
TR-IIS-07-007

Component Model for SISARL
Devices and Systems

T. Y. Chen, T. S. Chou, P. H. Tsai, A. Thamizhmani, T. W. Kuo,
C. S. Shih, and J. W. S. Liu

April 18, 2007 || Technical Report No. TR-IIS-07-007
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2007/tr07.html

Institute of Information Science, Academia Sinica

Technical Report TR-IIS-07-007

Component Model for

SISARL Devices and Systems

T. Y. Chen, T. S. Chou, P. H. Tsai, A. Thamizhmani, T. W. Kuo, C. S. Shih, and J. W. S. Liu

Abstract

This paper describes a component model, called SISARL model. It is the basis of
component-based approach to building families of smart devices and systems that enhance
life quality and well being of elderly individuals. In addition to providing the traditional view
of hardware, firmware and software components, as do existing component models, SISARL
model also provides developers with an operational view. The view enables the developer to
specify device-user interactions as executable workflows and allows the device operations
and user actions to be experimented with and their correctness ascertained throughout the
design, development and assessment process. After describing the elements and usages of the
model, the paper presents a simulation environment for this purpose.

Copyright @ April 2007

Submitted to ACM EMSOFT 2007

Component Model for SISARL Devices and Systems
T. Y. Chen, P. H. Tsai,

T. S. Chou
National Tsing-Hua University

Hsinchu, Taiwan
+886-2-2788-3799

{yen, peipei}@iis.sinica.edu.tw

J. W. S. Liu, A. Thamizhmani
Academia Sinica

Box 128, Academia Road, Sec. 2
Nankang, Taipei, Taiwan

+886-919-36-4433

{janeliu}@iis.sinica.edu.tw

C. S. Shih, T. W. Kuo
National Taiwan University

Taipei, Taiwan

+886-2-2362-5336

{cshih, ktw}@csie.ntu.edu.tw

ABSTRACT
This paper describes a component model, called SISARL model.
It is the basis of component-based approach to building families
of smart devices and systems that enhance life quality and well
being of elderly individuals. In addition to providing the
traditional view of hardware, firmware and software components,
as do existing component models, SISARL model also provides
developers with an operational view. The view enables the
developer to specify device-user interactions as executable
workflows and allows the device operations and user actions to be
experimented with and their correctness ascertained throughout
the design, development and assessment process. After describing
the elements and usages of the model, the paper presents a
simulation environment for this purpose.

Categories and Subject Descriptors
J.7 [Computers in Other Systems] D.2.2 [Design Tools and
Techniques]:

General Terms
Design, Experimentation, Human Factors

Keywords
Component-based design, Modules and interfaces, Activities and
workflows, Operational specifications, Simulation environment

1. INTRODUCTION
Since its advent decades ago, the merits of component-based
approach to constructing systems from configurable building
blocks with well-defined interfaces have been demonstrated
undisputedly. Over time, the approach has been adopted for an
increasingly broader spectrum of devices, systems and services.
Today, one can find component-based networked sensors [1, 2],
embedded software and systems (e.g., [3-5]), robotic software
(e.g., [6-8]) and multimedia and general DSP (e.g., [9, 10]), as
well as large enterprise systems and applications built on
component technologies such as EJB, .NET and CORBA.

This paper describes a component model that serves as the basis
for design, development and quality assurance of SISARL
(Sensor Information Systems for Active Retirees and Assisted
Living) devices and systems. We are building a component
library, an integration framework and supporting tools based on
the model. The term SISARL refers to consumer electronics
designed to enhance life quality of elderly individuals and help
them live independently [11-16]. The advantages of component-

based approach are particularly important for these devices. Being
consumer electronics, they must be affordable and easy to use,
customize, and maintain. All SISARL devices provide their users
with essential services while the users are well. When the need
arises, some also serve as point-of-care and assistive devices.
They must function dependably and fail in a safe manner even
when misused by their untrained users.

The SISARL model provides us with two views: resource view
and operational view. In the resource view, a device or system is
composed of hardware, firmware and software building blocks,
called resource components or simply components. Existing
embedded system component models typically support this view
and this view solely. For SISARL devices, however, resource
view is insufficient. Full automation is not always economically
feasible and, often, is not desirable. Like other semiautomatic
devices, many SISARL devices rely on the user(s) to perform
some essential functions. The operational view of a device
specifies the activities of the user and device and their
collaborations: It defines the required functions provided and used
by the user and thus defines the user as a resource component. At
the same time, it constrains the user behavior and defines
conditions for correct device operations.

