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ABSTRACT
This paper describes a component model, called SISARL model. 
It is the basis of component-based approach to building families 
of smart devices and systems that enhance life quality and well 
being of elderly individuals. In addition to providing the 
traditional view of hardware, firmware and software components, 
as do existing component models, SISARL model also provides 
developers with an operational view. The view enables the 
developer to specify device-user interactions as executable 
workflows and allows the device operations and user actions to be 
experimented with and their correctness ascertained throughout 
the design, development and assessment process. After describing 
the elements and usages of the model, the paper presents a 
simulation environment for this purpose. 

Categories and Subject Descriptors
J.7 [Computers in Other Systems] D.2.2 [Design Tools and 
Techniques]: 

General Terms
Design, Experimentation, Human Factors 

Keywords
Component-based design, Modules and interfaces, Activities and 
workflows, Operational specifications, Simulation environment 

1. INTRODUCTION
Since its advent decades ago, the merits of component-based 
approach to constructing systems from configurable building 
blocks with well-defined interfaces have been demonstrated 
undisputedly. Over time, the approach has been adopted for an 
increasingly broader spectrum of devices, systems and services. 
Today, one can find component-based networked sensors [1, 2], 
embedded software and systems (e.g., [3-5]), robotic software 
(e.g., [6-8]) and multimedia and general DSP (e.g., [9, 10]), as 
well as large enterprise systems and applications built on 
component technologies such as EJB, .NET and CORBA.

This paper describes a component model that serves as the basis 
for design, development and quality assurance of SISARL 
(Sensor Information Systems for Active Retirees and Assisted 
Living) devices and systems. We are building a component 
library, an integration framework and supporting tools based on 
the model. The term SISARL refers to consumer electronics 
designed to enhance life quality of elderly individuals and help 
them live independently [11-16]. The advantages of component-

based approach are particularly important for these devices. Being 
consumer electronics, they must be affordable and easy to use, 
customize, and maintain. All SISARL devices provide their users 
with essential services while the users are well. When the need 
arises, some also serve as point-of-care and assistive devices. 
They must function dependably and fail in a safe manner even 
when misused by their untrained users.  

The SISARL model provides us with two views: resource view 
and operational view. In the resource view, a device or system is 
composed of hardware, firmware and software building blocks, 
called resource components or simply components. Existing 
embedded system component models typically support this view 
and this view solely. For SISARL devices, however, resource 
view is insufficient. Full automation is not always economically 
feasible and, often, is not desirable. Like other semiautomatic 
devices, many SISARL devices rely on the user(s) to perform 
some essential functions. The operational view of a device 
specifies the activities of the user and device and their 
collaborations: It defines the required functions provided and used 
by the user and thus defines the user as a resource component. At 
the same time, it constrains the user behavior and defines 
conditions for correct device operations.

SISARL resource components and their interfaces are described 
in a nesC-like language [1, 2]. Like nesC model, SISARL 
resource view also supports event-driven execution, bidirectional 
interfaces and flexible hardware-software boundaries. This is 
where the resemblance between the models ends. nesC model 
allows only static memory allocation, nesC events and tasks run 
to completion and tasks do not preempt each other. These and 
similar restrictions of nesC and other models (e.g., [17]) make the 
devices based on them easier to verify and test but can unduly 
constrain architecture and implementation of SISARL product 
families. SISARL devices are typically not entirely reactive; 
many are complex and most are not severely size and power 
limited. Rather than making such restrictions an intrinsic part of 
the model, SISARL model offers them as options imposed when 
some requirements are best met with them. We will return to 
discuss specific differences between nesC and SISARL models 
when elements of resource view are described  

Following the lead of programming languages such as C# and 
Real-Time Java, SISARL resource view uses attributes to provide 
information on components. The values of some attributes specify 
restrictions. Attributes which instruct the preprocessor, compiler 
and run-time environment of static linkage scope, memory 
allocation and scheduling restrictions are example. Some 
attributes (e.g., platform and version) guide component selection. 
Other attributes declare capabilities and limitations. For example, 



we can use values of quality of service attribute to specify the 
input quality a component requires and output quality the 
component can produce.

In the operational view, the work by a device consists of one or 
more workflows [18]. Each workflow is defined by a workflow 
graph. Roughly, each node in a workflow graph represents an 
activity, which is a job, a task, or some other granule for work 
carried out by the system or user(s). Edges specify the conditions 
under which activities are carried out. In this sense, workflow 
graphs resemble task graphs commonly used to characterize real-
time and embedded workloads. Workflow graphs are widely used 
in enterprise systems to define automated business processes. 
While sequencing and synchronization between jobs in a task 
graph are hardwired in the process code, they are done for 
workflow graphs by a workflow engine. In essence, the workflow
engine integrates dynamically the components that implement 
activities. Indeed, we use a workflow engine as a component of 
SISARL integration middleware in some devices [19]. This is a 
reason for using workflows to describe operational view. 

Extensive works on man-machine interactions and automation 
surprises can be found in literature and on Internet. These works 
typically assume that users (e.g., pilots, drivers) are trained. We 
cannot readily apply their assumptions and user models. SISARL 
users are untrained and may even decline in general skills and 
alertness over the years while the devices are in use.  

The remainder of the paper is organized as follows. Section 2 
provides background on SISARL devices in general and briefly 
describes two devices that are used as illustrative examples in 
later sections. Section 3 gives an overview of SISARL resource 
components and operational view. Section 4 presents and 
illustrates the elements of the resource view. Section 5 discusses 
operational view. Section 6 describes our simulation environment. 
Section 7 summarizes the paper and future work.

