that the total size of dispatches in the initial segment [0, R – t) according to F is smaller than the

total size of dispatches in the initial segment [0, R – t’) according to MinDS(n). This fact in turn

implies that the total budget (being at most equal to F) replenished according to F in [R, 2R – t)

is less than the total budget replenished according to MinDS(n) in [R, 2R – t’). The smaller

replenishment in turn leads to a smaller total size of dispatches scheduled in [R, 2R – t) according

to F than the total size of dispatches scheduled in [R, 2R – t’) according to MinDS(n). Again,

because the schedules are periodic, we can conclude that the total size of dispatches scheduled in

[R – t, 2R – 2t) (and the budget replenished in [2R – t, 3R – 2t)) according to F is smaller than the

total size of dispatches scheduled in [R – t’, 2R – 2t’) (and the budget replenished in the interval

[2R – t’, 3R – 2t’) of length R – t’) according to MinDS(n). Repeating this argument, we

eventually come to the conclusion that the total dispatch size F per period according to F is less

than the total dispatch size (n) according to MinDS(n). The conclusion contradicts the

definition of n-dispatch minimum demand schedule.

In the case of t’ R, we must have (n) F B. This contradicts our supposition that (n) >

 > B. Since both cases lead to contradictions, the supposition that a GSS has a periodic feasible

schedule when it fails the DST test must be false.

4 Feasibility Test Based on Maximum Supply Schedule

When the replenishment delay is smaller than the demand rate constraint interval, the

demand versus supply feasibility test first constructs a (periodic) maximum supply schedule. A

k-dispatch schedule, defined by {(t0, d0), (t1, d1) … (tk, dk)} and xi = ti – ti-1 for 0 i k, is a

15

k-dispatch maximum supply schedule for a given set {[dmin, dmax], [smin, smax], (B, R), (L, P)} of

constraint parameters when the dispatch sizes and separations in each period are solutions of the

following two-part problem.

k-Dispatch Maximum Supply Problem:

(1) Find integers x1, x2 … xk that minimize (k) = 1 j k xj subject to the

constraints s min xi s max for i = 1, 2, … k and (k) R.

(2) Find integers d0, d1 … dk-1 that maximizes (k) = 0 j k-1 dj subject to the

constraints d min di d max for i = 1, 2, … k and (k) B.

We call the schedule MaxSS(k) for short. The schedule has a shorter period and a larger total

dispatch size than any k-dispatch schedule that meets the supply rate constraint (B, R). Because

the coefficients of objective functions are equal to 1, we can confine our attention to well-formed

schedules as we did in the case of minimum demand schedules.

Corollary 7: If the k-dispatch minimum supply problem admits a solution, then there is

a well-formed k-dispatch maximum supply schedule MaxDS(k).

Like the k-dispatch minimum demand schedule, the well-form k-dispatch maximum supply

schedule can be found in constant time in a way similar to that described in Fig. 2.

To illustrate, we return to Example 1. We note that the constraint (k) 79 and (k) 10,

together with size and separation ranges being [5, 6] and [45, 46], respectively, means that k = 2

is the only choice. The MaxSS(2) is given by {(0, 5), (45, 5), (90, 5), (135, 5), (180, 5) …}. Its

period is (2) = 90 and total dispatch size is (2) =10. This schedule does not meet the demand

rate constraint (L, P) = (17, 159)-uniform, because the total size of all dispatches within the time

interval [1, 160) is only 15, less than the required minimum total size of 17. To determine

whether (17, 159)-periodic constraint is satisfied, we segment time into periods of length 159.

The schedule does not meet the periodic variant of (17, 159) constraint because one of the

periods falls in the interval [636, 795) and the total size of dispatches in that interval is only 15.

Since even the maximum supply schedule fails in this respect, we can conclude that the

specification in this example is not feasible as we did in the previous section.

The test used on Example 1 can be stated in general in terms of the maximum supply

schedule of the specification and the available supply of the schedule: The available supply of a

k-dispatch maximum supply schedule is the minimum of the total sizes of dispatches scheduled

according to the MaxSS(k) in demand rate constraint intervals [t, t +L) for all t 0 in the

duration of the schedule. The maximum supply schedule (MaxSS) of the given specification is a

schedule that has the maximum available supply among MaxSS(k) for all feasible values of k.