SISARL resource components and their interfaces are described
in a nesC-like language [1, 2]. Like nesC model, SISARL
resource view also supports event-driven execution, bidirectional
interfaces and flexible hardware-software boundaries. This is
where the resemblance between the models ends. nesC model
allows only static memory allocation, nesC events and tasks run
to completion and tasks do not preempt each other. These and
similar restrictions of nesC and other models (e.g., [17]) make the
devices based on them easier to verify and test but can unduly
constrain architecture and implementation of SISARL product
families. SISARL devices are typically not entirely reactive;
many are complex and most are not severely size and power
limited. Rather than making such restrictions an intrinsic part of
the model, SISARL model offers them as options imposed when
some requirements are best met with them. We will return to
discuss specific differences between nesC and SISARL models
when elements of resource view are described

Following the lead of programming languages such as C# and
Real-Time Java, SISARL resource view uses attributes to provide
information on components. The values of some attributes specify
restrictions. Attributes which instruct the preprocessor, compiler
and run-time environment of static linkage scope, memory
allocation and scheduling restrictions are example. Some
attributes (e.g., platform and version) guide component selection.
Other attributes declare capabilities and limitations. For example,

we can use values of quality of service attribute to specify the
input quality a component requires and output quality the
component can produce.

In the operational view, the work by a device consists of one or
more workflows [18]. Each workflow is defined by a workflow
graph. Roughly, each node in a workflow graph represents an
activity, which is a job, a task, or some other granule for work
carried out by the system or user(s). Edges specify the conditions
under which activities are carried out. In this sense, workflow
graphs resemble task graphs commonly used to characterize real-
time and embedded workloads. Workflow graphs are widely used
in enterprise systems to define automated business processes.
While sequencing and synchronization between jobs in a task
graph are hardwired in the process code, they are done for
workflow graphs by a workflow engine. In essence, the workflow
engine integrates dynamically the components that implement
activities. Indeed, we use a workflow engine as a component of
SISARL integration middleware in some devices [19]. This is a
reason for using workflows to describe operational view.

Extensive works on man-machine interactions and automation
surprises can be found in literature and on Internet. These works
typically assume that users (e.g., pilots, drivers) are trained. We
cannot readily apply their assumptions and user models. SISARL
users are untrained and may even decline in general skills and
alertness over the years while the devices are in use.

The remainder of the paper is organized as follows. Section 2
provides background on SISARL devices in general and briefly
describes two devices that are used as illustrative examples in
later sections. Section 3 gives an overview of SISARL resource
components and operational view. Section 4 presents and
illustrates the elements of the resource view. Section 5 discusses
operational view. Section 6 describes our simulation environment.
Section 7 summarizes the paper and future work.

2. SAMPLE SISARL DEVICES
SISARL families of devices and systems range from small
gadgets to sizable home appliances, from consumer electronic
products to assistive and home-care equipment, and from passive
monitors to robotic helpers. Walker’s buddy [13] and object
locator [16] are examples of gadgets. When worn by a walker or
jogger, the former can detect and warn the wearer of uneven
pavement ahead and thus help preventing falls. A RFID-based
object locator uses smart phones and PC for user interface and
provides its users with the capability of querying for locations of
misplaced household and personal objects (e.g., key) by names.
Examples of point-of-care devices include vital sign monitors.
Examples of assistive devices include semiautomatic robotic
helpers. Medication dispensers for medical and assistive care
institutions [15] also contain robotic components.

Figure 1 shows two representative SISARL devices: a storage
pantry [12] on the left and a personal medication dispenser [14]
on the right. Both are for use by untrained users at home over
years. We use these simple devices for illustrative purposes and to
put issues in user-device interactions in context.

2.1 Smart Pantry
A smart pantry is for storage of non-perishable household
supplies. The pantry is smart because when the last unit of any
supply is removed from it, the pantry will contact a specified

supplier, place an order and arrange payment on user’s behalf to
have replenishment delivered within a specified time.

(a)

Cola

TW
Beer

W
isk

Paper
Towel

Cans and jars

Light weight objects

Spring
loaded
plate

Please
come

home for
medication

Push to Dispense

BaseDispensing Drawer

RFID tags

Containers

(b)

Figure 1. Two sample SISARL devices

A smart pantry must have some means to identify and monitor its
content. A pantry using RFID for this purpose is fully automatic
and easy to use, but not economically feasible: Even a cent per
tag is too costly to replace bar codes on bottles of shampoo, rolls
of papers, etc. We have built and experimented with a pantry that
uses a digital camera for content capture and pictures for object
identification. It is also fully automatic and easy to use for the
pantry owner, but its usability is poor for suppliers. Each picture
in purchase orders from the pantry must be processed to identify
the brand and size of the object in it. Because picture quality is
not ideal and object search space is large, most object
identification methods cannot attend the required error rate.