2. SAMPLE SISARL DEVICES 
SISARL families of devices and systems range from small 
gadgets to sizable home appliances, from consumer electronic 
products to assistive and home-care equipment, and from passive 
monitors to robotic helpers. Walker’s buddy [13] and object 
locator [16] are examples of gadgets. When worn by a walker or 
jogger, the former can detect and warn the wearer of uneven 
pavement ahead and thus help preventing falls. A RFID-based 
object locator uses smart phones and PC for user interface and 
provides its users with the capability of querying for locations of 
misplaced household and personal objects (e.g., key) by names. 
Examples of point-of-care devices include vital sign monitors. 
Examples of assistive devices include semiautomatic robotic 
helpers. Medication dispensers for medical and assistive care 
institutions [15] also contain robotic components. 

Figure 1 shows two representative SISARL devices: a storage 
pantry [12] on the left and a personal medication dispenser [14] 
on the right. Both are for use by untrained users at home over 
years. We use these simple devices for illustrative purposes and to 
put issues in user-device interactions in context.

2.1 Smart Pantry 
A smart pantry is for storage of non-perishable household 
supplies. The pantry is smart because when the last unit of any 
supply is removed from it, the pantry will contact a specified 

supplier, place an order and arrange payment on user’s behalf to 
have replenishment delivered within a specified time.    
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Figure 1. Two sample SISARL devices 

A smart pantry must have some means to identify and monitor its 
content. A pantry using RFID for this purpose is fully automatic 
and easy to use, but not economically feasible: Even a cent per 
tag is too costly to replace bar codes on bottles of shampoo, rolls 
of papers, etc. We have built and experimented with a pantry that 
uses a digital camera for content capture and pictures for object 
identification. It is also fully automatic and easy to use for the 
pantry owner, but its usability is poor for suppliers. Each picture 
in purchase orders from the pantry must be processed to identify 
the brand and size of the object in it. Because picture quality is 
not ideal and object search space is large, most object 
identification methods cannot attend the required error rate. 

BAC (bar code) pantry [12], which identifies supplies by their bar 
codes, has the best cost versus usability tradeoff today. As shown 
in Figure 1(a), each shelf is logically divided into compartments: 
Each compartment is marked by a pair of switch and spring 
loaded plate on the shelf. Each compartment is used to hold only 
one kind of supply. The pantry controller determines whether the 
compartment is empty by sensing the state of the corresponding 
switch: When a compartment is nonempty, its switch is pushed 
open by object(s) in front of the plate. When it is empty, the plate 
snaps forward and closes the switch.  

BAC pantry is ideal for suppliers, but cannot work without user’s 
help. The work required of the user (i.e., the owner) is actually 
simple: when placing an object into an empty compartment, scan 
its bar code. The scan-place activity of the user triggers the pantry 
to generate and maintain a compartment-id-bar-code association. 
When a compartment becomes empty, the pantry inserts the 
associated bar code in the purchase order. It then deletes the 
association and thus frees the compartment for new supplies. The 
process of acquiring bar codes is error prone, however. A busy 
user may dump supplies in the pantry without scanning their bar 
codes. Multiple users may put away supplies and remove supplies 
at the same time. We cannot restrict user-pantry interaction 
patterns but must make sure that the pantry works satisfactorily 
regardless.

2.2 Medication Dispenser
We are building a fully automatic personal medication dispenser 
for use by naïve users [14, 15]. It is illustrated in Figure 1(b). 



Each dispenser has a medication scheduler that computes 
administration schedule (i.e., time and size of every dose) of 
every medication managed by the dispenser, a dispensing unit that 
releases doses of medications to the user according to the 
schedule, and a compliance monitor that detects non-compliance 
to medication directions and takes appropriate actions. All are 
under the control of the dispenser controller. It also has a small 
non-volatile memory for storing a machine readable medication
schedule specification (MSS). The scheduler computes schedules 
following the directions given by the specification. A minimal 
dispenser uses a local alarm to remind the user at times when one 
or more doses is due and a dial up connection for sending 
appropriate notifications when non-compliance arises. A high-end 
dispenser may use a variety of devices and network links for these 
purposes and provide a local database for keeping records on 
medication history and user preference and behavior.  

In order for medication dispensers to be effective in prevention of 
medication errors, all medications taken by each user are 
managed by a single dispenser. Moreover, some professional has 
verified that the directions of user’s medications are right for the 
user. A fair assumption is that someone is a pharmacist. 
Whenever the user comes to get medication supplies, the 
pharmacist verifies the user’s directions with the help of a 
prescription authoring tool [15], generates a new MSS for the 
user’s dispenser, and gives the user the MSS in a flash memory, 
along with new supplies, each medication in a separate container 
tagged with the RF id of the medication. To put new supplies of 
medications under the care of the dispenser, the user loads the 
new MSS into the dispenser and plugs the new containers into 
sockets on top of the dispenser base, one container at a time and 
one per socket. Each plug-in action causes the dispenser 
controller to read RFID tags and socket statuses and thus discover 
the location of the new container and the id of the medication in it. 
The controller creates an association between the medication and 
its socket. It needs this information to operate the dispensing 
mechanism. 

The dispenser controller uses Schedule( ) and GetNextDose( )
functions provided by the medication scheduler to determine 
when to give the user medication(s). When called, the former 
produces a schedule, which is a list of {time, doseList} structures. 
time in each entry gives the absolute time to dispense some 
medications and doseList specifies the id and dose size of each 
medication to be dispensed at the time. GetNextDose( ) returns the 
entry with the earliest time in the schedule and an absolute 
deadline for the user to retrieve the dose(s) due at the time.   