16

The available supply of MaxSS(2) in the previous example is the total size of dispatches in the

interval [1, 160), which is equal to 15. In this case, MaxSS(2) is the MaxSS. Similar to MinDS

presented in the previous section, the worst case time required to find the MaxSS of a

specification is in order of the maximum of widths of separation and dispatch size ranges.

Below is another illustrative example. It is similar to Example 1, except that the ranges of

both dispatch size and separation are wider.

Example 5: [dmin, dmax] = [3, 10], [smin , smax] = [45, 80] , (B, R) = (10, 79), (L, P) = (17, 159)

For this specification, the k-dispatch maximum supply problem has a solution for k = 1.

MaxSS(1) is defined by {(0, 10), (79, 10), (158, 10), ….}; (1) = 79 and (k) = 10. The

problem also admits a solution for k = 2: MaxSS(2) is {(0, 5), (45, 5), (90, 5), (135, 5), …}. The

available supply of MaxSS(1) is 20 while the available supply of MaxSS(2) is 15. Hence the

MaxSS is MaxSS(1). The following lemma allows us to say that this specification is feasible

because its available supply is no less than the lower bound L = 17.

Lemma 8: A given GSS {[dmin, dmax], [smin, smax], (B, R), (L, P)}, where R < P, is feasible

if the lower bound L of total size in any demand rate constraint interval is at most equal

to the available supply of the maximum supply schedule MaxSS of the specification.

The proof, being similar to that of Lemma 4, is omitted here: The fact that the condition stated by

the lemma is sufficient to ensure feasibility follows directly from the definitions of maximum

supply schedule and its available supply.

Like the question regarding the condition stated in Lemma 4, we do not know for sure

whether the condition stated in Lemma 8 is necessary. Our conjecture is that a general GSS does

not have a feasible schedule if its available supply is smaller than the lower bound L given by the

demand rate constraint. However, as in the case of R > P, the condition is both necessary and

sufficient for the existence of periodic feasible schedules. The proof of this statement is similar

to that of Lemma 7. The following theorem on DST follows from the above lemmas and

corollaries.

Theorem 9: A given GSS {[dmin, dmax], [smin, smax], (B, R), (L, P)} is feasible if it passes

the demand versus supply test. It has no feasible periodic schedule if it fails the test.

5 Heuristic Scheduling Algorithms

We recall that if a GSS passes the DST test, the feasible dispatch schedule found by the scheme

17

is either a minimum demand schedule or a maximum supply schedule. The total size of

dispatches in each demand rate constraint interval or supply rate constraint interval is either

minimized or maximized. In this respect, the schedule may not be ideal for some applications.

Indeed, as performance data presented in the next section will show, a schedule thus found is

rigid, as it offers little tolerance to deviation from scheduled dispatch times. This is the reason

that we designed the families of heuristic dispatch scheduling algorithms listed in Table 1. (They

are called dosage selection algorithms when used for choosing dose sizes and scheduling the

doses of a medication [1].) All the algorithms take constant time and generate periodic schedules.

TABLE 1 Dispatch scheduling algorithms

Maximum
Minimum
Likely_Large
Likely_Small

Average
Uniform
Random_Large
Random_Small

MaxS_AMAP
MinS_AMAP
MaxD_AMAP
MinD_AMAP
AveS_AMAP
AveD_AMAP

MaxS_ALAP
MinS_ALAP
MaxD_ALAP
MinD_ALAP
AveS_ALAP
AveD_ALAP

Independent Rate-Guided

Independent algorithms listed in the left half of the table make independent choices of the

sizes and separations for individual dispatches. The four in the first column choose boundary

values: Their choices (d, s) of dispatch size and separation are (dmax, smin), (dmin, smax), (dmax, smax)

and (dmin, smin), respectively, for all dispatches. The Average Algorithm uses average dispatch size

and average separation. The last three in this group make independent random choices for each

dispatch. Uniform Algorithm chooses for d and s from uniform distributions over the respective

ranges of the parameters. Random_Large and Random_Small randomly select d and s from right

triangle shape probability density functions over the dispatch size and separation ranges. For the

former, the right angles of the dispatch size and separation probability density functions are at

dmax and smin, respectively, while for the latter, they are at dmin and smax.