BAC (bar code) pantry [12], which identifies supplies by their bar
codes, has the best cost versus usability tradeoff today. As shown
in Figure 1(a), each shelf is logically divided into compartments:
Each compartment is marked by a pair of switch and spring
loaded plate on the shelf. Each compartment is used to hold only
one kind of supply. The pantry controller determines whether the
compartment is empty by sensing the state of the corresponding
switch: When a compartment is nonempty, its switch is pushed
open by object(s) in front of the plate. When it is empty, the plate
snaps forward and closes the switch.

BAC pantry is ideal for suppliers, but cannot work without user’s
help. The work required of the user (i.e., the owner) is actually
simple: when placing an object into an empty compartment, scan
its bar code. The scan-place activity of the user triggers the pantry
to generate and maintain a compartment-id-bar-code association.
When a compartment becomes empty, the pantry inserts the
associated bar code in the purchase order. It then deletes the
association and thus frees the compartment for new supplies. The
process of acquiring bar codes is error prone, however. A busy
user may dump supplies in the pantry without scanning their bar
codes. Multiple users may put away supplies and remove supplies
at the same time. We cannot restrict user-pantry interaction
patterns but must make sure that the pantry works satisfactorily
regardless.

2.2 Medication Dispenser
We are building a fully automatic personal medication dispenser
for use by naïve users [14, 15]. It is illustrated in Figure 1(b).

Each dispenser has a medication scheduler that computes
administration schedule (i.e., time and size of every dose) of
every medication managed by the dispenser, a dispensing unit that
releases doses of medications to the user according to the
schedule, and a compliance monitor that detects non-compliance
to medication directions and takes appropriate actions. All are
under the control of the dispenser controller. It also has a small
non-volatile memory for storing a machine readable medication
schedule specification (MSS). The scheduler computes schedules
following the directions given by the specification. A minimal
dispenser uses a local alarm to remind the user at times when one
or more doses is due and a dial up connection for sending
appropriate notifications when non-compliance arises. A high-end
dispenser may use a variety of devices and network links for these
purposes and provide a local database for keeping records on
medication history and user preference and behavior.

In order for medication dispensers to be effective in prevention of
medication errors, all medications taken by each user are
managed by a single dispenser. Moreover, some professional has
verified that the directions of user’s medications are right for the
user. A fair assumption is that someone is a pharmacist.
Whenever the user comes to get medication supplies, the
pharmacist verifies the user’s directions with the help of a
prescription authoring tool [15], generates a new MSS for the
user’s dispenser, and gives the user the MSS in a flash memory,
along with new supplies, each medication in a separate container
tagged with the RF id of the medication. To put new supplies of
medications under the care of the dispenser, the user loads the
new MSS into the dispenser and plugs the new containers into
sockets on top of the dispenser base, one container at a time and
one per socket. Each plug-in action causes the dispenser
controller to read RFID tags and socket statuses and thus discover
the location of the new container and the id of the medication in it.
The controller creates an association between the medication and
its socket. It needs this information to operate the dispensing
mechanism.

The dispenser controller uses Schedule() and GetNextDose()
functions provided by the medication scheduler to determine
when to give the user medication(s). When called, the former
produces a schedule, which is a list of {time, doseList} structures.
time in each entry gives the absolute time to dispense some
medications and doseList specifies the id and dose size of each
medication to be dispensed at the time. GetNextDose() returns the
entry with the earliest time in the schedule and an absolute
deadline for the user to retrieve the dose(s) due at the time.

The dispenser sends a reminder to the user a short time before
each scheduled time for the user to take medication(s). The length
of the time is an estimate of the time the user typically takes to
respond to a reminder. If the user responds to the reminder and
comes to retrieve the medications in time, the controller
commands the dispensing mechanism to put the doses of the
specified sizes due at the time in the dispensing drawer, open the
drawer and present the doses to the user. If the user responds late
by a specified threshold, the dispenser controller calls the
scheduler to adjust the size and time for the current dose(s) in
case that the MSS indicates such changes are required. If the user
fails to respond by the associated deadline, the controller informs
the compliance monitor of the missed dose(s) so the monitor can
take appropriate action.

3. COMPONENT-BASED DESIGN
As the examples described above illustrate, SISARL devices
differ vastly in purpose and complexity. Nevertheless, they share
sufficient similarities to be built for the most part from
configurable components based on a common component model.