The dispenser sends a reminder to the user a short time before 
each scheduled time for the user to take medication(s). The length 
of the time is an estimate of the time the user typically takes to 
respond to a reminder. If the user responds to the reminder and 
comes to retrieve the medications in time, the controller 
commands the dispensing mechanism to put the doses of the 
specified sizes due at the time in the dispensing drawer, open the 
drawer and present the doses to the user. If the user responds late 
by a specified threshold, the dispenser controller calls the 
scheduler to adjust the size and time for the current dose(s) in 
case that the MSS indicates such changes are required. If the user 
fails to respond by the associated deadline, the controller informs 
the compliance monitor of the missed dose(s) so the monitor can 
take appropriate action.

3. COMPONENT-BASED DESIGN 
As the examples described above illustrate, SISARL devices 
differ vastly in purpose and complexity. Nevertheless, they share 
sufficient similarities to be built for the most part from 
configurable components based on a common component model.

3.1 Resource Components 
Figure 2 shows a block diagram of typical automatic or 
semiautomatic devices. We use it as an architectural reference for 
exploitation of similarities among SISARL devices, as well as 
identification and definitions of components [11].  
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Figure 2. Reference architecture 

Every device contains a communication unit. It connects parts 
within the device and provides the device with access to the world 
outside. The bandwidth and latency demands of typical SISARL 
devices are modest and can be met by existing networks and 
standards. Some devices have only a small non-volatile memory 
while others may have a sizable database. They are for storage of 
data, code, rules and policies, plant models and user preferences. 
An audio interface is used in most SISARL devices. It records 
voice segments of the user and plays back user voice interleaved 
with pre-recorded device voice. The interface makes user-device 
interaction friendlier. For example, it enables a smart pantry to 
confirm with the user verbally the identities of supplies when they 
are moved in and out of the pantry. Thus it helps to make the 
pantry more tolerant to misuse. There are acceptable off-the-shelf 
choices for these components; we do not build them from scratch. 

Every SISARL device has a base (unit). The base of a device 
typically contains sensors and sensor data processor(s) of some 
kind(s). These parts may be all some devices have.  

The base of a device may also have a monitor and controller and 
one or more command generators responsible for regulating the 
operations of the local plant. The controller typically has multiple 
levels. Take smart medication dispenser for example. The local 
plant consists of mechanism(s) for releasing medications from 
their containers and depositing them in the dispensing drawer. 
The mechanisms have a two-level controller: The lower-level 
controller is open loop. The scheduler computes when and how 
the mechanism(s) work based on the constraints defined by MSS. 
The higher-level loop is closed. It monitors the timing of user 
response and re-computes the medication schedule and thus 
changes the operation of the release mechanism(s) accordingly.  

Some devices have no remote unit, while others have one or more. 
For example, the personal dispenser described earlier has no 
remote unit. A dispenser for professionals [15] can be set up to 



monitor each patient’s reaction to medications and adjust his/her 
directions according to a general MSS. In that case, the patient is 
the remote plant and the vital sign monitor(s) and associated 
signal processor(s) are parts of a remote unit. 

3.2 Operational View  
Looking at only hardware and software components in the base 
unit of a BAC pantry, one would conclude that it does not have 
the loop structure in Figure 2. However, when we take into 
account of human (i.e., user and supplier) activities, it in fact 
contains a feedback control loop. The loop operates as specified 
by the workflow graph in Figure 3.  
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Figure 3. Workflow to replenish a supply 

We adopt mostly the terms and notations used in Windows 
Workflow Foundation [18]. The nodes in workflow graphs are 
depicted by rectangular boxes. Text in a box describes the activity 
the node represents. Each directed edge represents a transition,
i.e., a change of control flow between activities. The other 
notations are defined at the bottom of the figure. Specification of 
resources that implement the activities or are used by activities, as 
well as rules and policies governing resource allocation, is also a 
part of the workflow definition. Space limitation prevents us from 
including them here. An activity may be composite, i.e., a 
workflow of multiple dependent activities. Transitions to 
composite activities are labeled by the invoke-workflow symbol 
here to call attention to them. We usually separate human 
activities from device activities: Human activities are in the dotted 
rectangle labeled by a small figure on top (or to the left) of the 
dotted rectangle encircling device activities.

Returning to the control loop in a BAC pantry, we note that the 
set of supplies in the pantry can be thought of as the local plant. 
The goal of the loop is to keep the pantry stocked with them (i.e., 
the state variable no_supply[i ] > 0 for every supply supply[i ] in it). 
The workflow starts when the user removes the last of a supply, 
say supply[i] in compartment comp[k]. The activity causes the 
pantry to detect that comp[k] has become empty. In response, it 
looks up the bar code comp[k].barcode of the supply from the 
compartment-id-bar-code association of the compartment. It then 
generates and sends to a default supplier a purchase order 
containing the bar code, the number of units ordered and the 
desired delivery date. The arrival of the purchase order causes the 
supplier to process the order, collect payment and then deliver the 
supply. The delivery in turn triggers the user to place the 
replenishment in some empty compartment comp[j] and the 
pantry to create and maintain a new compartment-id-bar-code 

association. Thus the control loop restores the supply to the 
desired no_supply[i] > 0 state.  