In contrast, rate-guided algorithms make correlated choices of dispatch size and separation.

Each of these algorithms starts by fixing one of these constraint parameters and then uses either

supply rate constraint or demand rate constraint to guide the choice of the second parameter. The

first parts in the names of these algorithms tell us their choices of the first parameter: MaxS,

MinS, MaxD, MinD, AveD and AveS indicate that the choices of the algorithms are s = smax, s =

smin, d = dmax, d = dmin , d = (dmax + dmin)/2, and s = (smax + smin)/2, respectively.

18

The algorithms with AMAP (As Much As Possible) in their names use the supply rate (B, R) to

guide the choice of the second constraint parameter. In essence, the algorithms try to make the

total dispatch size in each interval of length R as close to the upper limit B as possible, hence the

name. These algorithms resemble maximum supply scheduling. When the dispatch size d is

chosen first, the algorithms chooses as separation s the value closest to Ceil[R / Floor[B/d]] in the

separation range. If s is first chosen, d is the dispatch size closest to Floor[B / Ceil[R/s]].

Algorithms with ALAP (As Little As Possible) in their names use the demand rate (L, P) as the

guide. They try to make the total size of dispatches in each interval P as close to the lower limit

L as possible. In this sense, ALAP algorithms do minimum demand scheduling. If s is first

chosen, then d is the dispatch size closest to Ceil[L / Floor[P/s]]. If d is first chosen, s is the

separation closest to Floor[P / Ceil[L/d]].

6 Relative Performance

To compare the relative performance of the heuristics in Table 1 with each other and with the

DST scheme, we implemented the algorithms and used them in a simulation experiment to find

feasible schedules for synthetic general schedule specifications: The parameters that define the

dispatch size, separation and rate constraints in each sample specification were generated

randomly. Specifically, separation and interval parameters smin, smax, R and P were chosen

independently from the uniform distribution [0, 20160]. (If time granularity is 30 seconds, the

maximum value 20160 of a separation or interval parameter is equal to seven days. If time

granularity is 10 minutes, then the maximum value is 140 days.) Parameters dmin, dmax, B, and L

constraining sizes of individual dispatches and the total size of dispatches in a rate constraint

interval were chosen from the uniform distributions [0, 50]. After each sample GSS was

generated, we tested it for consistency, i.e., whether its constraint parameters satisfy all the

necessary conditions stated in Theorem 1. The sample is discarded if it fails the test. 53.69% of

thus generated GSS samples passed the test. The data were collected from a sufficient number of

samples to make the statistical error in each of the estimated performance measures less than 2%.

The performance data thus obtained are summarized in Fig.6. We compare the heuristics with

each other and with the DST scheme according to three criteria. First, success rate of an

algorithm is the fraction of all consistent specifications for which the algorithm succeeded in

finding a feasible schedule. This criterion is commonly used to measure the effectiveness of

suboptimal scheduling algorithms.

19

S
uc

ce
ss

 R
at

e
S

ep
ar

at
io

n
R

an
ge

0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

M
in

im
um

Li
ke

ly
_L

ar
ge

Li
ke

ly
_S

m
al

l

A
ve

ra
ge

U
ni

fo
rm

R
an

do
m

_L
ar

ge

R
an

do
m

_S
m

al
l

M
ax

S
_A

M
A

P

M
in

S
_A

M
A

P

M
ax

D
_A

M
A

P

M
in

D
_A

M
A

P

A
ve

S
_A

M
A

P

A
ve

D
_A

M
A

P

M
ax

S
_A

LA
P

M
in

S
_A

LA
P

M
ax

D
_A

LA
P

M
in

D
_A

LA
P

A
ve

S
_A

LA
P

A
ve

D
_A

LA
P

M
in

D
S

_M
ax

S
S

0

0.2

0.4

0.6

0.8

1.0

Fig 6 Relative performance of dispatch scheduling algorithms

The other two criteria, maximum allowed tardiness and usage separation range, measure the