3.1 Resource Components
Figure 2 shows a block diagram of typical automatic or
semiautomatic devices. We use it as an architectural reference for
exploitation of similarities among SISARL devices, as well as
identification and definitions of components [11].

Local
sensors

Sensor data
processor

Command
generator

Models, rules
& policies

Monitor &
controller

Base

Sensor data
processor

Remote
sensorsRemote

Command
generator

Local
plant

Remote
plant

C
om

m
un

ic
at

io
n

un
it

Figure 2. Reference architecture

Every device contains a communication unit. It connects parts
within the device and provides the device with access to the world
outside. The bandwidth and latency demands of typical SISARL
devices are modest and can be met by existing networks and
standards. Some devices have only a small non-volatile memory
while others may have a sizable database. They are for storage of
data, code, rules and policies, plant models and user preferences.
An audio interface is used in most SISARL devices. It records
voice segments of the user and plays back user voice interleaved
with pre-recorded device voice. The interface makes user-device
interaction friendlier. For example, it enables a smart pantry to
confirm with the user verbally the identities of supplies when they
are moved in and out of the pantry. Thus it helps to make the
pantry more tolerant to misuse. There are acceptable off-the-shelf
choices for these components; we do not build them from scratch.

Every SISARL device has a base (unit). The base of a device
typically contains sensors and sensor data processor(s) of some
kind(s). These parts may be all some devices have.

The base of a device may also have a monitor and controller and
one or more command generators responsible for regulating the
operations of the local plant. The controller typically has multiple
levels. Take smart medication dispenser for example. The local
plant consists of mechanism(s) for releasing medications from
their containers and depositing them in the dispensing drawer.
The mechanisms have a two-level controller: The lower-level
controller is open loop. The scheduler computes when and how
the mechanism(s) work based on the constraints defined by MSS.
The higher-level loop is closed. It monitors the timing of user
response and re-computes the medication schedule and thus
changes the operation of the release mechanism(s) accordingly.

Some devices have no remote unit, while others have one or more.
For example, the personal dispenser described earlier has no
remote unit. A dispenser for professionals [15] can be set up to

monitor each patient’s reaction to medications and adjust his/her
directions according to a general MSS. In that case, the patient is
the remote plant and the vital sign monitor(s) and associated
signal processor(s) are parts of a remote unit.

3.2 Operational View
Looking at only hardware and software components in the base
unit of a BAC pantry, one would conclude that it does not have
the loop structure in Figure 2. However, when we take into
account of human (i.e., user and supplier) activities, it in fact
contains a feedback control loop. The loop operates as specified
by the workflow graph in Figure 3.

User remove last
of supply[i]

(no_supply[i]= 0)

Generate & send
purchase order
containing bar

code of supply[i]

Supplier accepts
purchase order &
delivers supply[i]

User scans
supply[i] & puts

it in comp[x]

Create & store
compartment
-id –bar-code
association

Start point

Terminate point

Repeat point

While

If else

Delay /Timeout

Throw

Exception

Invoke workflow

Execute workflow

Invoke component command

Listen component event

Sense comp[k]
becomes empty &

get associated
comp[k].barcode

Figure 3. Workflow to replenish a supply

We adopt mostly the terms and notations used in Windows
Workflow Foundation [18]. The nodes in workflow graphs are
depicted by rectangular boxes. Text in a box describes the activity
the node represents. Each directed edge represents a transition,
i.e., a change of control flow between activities. The other
notations are defined at the bottom of the figure. Specification of
resources that implement the activities or are used by activities, as
well as rules and policies governing resource allocation, is also a
part of the workflow definition. Space limitation prevents us from
including them here. An activity may be composite, i.e., a
workflow of multiple dependent activities. Transitions to
composite activities are labeled by the invoke-workflow symbol
here to call attention to them. We usually separate human
activities from device activities: Human activities are in the dotted
rectangle labeled by a small figure on top (or to the left) of the
dotted rectangle encircling device activities.

Returning to the control loop in a BAC pantry, we note that the
set of supplies in the pantry can be thought of as the local plant.
The goal of the loop is to keep the pantry stocked with them (i.e.,
the state variable no_supply[i] > 0 for every supply supply[i] in it).
The workflow starts when the user removes the last of a supply,
say supply[i] in compartment comp[k]. The activity causes the
pantry to detect that comp[k] has become empty. In response, it
looks up the bar code comp[k].barcode of the supply from the
compartment-id-bar-code association of the compartment. It then
generates and sends to a default supplier a purchase order
containing the bar code, the number of units ordered and the
desired delivery date. The arrival of the purchase order causes the
supplier to process the order, collect payment and then deliver the
supply. The delivery in turn triggers the user to place the
replenishment in some empty compartment comp[j] and the
pantry to create and maintain a new compartment-id-bar-code

association. Thus the control loop restores the supply to the
desired no_supply[i] > 0 state.