We note that the workflow graph in Figure 3 consists of three 
workflows. The composite activity by the supplier, depicted by 
the dashed box in Figure 3, is not a part of the pantry. We will 
return in Section 5 to elaborate on the third workflow, consisting 
of the last two activities. The first workflow starts by the supply 
removal event ends on the device after third activity completes. 
The first two activities in this workflow are done by the user and 
embedded, event-driven components of the pantry. The activity 
that generates and sends a purchase order is carried out in the 
background by an off-the-shelf e-business component. It and 
other components like them are the reason we chose to make 
restrictions of nesC concurrency model optional for SISARL.  

Figure 4 shows three ways the operational view is used. The 
example above illustrates how operational view complements 
resource view to complete the device specification. By writing 
operational specification of a new device in terms of workflows, 
we can simulate, emulate and experiment with its operations and 
its interaction with the user throughout the design, development 
and quality assurance process, as depicted by Figure 4(a).   
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Figure 4(b) shows a workflow engine used as a middleware for 
integration of embedded device(s) into a larger system. An 
example is a workflow-based integration framework [19] that 
links medication dispensers with order entry systems and 
prescription authoring tools. In addition to resource components 
that implement the devices, the system also contains workflow 
components that execute on an engine external to the devices.

Figure 4(c) illustrates an architecture designed to make devices 
easily configurable. Only a small part of a device based on this 
architecture is built with resource components with hardwired 
control flow. Most of device is composed of workflow 
components that execute on a small embedded engine. We can 
change the functionality and operations of the device by simply 
changing the graphs of workflows that do the work. 

4. ELEMENTS OF RESOURCE VIEW 
We chose to make SISARL resource component definition 
language a variant of nesC [1, 2] because of strengths of nesC that 
are important for embedded devices and systems: 
Hardware/software transparency will ease our future efforts in 
migrating towards SoC (System-on-Chip) implementations. We 
also want some embedded components to be statically linked, as 



nesC components do. This section first summarizes nesC features 
that are adopted for SISARL and illustrates how we use them, and 
then describes SISARL features that differ from nesC.

4.1 Use of nesC Features
We use the terms interface, component, module, and 
configuration as they are defined in nesC. Briefly, an interface
type specifies a set of named functions. An interface is an 
instance of an interface type. A component is a hardware, 
firmware or software building block that is encapsulated by one 
or more interfaces. We call it a resource component when we 
want to distinguish it from an activity and highlight the fact it 
may be used to implement an activity.  

A distinguishing feature of nesC adopted by SISARL is that each 
interface function is specified either as a command or an event. A 
component implements all command functions, (or commands for 
short) in its interfaces and provides them to other components (i.e., 
its users) as requests for its services. Commands may be split-
phase operations. A split-phase command is asynchronous, i.e., it 
returns immediately and posts an event upon its completion. The 
callback function for handling the completion event is specified as 
event in the interface together with the command. A user 
component of the interface is expected to implement the event 
function. The specification of each component lists the interfaces 
it provides and interfaces it uses and thus specifies how the 
component can be statically linked with other components to 
compose a larger component. A module is a component that does 
not contain other components as parts. A configuration is a 
component that is composed of modules and smaller 
configurations and hides the details about them.

As an example, we describe now the MedicationSchedulerC
configuration that implements the medication scheduler in 
medication dispensers. The scheduler gets the information it 
needs to compute medication schedules from two modules, 
MedScheduleSpecM and UserPreferenceM. Figure 5 lists their 
specifications. (To save space in figures, we indicate data types 
and parameter lists as “…” at places in where specifics about 
them are either provided in text or are unimportant for our 
discussion here.) The former encapsulates the MSS, which 
specifies hard and firm constraints to be satisfied by all 
medication schedules. UserPreferenceM contains data on user 
preferred times and frequencies, etc. the dispenser collected from 
the user. The scheduler treats them as soft constraints. We note 
that each of these modules implements a command with which 
user components can request the information. The commands are 
non-blocking. This is particularly important for the get MSS 
request. The specification is written in XML. The module must 
process the specification to extract medication directions from it 
and put the directions in a standard structure ready for use by the 
scheduler. In some dispensers, the module processes the XML file 
locally; in other dispensers, the module in turn requests a remote 
service to do the work. In any case, the work takes time. The 
requester is notified of the completion and proceeds to execute the 
event function specified in the interface.  

MedicationSchedulerC configuration is composed of three 
modules: They are DosageSelectorM, ScheduleGeneratorM and
ScheduleEnhancerM. Figure 6 shows their composition. In the 
diagram, interfaces are represented as smaller boxes outside of the 

boxes representing components. Filled arrows between interfaces 
represent commands; unfilled arrows represent events. The 
modules in Figure 5 and their interfaces should appear at the right 
of the diagram if there were space for them. The interface 
ReadMedicationSchedule is not connected because it is not used.

interface ReadMedScheduleSpec {
command error_t Get (user_id_t current_user);
event void GetDone (error_t err, mss_struct_t mss);

}
interface WriteMedScheduleSpec {

command error_t Set (stream* mss);
event void SetDone ( );

}
interface ReadUserPreference {

command error_t Get (user_id_t current_user);
event void GetDone (error_t err, … user_preference);

}
interface WriteUserPreference {

command error_t Set (stream* user_preference);
event void SetDone( );

}
module MedScheduleSpecM {

provides interface ReadMedScheduleSpec;
provides interface WriteMedScheduleSpec;

}
module UserPreferenceM {

provides interface ReadUserPreference;
provides interface WriteUserPreference;

}

Figure 5. Modules used by MedicationSchedulerC
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Figure 6. Composition of MedicationSchedulerC 