quality of the resultant schedule. To define them, let denote the time selected by an algorithm

for a dispatch. Let latest (>) denote the latest time to which the dispatch can be postponed

without violating separation and rate constraints. The maximum allowed tardiness (MAT) of the

dispatch is the difference latest – between these time instants. As an example, suppose that the

dispatches are dispensing of doses of a medication. Then the user can be late taking the current

dose by as much as the MAT of the dose. The scheduler must re-compute the schedule and

reschedule the current and subsequent doses in order to avoid non-compliance whenever the user

is tardy by more than this amount. The MAT of a schedule is the minimum of the MAT of all

dispatches according to the schedule. Clearly, the larger the MAT of a schedule, the more flexible

is the schedule, and the better is the algorithm that finds the schedule.

 Let earliest (<) denote the earliest time at which the current dispatch can be made without

violating any constraint. The difference latest – earliest is called the usable separation range with

respect to the dispatch. The usable separation range of a schedule is the minimum usable

separation ranges with respect to all dispatches according to the schedule. This deviation from

nominal dispatch time quantifies the leeway the schedule allows in the actual time for the

dispatch to be made. The larger the allowed deviation, the better is the schedule.

20

The performance summary in Fig.6 lists the success rates and usable separation ranges of the

heuristics in Table 1 and the DST algorithm (labeled as MinDS-MaxSS). Separation range is

normalized with respect to the width of the nominal separation range given by the GSS. The

reason for omitting data on MAT is that the usable separation range of each dispatch is twice the

MAT of the dispatch, and hence, the usable separation range of a schedule is twice the MAT

allowed by the schedule.

 Fig. 6 shows that according to success rate, rate-guided algorithms perform significantly

better than independent algorithms. The DST scheme has a success rate of 94%. None of the

tested heuristic algorithms succeeded in finding feasible schedules of consistent specifications

which failed the DST test. Since all the tested heuristic algorithms generate only periodic

schedules, this result on the DST scheme follows directly from its optimality among this class of

algorithms, as stated in Theorem 9. Nevertheless, the fact that its success rate is over 30% better

than the best of these algorithms is somewhat surprising.

It is quite a different story, however, when the algorithms are compared according to usable

separation range. As expected, algorithms that use minimum or maximum separation as

separation parameter offer zero usable separation range. These algorithms are Maximum,

Minimum, Likely-large, Likely-small, MaxS_AMAP, MaxS_ALAP, MinS_AMAP, and

MinS_ALAP. The DST schemes does not fare much better in this respect either. This means that

the minimum demand or maximum supply schedules of most specifications offer the user with

little or no flexibility. For maximum flexibility, we should use algorithms that use average

separation whenever the algorithms can find a feasible schedule. A conclusion is, therefore,

AveS_AMAP and AveS_ALAP offer the best compromise.

7 Summary

We described in previous sections periodic algorithms for scheduling dispatches according to

general schedule specifications that constrain the sizes and separations of the dispatches. This

class of algorithms is said to be periodic because the schedules produced by them are periodic.

The constraints considered here are ranges of dispatch size and separation of individual

dispatches, as well as upper and lower limits of total size of dispatches in specified time intervals.

The running time of the DST (demand versus supply test) scheme is in order of the larger of the

width of the size range and the width of the separation range. The others take constant time.

The DST scheme is optimal among periodic algorithms from the view point of effectiveness:

If the scheme fails to find a feasible schedule for a GSS, then no periodic algorithm can find a

feasible schedule. The success rate of the scheme for randomly generated sample specifications

21

is 94%, much better than other heuristic periodic algorithms that were evaluated. Unfortunately,

the schedules produced by the DST scheme are poor from the user’s point of view. They offer

little or no tolerance to timing deviation: Some constraint(s) may be violated when some dispatch

is made later or earlier than the time chosen by the schedule. We quantify this aspect of quality

by usable separation range or maximum allowed tardiness. When compared according to these

criteria, AveS_AMAP and AveS_ALAP algorithms are the best. For each dispatch, these

algorithms first choose as the separation from the previous dispatch the average of smin and smax.