We note that the workflow graph in Figure 3 consists of three
workflows. The composite activity by the supplier, depicted by
the dashed box in Figure 3, is not a part of the pantry. We will
return in Section 5 to elaborate on the third workflow, consisting
of the last two activities. The first workflow starts by the supply
removal event ends on the device after third activity completes.
The first two activities in this workflow are done by the user and
embedded, event-driven components of the pantry. The activity
that generates and sends a purchase order is carried out in the
background by an off-the-shelf e-business component. It and
other components like them are the reason we chose to make
restrictions of nesC concurrency model optional for SISARL.

Figure 4 shows three ways the operational view is used. The
example above illustrates how operational view complements
resource view to complete the device specification. By writing
operational specification of a new device in terms of workflows,
we can simulate, emulate and experiment with its operations and
its interaction with the user throughout the design, development
and quality assurance process, as depicted by Figure 4(a).

SISARL simulation environment

Simulation tools

Verification
& test suites,
benchmarks

Component
library

Workflow
framework

E
ngine

D
efinition &

build tools

(a)

Workflow
engine

Embedded
device

(b)

Embedded
workflow engine

(c)

Operational view of new device Resource
components

Workflow
components

Figure 4. Uses of operational view

Figure 4(b) shows a workflow engine used as a middleware for
integration of embedded device(s) into a larger system. An
example is a workflow-based integration framework [19] that
links medication dispensers with order entry systems and
prescription authoring tools. In addition to resource components
that implement the devices, the system also contains workflow
components that execute on an engine external to the devices.

Figure 4(c) illustrates an architecture designed to make devices
easily configurable. Only a small part of a device based on this
architecture is built with resource components with hardwired
control flow. Most of device is composed of workflow
components that execute on a small embedded engine. We can
change the functionality and operations of the device by simply
changing the graphs of workflows that do the work.

4. ELEMENTS OF RESOURCE VIEW
We chose to make SISARL resource component definition
language a variant of nesC [1, 2] because of strengths of nesC that
are important for embedded devices and systems:
Hardware/software transparency will ease our future efforts in
migrating towards SoC (System-on-Chip) implementations. We
also want some embedded components to be statically linked, as

nesC components do. This section first summarizes nesC features
that are adopted for SISARL and illustrates how we use them, and
then describes SISARL features that differ from nesC.

4.1 Use of nesC Features
We use the terms interface, component, module, and
configuration as they are defined in nesC. Briefly, an interface
type specifies a set of named functions. An interface is an
instance of an interface type. A component is a hardware,
firmware or software building block that is encapsulated by one
or more interfaces. We call it a resource component when we
want to distinguish it from an activity and highlight the fact it
may be used to implement an activity.

A distinguishing feature of nesC adopted by SISARL is that each
interface function is specified either as a command or an event. A
component implements all command functions, (or commands for
short) in its interfaces and provides them to other components (i.e.,
its users) as requests for its services. Commands may be split-
phase operations. A split-phase command is asynchronous, i.e., it
returns immediately and posts an event upon its completion. The
callback function for handling the completion event is specified as
event in the interface together with the command. A user
component of the interface is expected to implement the event
function. The specification of each component lists the interfaces
it provides and interfaces it uses and thus specifies how the
component can be statically linked with other components to
compose a larger component. A module is a component that does
not contain other components as parts. A configuration is a
component that is composed of modules and smaller
configurations and hides the details about them.

As an example, we describe now the MedicationSchedulerC
configuration that implements the medication scheduler in
medication dispensers. The scheduler gets the information it
needs to compute medication schedules from two modules,
MedScheduleSpecM and UserPreferenceM. Figure 5 lists their
specifications. (To save space in figures, we indicate data types
and parameter lists as “…” at places in where specifics about
them are either provided in text or are unimportant for our
discussion here.) The former encapsulates the MSS, which
specifies hard and firm constraints to be satisfied by all
medication schedules. UserPreferenceM contains data on user
preferred times and frequencies, etc. the dispenser collected from
the user. The scheduler treats them as soft constraints. We note
that each of these modules implements a command with which
user components can request the information. The commands are
non-blocking. This is particularly important for the get MSS
request. The specification is written in XML. The module must
process the specification to extract medication directions from it
and put the directions in a standard structure ready for use by the
scheduler. In some dispensers, the module processes the XML file
locally; in other dispensers, the module in turn requests a remote
service to do the work. In any case, the work takes time. The
requester is notified of the completion and proceeds to execute the
event function specified in the interface.