Figure 7 lists the specification of MedicationSchedulerC together 
with interfaces and modules in it. DosageSelectorM and
ScheduleGeneratorM take as input the medication schedule 
specification mss produced by module MedScheduleSpecM.
DosageSelectorM selects sizes and nominal separations of 
individual doses based on the direction of each medication. 
ScheduleGeneratorM generates a medication schedule, starting 
from dosage selections produced by DosageSelectorM and 
factoring into account additional constraints due to drug 
interactions. ScheduleEnhancerM adjusts the medication schedule, 
taking into account of user preference, to make the schedule 
friendlier to the dispenser user. In lines specifying the 
implementation of component, the interface to the left of each 
assignment symbol “=” is the interface to the right of symbol. The 
symbol “->” links the provider and user of the interface. 



interface Schedule {
command error_t Schedule (user_id_t current_user);
event void ScheduleDone (error_t err);
command error_t GetNextDose (user_id_t current_user);
event void GetNextDoseDone ( … ); 

}
interface ReadMedicationSchedule {

command error_t Get (user_id current_user);
event void GetDone (… err, … med_schedule);

}   
interface DosageSelect {

command error_t SelectDosage (mss_struct_t mss);
event void SelectDosageDone ( … );

}
interface ScheduleGenerate (

command error_t GenerateSchedule ( … );
event void GenerateScheduleDone ( … );

}
interface ScheduleEnhance (

command error_t EnhanceSchedule ( … );
event void EnhanceScheduleDone ( … );

}     
module DispenserControllerM {

uses interface Schedule;
… ;

}
module DosageSelectorM {

provides interface DosageSelect;
}
module ScheduleGeneratorM {

provides interface ScheduleGenerate;
}
module ScheduleEnhancerM {

provides interface ScheduleEnhance;
}
module MedicationSchedulerM {

provides interface Schedule;
provides interface ReadMedicationSchedule;
uses interface ReadMedScheduleSpec;
uses interface ReadUserPreference;
uses interface DosageSelect;
uses interface ScheduleGenerate;
uses interface ScheduleEnhance;

}
configuration MedicationSchedulerC {

provides interface Schedule;
provides interface ReadMedicationSchedule;
uses interface ReadMedScheduleSpec;
uses interface ReadUserPreference;

}
implementation { 

components MedicationSchedulerM, DosageSelectorM,
ScheduleGeneratorM, SchedulerEnhancerM;

Schedule = MedicationSchedulerM.Schedule;
ReadMedicationSchedule = 

MedicationSchedulerM.ReadMedicationSchedule;
MedicationSchedulerM.DosageSelect ->

DosageSelectorM.DosageSelect;
MedicationSchedulerM.ScheduleGenerate ->

ScheduleGeneratorM.ScheduleGenerate;  
MedicationSchedulerM.ScheduleEnhance ->

ScheduleEnhancerM.ScheduleEnhance;
}

Figure 7. Components and interfaces of scheduler 

4.2 SISARL Variations and Extensions 
SISARL resource component description language has nesC as a 
foundation, but SISARL model deviates from nesC model in 
many important aspects, including concurrency model, scope of 
static linkage and non-functional elements.

4.1.1   Concurrency Model and Static Binding Scope 
Tasks in nesC resemble tasklets in Linux and deferred procedure 
calls (DPC) in Windows; they do not preempt events and do not 
preempt each other. In contrast, SISARL execution model is 
traditional by default for reasons stated in Section 1. SISARL 
tasks are executed in context of threads. They are preemptively 
scheduled according to their priorities. Event functions handle 
interrupts and completion operations. They run ahead of tasks and 
may preempt each other. On Linux (or Windows), an event may 
be a split-phase operation: The (first-phase) handler may post a 
tasklet to complete the work. Tasklets may be preempted by event 
handlers but never by each other and never by tasks.  

Another important difference is in the scope of static linkage: An 
application written in nesC has only one top-level configuration
(i.e., a configuration that is not a part of a larger configuration). 
All modules used to implement an application are statically linked 
and compiled into a single image. This is not so by default for 
SISARL. A SISARL component may be statically linked within 
an upper-level configuration as in nesC. In this case, the 
component name is listed in the implementation specification of 
the upper-level configuration, as illustrated by Figure 7. By 
default, a component not thus named in the specification of any 
upper-level configuration is to be compiled by itself into an 
executable to provide at runtime a service or services via 
command(s) it provides. A component may be used in both ways. 
The developer makes this choice via instructions to SISARL 
preprocessor, telling the preprocessor to include the component in 
the list of separately compiled codes regardless whether the 
component is also a part of a larger configuration.

To illustrate the need for these choices, we return to Figure 6: The 
medication scheduler configuration is shown linked to 
DispenserControllerM. Indeed, a personal medication dispenser is 
implemented by one top-level configuration that connects all 
components used to implement the dispenser.

We also use MedicationSchedulerC as a component of a server 
that provides scheduling service to dispensers used within a 
hospital [15]. Such a dispenser helps a care provider manage 
medications of all patients under his/her care. Upon request, the 
scheduler server merges the medication schedules of all patients 
served by the dispenser into an overall administration schedule for 
the provider. A scheduler server can be implemented using a 
configuration composed of MedicationSchedulerC configuration 
and DispatchSchedulerM module. The latter first uses the
Schedule and ReadMedicationSchedule interfaces provided by
MedicationSchedulerC to generate and retrieve medication 
schedules of the patients. It then takes into account of patient 
conditions and locations while merging the schedules to optimize 
some objective functions (e.g., total travel time and average or 
minimum slack time). This implementation is straightforward but 
does not provide the configurability required for diverse 
dispensers used by a large institution.  