AveS_AMAP chooses the maximum dispatch size that meets the supply rate (B, R) constraint,

while the AveS_ALAP choose the minimum dispatch size that meets the demand rate (L, P)

constraint. These algorithms allow each dispatch to be late (or early) by over 40% of the

separation range. On the other hand, they may miss existing feasible periodic schedules by

almost a third of the time.

Whether the DST scheme is optimal amongst all scheduling algorithms, including algorithms

that produce non-periodic schedules, remains to be a question. Settling this question with a proof

of the affirmative or a counter example is part of our current work.

We have confined our attention to the case where the size and separation ranges are

contiguous. For some applications, the separation between a pair of dispatches may be in one of

many disjoint ranges. The problem of finding feasible schedules becomes considerable more

complex with this generalization. Along another dimension, there may be multiple streams of

dispatches to be scheduled, each of which is constrained by a different set of parameters. As

examples, the scheduler of a medication dispenser often needs to schedule doses of multiple

medications, and a supplier may need to schedule the deliveries of multiple produces. It is

desirable to bunch dispatches from different streams. This means that the users take medications

a fewer number of times per day, and in the case of produce delivery, the supplier runs to the

grocer less frequently. We are developing algorithms that yield good quality in this respect.

Acknowledgements

The authors wish to thank Professor C. S. Shih and Mr. H. C. Yen for their valuable suggestions

and Mr. Y. F. Chen for his help with simulation. The work is partially supported by Taiwan

Academia Sinica thematic project SISARL.

References

[1] P. H. Tsai, H. C. Yeh, C. Y. Yu, P. C. Hsiu, C. S. Shih and J. W. S. Liu, “Compliance

Enforcement of Temporal and Dosage Constraints,” Proceedings of IEEE Real-Time Systems

22

Symposium, December 2006

[2] C. Hsiu, H. C. Yeh, P. H. Tsai, C. S. Shih, D. H. Burkhardt, T. W. Kuo, J. W. S. Liu, T. Y.

Huang, “A General Model for Medication Scheduling,” Institute of Information Science,

Academia Sinica, Taiwan, Technical Report TR-IIS-05-008, July 2005

[3]. P. H. Tsai, H. C. Yeh, P. C. Hsiu, C. S. Shih, T. W. Kuo, J. W. S. Liu, “A Scarce Resource

Model for Medication Scheduling,” Institute of Information Science, Academia Sinica,

Taiwan, Technical Report TR-IIS-06-003, April 2006.

[4] J. W. S. Liu, Real-Time Systems, Chapters 6 and 7, Prentice Hall, 2000.

[5] J. P. Lehoczky, L. Sha, and Y. Ding, “The Rate-Monotonic Scheduling Algorithm: Exact

Characterization and Average Behavior,” Proceedings of IEEE Real-Time Systems

Symposium, December 1989.

[6] N. Audsley, A. Burns, K. Tindell, M. Richardson, and A. Wellings, “Applying a New

Scheduling Theory to Static Priority Preemptive Scheduling,” Software Engineering Journal,

Vol. 5, No. 5, 1993.

[7] C.C. Han, K.J. Lin and J.W. S. Liu, "Scheduling Jobs with Temporal Distance Constraints,"

SIAM Journals on Computing, 1995.

[8] M. Y. Chan and F. Chin, “Schedulers for larger classes of pin-wheel instance,” Algorithmica,

9:425--462, 1993.

[9] Z. L. Chen and G. Pundoor, “Order Assignment and Scheduling in a Supply Chain,”

Operations Research, Vol. 54, No. 3, May-June 2006.

[10] B. Spruri, L. Sha, J. P. Lehoczky, “Aperiodic task Scheduling for Hard Real-Time Systems,”

Real-Time Systems Journal, Vol. 1, No. 1, 1989.

[11] T. M. Ghazalie and T. P. Baker, “Aperiodic Servers in Deadline Scheduling Environment,”

Real-Time Systems Journal, 1995.

[12] T. S. Tia, J. W. S. Liu and M. Shankar, “Algorithms and Optimality of Scheduling Aperiodic

Requests in Fixed Priority Preemptive Systems,” Real-Time Systems Journal, Vol. 10, No. 1,

January 1996.