MedicationSchedulerC configuration is composed of three
modules: They are DosageSelectorM, ScheduleGeneratorM and
ScheduleEnhancerM. Figure 6 shows their composition. In the
diagram, interfaces are represented as smaller boxes outside of the

boxes representing components. Filled arrows between interfaces
represent commands; unfilled arrows represent events. The
modules in Figure 5 and their interfaces should appear at the right
of the diagram if there were space for them. The interface
ReadMedicationSchedule is not connected because it is not used.

interface ReadMedScheduleSpec {
command error_t Get (user_id_t current_user);
event void GetDone (error_t err, mss_struct_t mss);

}
interface WriteMedScheduleSpec {

command error_t Set (stream* mss);
event void SetDone ();

}
interface ReadUserPreference {

command error_t Get (user_id_t current_user);
event void GetDone (error_t err, … user_preference);

}
interface WriteUserPreference {

command error_t Set (stream* user_preference);
event void SetDone();

}
module MedScheduleSpecM {

provides interface ReadMedScheduleSpec;
provides interface WriteMedScheduleSpec;

}
module UserPreferenceM {

provides interface ReadUserPreference;
provides interface WriteUserPreference;

}

Figure 5. Modules used by MedicationSchedulerC

DispenserControllerM

Schedule

Schedule ReadMedicatonSchedule

MedicationSchedulerC

MedicationSchedulerM

DosageSelectorM ScheduleGeneratorM

DosageSelect ScheduleGenerate ScheduleEnhance

DosageSelect ScheduleGenerate ScheduleEnhance

ScheduleEnhancerM

R
ea

dM
ed

S
ch

ed
ul

eS
pe

c
R

ea
dU

se
r

P
re

fe
re

nc
e

Figure 6. Composition of MedicationSchedulerC

Figure 7 lists the specification of MedicationSchedulerC together
with interfaces and modules in it. DosageSelectorM and
ScheduleGeneratorM take as input the medication schedule
specification mss produced by module MedScheduleSpecM.
DosageSelectorM selects sizes and nominal separations of
individual doses based on the direction of each medication.
ScheduleGeneratorM generates a medication schedule, starting
from dosage selections produced by DosageSelectorM and
factoring into account additional constraints due to drug
interactions. ScheduleEnhancerM adjusts the medication schedule,
taking into account of user preference, to make the schedule
friendlier to the dispenser user. In lines specifying the
implementation of component, the interface to the left of each
assignment symbol “=” is the interface to the right of symbol. The
symbol “->” links the provider and user of the interface.

interface Schedule {
command error_t Schedule (user_id_t current_user);
event void ScheduleDone (error_t err);
command error_t GetNextDose (user_id_t current_user);
event void GetNextDoseDone (…);

}
interface ReadMedicationSchedule {

command error_t Get (user_id current_user);
event void GetDone (… err, … med_schedule);

}
interface DosageSelect {

command error_t SelectDosage (mss_struct_t mss);
event void SelectDosageDone (…);

}
interface ScheduleGenerate (

command error_t GenerateSchedule (…);
event void GenerateScheduleDone (…);

}
interface ScheduleEnhance (

command error_t EnhanceSchedule (…);
event void EnhanceScheduleDone (…);

}
module DispenserControllerM {

uses interface Schedule;
… ;

}
module DosageSelectorM {

provides interface DosageSelect;
}
module ScheduleGeneratorM {

provides interface ScheduleGenerate;
}
module ScheduleEnhancerM {

provides interface ScheduleEnhance;
}
module MedicationSchedulerM {

provides interface Schedule;
provides interface ReadMedicationSchedule;
uses interface ReadMedScheduleSpec;
uses interface ReadUserPreference;
uses interface DosageSelect;
uses interface ScheduleGenerate;
uses interface ScheduleEnhance;

}
configuration MedicationSchedulerC {

provides interface Schedule;
provides interface ReadMedicationSchedule;
uses interface ReadMedScheduleSpec;
uses interface ReadUserPreference;

}
implementation {

components MedicationSchedulerM, DosageSelectorM,
ScheduleGeneratorM, SchedulerEnhancerM;

Schedule = MedicationSchedulerM.Schedule;
ReadMedicationSchedule =

MedicationSchedulerM.ReadMedicationSchedule;
MedicationSchedulerM.DosageSelect ->

DosageSelectorM.DosageSelect;
MedicationSchedulerM.ScheduleGenerate ->

ScheduleGeneratorM.ScheduleGenerate;
MedicationSchedulerM.ScheduleEnhance ->

ScheduleEnhancerM.ScheduleEnhance;
}

Figure 7. Components and interfaces of scheduler

4.2 SISARL Variations and Extensions
SISARL resource component description language has nesC as a
foundation, but SISARL model deviates from nesC model in
many important aspects, including concurrency model, scope of
static linkage and non-functional elements.