Rather than hardwiring the components of the scheduler server 
together, an alternative implementation is to compile the modules 
specified in Figure 7 and DispatchSchedulerM separately into 
resource components for activities in a workflow that executes on 
a workflow engine. Then the process of computing administration 
schedules can be easily configured to suit different institutions 
and different departments in an institution by modifying the 



workflow graph definition of the process. Our component model 
and tools support this choice as well.

4.1.2    Non-Functional Aspects
SISARL component specifications use attributes to provide 
information about components. There are three major types: 
preprocessor and run-time directives, constraints and restrictions, 
and quality of service (QoS) capabilities and requirements. 
Possible targets of attributes include interface types, interfaces, 
modules and configurations. SISARL component language 
preprocessor provides basic built-in attributes and supports 
custom attributes. Following the syntax of C# [20], we enclose 
each attribute in a square-bracket pair:  

[target: attribute type (attribute values)]

It gives the type or name of the target to which the attribute 
applies and the type and value of the attribute. We place an 
attribute applied to an interface type, a module or a configuration 
immediately before the specification of the target. An attribute 
applied to an interface of a component bears the name of the 
interface. It is placed immediately after where the interface is 
listed in the specification of the component. An attribute can be 
applied to an individual function in an interface type, and it is 
placed immediately after the definition of the function.  

We use configuration BinarySensorArrayC in Figure 8 to illustrate 
some of the attributes. The component is used in both smart 
pantry and medication dispenser. It is composed of two modules. 
hwBinarySensorArrayM is a hardware component. It may be an 
array of mechanical switches each of which can change state in a 
fraction of a second or electronic sensors that can change state in 
a few or tens of milliseconds. A binary stream, one bit per sensor, 
gives the values of the sensors. BinarySensorArrayM is a driver 
that responds whenever the state of any sensor has changed. The 
event function in its interface picks up the new value of each 
sensor that has changed state and inserts a work item containing 
the sensor id in one of two work queues according to the new 
state of the sensor.

SchedulingAttribute has an extensive set of values and some of 
them are platform dependent. Built-in values include base-priority 
levels. These values enable us to prioritize individual interface 
functions and components respective to each other. The 
configuration in Figure 8 uses the attribute only once: Its value 
requests that the event handler be executed without preemption. A 
fair criticism of this use of the attribute that it is not necessary 
since disable interrupt and preemption can be requested within the 
function itself. Indeed, that would be equivalent to what we have 
here: The target is within an interface type. So, the directive is 
applied to all instances of the interface. Alternatively, we can 
disable preemption or interrupt selectively for some instances but 
not others, by applying the attribute to the instances where the 
interface is used or provided. In addition to this flexibility, using 
attributes to provide scheduling directives make them more 
visible than burying them in code.  

Some attributes constrain component usage. Metadata provided 
by these attributes enable the preprocessor to check components 
for compatibility automatically. Examples are Versions and
Platform. The former provides information on compatible versions. 
The latter restricts the use of a component to specified platforms. 
A platform attribute applied to a configuration is applied to all 
components of the configuration. In our example, the driver and 

hardware modules must be selected from those for versions of 
Linux and ARM included in the platform specification given as 
value of the Platform attribute applied to the configuration.

interface hwBinarySensorArray {
command int GetNumberSensors ( );
command stream GetSensorValues ( );
event void SensorValueChanged ( );

}
interface BinarySensorArray {

event void InsertWork (stream sensor_ids, 
stream sensor_values, queue_t queue_name);

[InsertWork: SchedulingAttribute (PreemptionDisabled)]
}
interface StdControl {

command result_t init ( );
command result_t stop( );

}

[module: QoSAttribute (ResponseTime <= 500)]
module hwBinarySensorArrayM {

provides interface hwBinarySensorArray;
}     
module BinarySensorArrayM {

provides interface StdControl;
provides  interface BinarySensorArray;
uses interface hwBinarySensorArray;
[hwBinarySensorArray: QoSAttribute (ResponseTime

<= 750)] 
}
[configuration: PlatformAttribute (Linux_Arm_04/07/00014)]
configuration BinarySensorArrayC {

provides interface StdControl;
provides interface BinarySensorArray;

}
implementation {

components  hwBinarySensorArrayM, 
BinarySensorArrayM;

StdControl = BinarySensorArrayM.StdControl;
BinarySensorArray = 

BinarySensorArrayM.BinarySensorArray;
BinarySensorArrayM.hwBinarySensorArray ->

hwBinarySensorArrayM.hwBinarySensorArray;
}

Figure 8. An example illustrating use of attributes 

Figure 8 shows two places where QoSAttribute is applied. The 
target of the first one is a component. Thus applied, the attribute 
declares a quality guaranteed by the component. The target of the 
second one is an interface function used by a component: It 
declares a quality requirement. In our example, the first one 
indicates that the sensor array hardware can report a state change 
in no more than 500 milliseconds. Since the required response 
time declared by the attribute applied to interface is an upper 
threshold of 750 milliseconds, the hardware module can be used. 
Similarly, values of other built-in QoS parameters such as 
SamplingRate, QuantizationSNR, and so on allow us to check 
components not only for functional compatibility but also for 
performance compatibility. QoSAttribute can also be used to 
provide directives in tradeoffs between conflicting performance 
metrics. A tradeoff policy specified by an attribute is fixed at 
build and configuration times. This offers us an alternative to 
specifying QoS tradeoffs by input parameters of commands.  

5. OPERATIONAL SPECIFICATION 
Specifications of resource components of a device and their 
interconnections offer us a static view of the device. The 
operational view tells us how the device works.



5.1 More on Workflows 
Again, we capture the operational view of a device by a set of 
workflows. Each workflow defines a process that can execute 
concurrently with other processes if scheduling and resource 
allocation rules and policies allow it to do so. As stated earlier, 
workflows are represented by workflow graphs, and workflow 
graphs resemble task graphs except that transitions (e.g., flow 
path control and synchronization) between activities in workflows 
are carried by a runtime engine. This middleware component 
executes all the tests, branches, joins, etc. based on results 
produced by activities.  

Definitions of activities and workflow graphs, together with 
resource components used by activities and rules and policies 
governing allocation of resources to workflows, specify device 
operations and device-user interactions. We define workflows in 
XPDL 2.0. XPDL (XML Process Definition Language) is the 
WFMC (Workflow Management Coalition) [18] standard 
language for interchange of process models between tools. XPDL 
treats human interactions as an integral part of process definition. 
This is of particular important for us. Version 2.0 incorporates 
event and message passing mechanisms with graphical elements 
and meta-models. Workflows in XPDL can execute directly on 
engines offered by some vendors. Most vendors provide tools to 
translate XPDL definitions into BPEL (Business Process 
Execution Language) for execution on their respective engines. 

Workflows are divided into two types: A sequential workflow
uses activities, conditions, rules, etc. provided by its definition 
and proceeds without additional intervention. In contrast, a state 
machine (or event-driven) workflow relies on external events. 
Once started, such a workflow often spends time in some of its 
states waiting for external event(s) to proceed. Most workflows in 
a typical SISARL device are of this type.  

5.2 An Illustrative Example 
For sake of concreteness, we now discuss the use of operational 
specification with the help of an illustrative example: putting 
away and removing supplies in a pantry. The states of 
compartments in it are monitored by the binary sensor array (BSA) 
in Figure 8, one bit per compartment.

Figures 9 and 10 show two of three state machine workflows. 
They specify normal, event-driven operations of a BAC pantry. 
Again, we encircle user activities in a dotted rectangle on the right 
to separate them from device activities. An activity in both dotted 
rectangles, such as the one in Figure 9, is a composite activity. It 
is done collaboratively by the user and device. Time flows from 
top to bottom. User activities without transition edge(s) between 
them occur at separate times; the one on the top occurs earlier. To 
save space in these figures, we omit all activities triggered by 
timeouts except one in each workflow. The if-else test for that one 
is not drawn either. Rather, we label the activity that executes 
only when timeout occurs by a pair of timeout and exception 
symbols.  If executed, the activity thus labeled in each workflow 
terminates the workflow. 

 After initialization, the pantry (i.e., the pantry controller) waits 
for the user to put supplies in it. The user may do this by touching 
the Load_Pantry button. This event triggers the workflow in 
Figure 9. The pantry responds by turning on the bar code scanner. 
The user scans a unit of a supply and then puts the supply in an 
empty compartment. This action causes the state of the 

compartment to change to non-empty, the BSA to insert a work 
item containing the compartment id, and the pantry to store the 
bar code obtained from the user’s scan for the compartment. The 
user continues to scan and put away supplies until all supplies are 
put away. When the pantry timeouts while waiting for more bar 
codes, it shuts off the scanner and goes back to wait, and the 
workflow terminates. – The collaborative activity in the middle of 
the process executes when the pantry sees a bar code it has never 
seen before. Making use of the audio interface component 
mentioned in Section 3, the pantry asks the user to record a voice 
description of the new supply. It uses the recorded voice 
description associated with each bar code later on for many 
purposes, such as confirming orders and reporting errors.

Touch Load_Pantry Button

Turn on bar-code scanner

Scan supply, get bar code 

Turn off bar-code scanner

New 
bar-code?Record voice description &

create bar-code and voice
description association

Put away supply

no

Sense compartment state
change, get compartment 
id, store compartment-id-

bar-code association

Figure 9.  load_pantry workflow 
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Figure 10. remove_supply workflow 

The user may just put a supply in an empty compartment without 
first scanning its bar code. This action also triggers a put-away-
supply workflow similar to the one shown in Figure 9. In that case, 
the pantry requests the user in voice to scan the bar code of the 
supply. If the user does as requested, the pantry again gets the 
desired compartment-id-bar-code association. The user may 
ignore the request, however, leaving the bar code associated with 
the compartment NULL.  

The workflow in Figure 10 starts when the user removes the last 
unit of a supply, leaving a compartment empty. The pantry 
responds to a state change event and finds that compartment 
empty. If the associated bar code is NULL, the pantry requests the 



user to scan the supply. If the user responds to the request, all is 
well: Armed with a bar code, the pantry can reorder the supply. If 
the user ignores the request, the pantry generates an error message 
to inform the user of its failure to reorder the just removed supply 
when timeout occurs and returns to wait again.  

We note that each of the workflows by itself is simple, and 
simplicity is more typical than exceptional for most SISARL 
devices. It is often possible to manually verify the correctness of 
each workflow by itself. Furthermore, there are tools for 
transforming the XPDL or BPEL definition of a workflow into a 
Petri nets or state diagram so that some rigorous or formal 
verification method can be applied.