4.1.1 Concurrency Model and Static Binding Scope
Tasks in nesC resemble tasklets in Linux and deferred procedure
calls (DPC) in Windows; they do not preempt events and do not
preempt each other. In contrast, SISARL execution model is
traditional by default for reasons stated in Section 1. SISARL
tasks are executed in context of threads. They are preemptively
scheduled according to their priorities. Event functions handle
interrupts and completion operations. They run ahead of tasks and
may preempt each other. On Linux (or Windows), an event may
be a split-phase operation: The (first-phase) handler may post a
tasklet to complete the work. Tasklets may be preempted by event
handlers but never by each other and never by tasks.

Another important difference is in the scope of static linkage: An
application written in nesC has only one top-level configuration
(i.e., a configuration that is not a part of a larger configuration).
All modules used to implement an application are statically linked
and compiled into a single image. This is not so by default for
SISARL. A SISARL component may be statically linked within
an upper-level configuration as in nesC. In this case, the
component name is listed in the implementation specification of
the upper-level configuration, as illustrated by Figure 7. By
default, a component not thus named in the specification of any
upper-level configuration is to be compiled by itself into an
executable to provide at runtime a service or services via
command(s) it provides. A component may be used in both ways.
The developer makes this choice via instructions to SISARL
preprocessor, telling the preprocessor to include the component in
the list of separately compiled codes regardless whether the
component is also a part of a larger configuration.

To illustrate the need for these choices, we return to Figure 6: The
medication scheduler configuration is shown linked to
DispenserControllerM. Indeed, a personal medication dispenser is
implemented by one top-level configuration that connects all
components used to implement the dispenser.

We also use MedicationSchedulerC as a component of a server
that provides scheduling service to dispensers used within a
hospital [15]. Such a dispenser helps a care provider manage
medications of all patients under his/her care. Upon request, the
scheduler server merges the medication schedules of all patients
served by the dispenser into an overall administration schedule for
the provider. A scheduler server can be implemented using a
configuration composed of MedicationSchedulerC configuration
and DispatchSchedulerM module. The latter first uses the
Schedule and ReadMedicationSchedule interfaces provided by
MedicationSchedulerC to generate and retrieve medication
schedules of the patients. It then takes into account of patient
conditions and locations while merging the schedules to optimize
some objective functions (e.g., total travel time and average or
minimum slack time). This implementation is straightforward but
does not provide the configurability required for diverse
dispensers used by a large institution.

Rather than hardwiring the components of the scheduler server
together, an alternative implementation is to compile the modules
specified in Figure 7 and DispatchSchedulerM separately into
resource components for activities in a workflow that executes on
a workflow engine. Then the process of computing administration
schedules can be easily configured to suit different institutions
and different departments in an institution by modifying the

workflow graph definition of the process. Our component model
and tools support this choice as well.

4.1.2 Non-Functional Aspects
SISARL component specifications use attributes to provide
information about components. There are three major types:
preprocessor and run-time directives, constraints and restrictions,
and quality of service (QoS) capabilities and requirements.
Possible targets of attributes include interface types, interfaces,
modules and configurations. SISARL component language
preprocessor provides basic built-in attributes and supports
custom attributes. Following the syntax of C# [20], we enclose
each attribute in a square-bracket pair:

[target: attribute type (attribute values)]

It gives the type or name of the target to which the attribute
applies and the type and value of the attribute. We place an
attribute applied to an interface type, a module or a configuration
immediately before the specification of the target. An attribute
applied to an interface of a component bears the name of the
interface. It is placed immediately after where the interface is
listed in the specification of the component. An attribute can be
applied to an individual function in an interface type, and it is
placed immediately after the definition of the function.

We use configuration BinarySensorArrayC in Figure 8 to illustrate
some of the attributes. The component is used in both smart
pantry and medication dispenser. It is composed of two modules.
hwBinarySensorArrayM is a hardware component. It may be an
array of mechanical switches each of which can change state in a
fraction of a second or electronic sensors that can change state in
a few or tens of milliseconds. A binary stream, one bit per sensor,
gives the values of the sensors. BinarySensorArrayM is a driver
that responds whenever the state of any sensor has changed. The
event function in its interface picks up the new value of each
sensor that has changed state and inserts a work item containing
the sensor id in one of two work queues according to the new
state of the sensor.