Verifying multiple concurrent workflows that content for 
resources is another matter, however, even for simple workflows. 
The problem is further complicated by the fact that the workflows 
are triggered by user actions and users are unpredictable. Take our 
example for instance. One or more users may remove supplies 
and empty some compartments while another user is putting away 
supplies. The workflows triggered by them content for BSA. 
Because the array is used by each workflow for a negligible 
amount of time, we can simply make its event handler non-
preemptable, as shown in Figure 8. If some removed supplies 
need to be scanned, then load_pantry and remove_supply
workflows also content for the bar code scanner and the audio 
interface. Disallowing preemption of the activities while they use 
these resources is not acceptable for both functional and 
performance reasons. In our current version, a workflow triggered 
by the removal of a supply without bar code has the highest 
priority. The pantry interrupts the load_pantry process and asks 
the bar code of the removed supply be scanned before the user 
taking it walks away, which may take only a second or two. When 
there are two users, this prioritization yields correct pantry 
operation (i.e., the pantry correctly associate the supplies with the 
bar codes acquired by the workflows). The simulation 
environment described below is motivated by our need to have 
clearer understanding of how the pantry behaves when an 
arbitrary number of concurrent workflows contents resources. 

6. SIMULATION ENVIRONMENT 
We are building incrementally the simulation environment 
illustrated by Figure 11. The environment contains a runtime 
engine together with a suite of tools for build, simulate, emulate 
and evaluate SISARL devices based on their operational 
specifications, resource component specifications and 
implementation. The current prototype is built on top of Windows 
Workflow Foundation (WF) [18] and .NET framework. Resource 
components can be implemented in C, C++, and C#. Activities in 
operational view can be written in XML and C#. Workflows can 
be defined graphically first, with code added as required.

Like similar tools, SISARL environment provides several 
extensible libraries: Resource component library is a repository of 
specifications, code and executables of building blocks in various 
stages of development and quality assurance. Activity and 
workflow libraries provide reusable definitions of operational 
view components and specifications. The repositories enable us to 
put together from design a new device model for experimentation 
and evaluation purposes easily. We want to be able to build parts 
of the model device from resource components as soon as the 
components are implemented and sufficiently tested, while using 

activities and workflows to simulate or emulate the parts that 
await implementation. Also, a variety of real and simulated 
resources and rules and policies governing their usages and 
allocations are available to support a wide range of experiments.

Evaluation ReportUser Activities
& models

Rules &
policies

Resources 

Resource
Components

Activity 
Library

Workflow
Library

Libraries

Load_pantry WF

n
o

Predefined WFs Custom WFs Designer

Operational Specification

Engine Evaluation Tools

Simulator and Emulator 

Builder

Evaluator

Figure 11. Libraries and Tools 

The user activities and models are of particular importance. A 
user activity is used to simulate a work item or action performed 
by a human user. Figures 9 and 10 give a few examples. 
Examples medication dispensers include “plug a container in a 
socket”, “respond to a reminder by pushing the Push-to-Dispense 
button”, and “retrieve medication from drawer”.

User activities are parts of state machine workflows. We use a 
pre-condition, one or more post-conditions and a set of delay 
paths to implement the user activities. The pre-condition of an 
activity in a workflow defines an initial state (or a set of states) of 
the workflow immediately before the execution of the activity. 
Each post-condition defines a final state immediately after the 
activity completes. By a delay path, we mean a delayed state 
transition from the initial state to a final state. The choice of the 
delay path (i.e., the final state) and the length of delay are selected 
from a set of probability distributions that models the user. For 
example, the activity “Scan supply, get bar code” activity in 
Figure 9 is modeled by  

    Pre-condition: controller_state == AWAITS_BAR_CODE 
    Post-conditions: (bar_code_register != 0 && Timeout == FALSE)  
                            || (bar_code_register == 0 && Timeout != FALSE)  

The time taken by the user to scan the supply is a random variable. 
Different users are modeled by different probability density 
functions of this random variable. Given a user model, we can 
determine the probability of getting a bar code before timer 
expiration, and hence which of two final states the workflow 
reaches after the activity and how long the activity takes to reach 
the final state. 

Compared with most existing user models (e.g., models of 
autopilot and medical devices users), ours is much simpler. The 
simple models suffice for our purposes. The amount of effort 
required to validate detailed user models can be enormous. The 
simplicity of our user models enables us to validate them 
incrementally. As more and more actual data on user behaviors 
become available, we will replace the hypothetical probability 
density functions used to model users with actual histograms. 



7. SUMMARY AND FUTURE WORK 
This paper describes a component model for building from 
reusable components affordable, configurable and dependable 
SISARL devices, i.e., consumer electronics and assistive devices 
for the elderly. SISARL component model offers two views: In 
resource view, resource components, interfaces and component 
connections are specified in a variant of nesC. The underlying 
SISARL execution model is traditional, without nesC restrictions 
on memory allocation and concurrency. In operational view, a 
device and its user(s) are defined by executable activities and 
workflows that specify their operations and interactions. By 
defining a device in terms of what it does, the operational 
specification of a device complements its resource view 
specification, which defines how it is made.

The simulation environment and integration framework we are 
building will enable us to experiment with and evaluate new 
device designs and prototypes as soon as they are specified and 
during their development. In particular, by executing the 
operational specification of a new device with user activities 
based on validated user models, the environment can help us to 
better assess the usability of the device.  

We chose to build the current version of the environment on 
Windows Workflow Foundation because we want a prototype 
environment for experimentation in minimal time. In the 
meantime, we are building a lightweight WFMC workflow 
management system in C. Being lightweight and small, it will fit 
on many embedded devices. We want to use it for integration of 
activities and workflows in devices base on the architecture 
illustrated by Figure 4(c). We will migrate the simulation 
environment to this workflow management system so that we can 
release the environment under a open source software license.
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