SchedulingAttribute has an extensive set of values and some of
them are platform dependent. Built-in values include base-priority
levels. These values enable us to prioritize individual interface
functions and components respective to each other. The
configuration in Figure 8 uses the attribute only once: Its value
requests that the event handler be executed without preemption. A
fair criticism of this use of the attribute that it is not necessary
since disable interrupt and preemption can be requested within the
function itself. Indeed, that would be equivalent to what we have
here: The target is within an interface type. So, the directive is
applied to all instances of the interface. Alternatively, we can
disable preemption or interrupt selectively for some instances but
not others, by applying the attribute to the instances where the
interface is used or provided. In addition to this flexibility, using
attributes to provide scheduling directives make them more
visible than burying them in code.

Some attributes constrain component usage. Metadata provided
by these attributes enable the preprocessor to check components
for compatibility automatically. Examples are Versions and
Platform. The former provides information on compatible versions.
The latter restricts the use of a component to specified platforms.
A platform attribute applied to a configuration is applied to all
components of the configuration. In our example, the driver and

hardware modules must be selected from those for versions of
Linux and ARM included in the platform specification given as
value of the Platform attribute applied to the configuration.

interface hwBinarySensorArray {
command int GetNumberSensors ();
command stream GetSensorValues ();
event void SensorValueChanged ();

}
interface BinarySensorArray {

event void InsertWork (stream sensor_ids,
stream sensor_values, queue_t queue_name);

[InsertWork: SchedulingAttribute (PreemptionDisabled)]
}
interface StdControl {

command result_t init ();
command result_t stop();

}

[module: QoSAttribute (ResponseTime <= 500)]
module hwBinarySensorArrayM {

provides interface hwBinarySensorArray;
}
module BinarySensorArrayM {

provides interface StdControl;
provides interface BinarySensorArray;
uses interface hwBinarySensorArray;
[hwBinarySensorArray: QoSAttribute (ResponseTime

<= 750)]
}
[configuration: PlatformAttribute (Linux_Arm_04/07/00014)]
configuration BinarySensorArrayC {

provides interface StdControl;
provides interface BinarySensorArray;

}
implementation {

components hwBinarySensorArrayM,
BinarySensorArrayM;

StdControl = BinarySensorArrayM.StdControl;
BinarySensorArray =

BinarySensorArrayM.BinarySensorArray;
BinarySensorArrayM.hwBinarySensorArray ->

hwBinarySensorArrayM.hwBinarySensorArray;
}

Figure 8. An example illustrating use of attributes

Figure 8 shows two places where QoSAttribute is applied. The
target of the first one is a component. Thus applied, the attribute
declares a quality guaranteed by the component. The target of the
second one is an interface function used by a component: It
declares a quality requirement. In our example, the first one
indicates that the sensor array hardware can report a state change
in no more than 500 milliseconds. Since the required response
time declared by the attribute applied to interface is an upper
threshold of 750 milliseconds, the hardware module can be used.
Similarly, values of other built-in QoS parameters such as
SamplingRate, QuantizationSNR, and so on allow us to check
components not only for functional compatibility but also for
performance compatibility. QoSAttribute can also be used to
provide directives in tradeoffs between conflicting performance
metrics. A tradeoff policy specified by an attribute is fixed at
build and configuration times. This offers us an alternative to
specifying QoS tradeoffs by input parameters of commands.

5. OPERATIONAL SPECIFICATION
Specifications of resource components of a device and their
interconnections offer us a static view of the device. The
operational view tells us how the device works.

5.1 More on Workflows
Again, we capture the operational view of a device by a set of
workflows. Each workflow defines a process that can execute
concurrently with other processes if scheduling and resource
allocation rules and policies allow it to do so. As stated earlier,
workflows are represented by workflow graphs, and workflow
graphs resemble task graphs except that transitions (e.g., flow
path control and synchronization) between activities in workflows
are carried by a runtime engine. This middleware component
executes all the tests, branches, joins, etc. based on results
produced by activities.

Definitions of activities and workflow graphs, together with
resource components used by activities and rules and policies
governing allocation of resources to workflows, specify device
operations and device-user interactions. We define workflows in
XPDL 2.0. XPDL (XML Process Definition Language) is the
WFMC (Workflow Management Coalition) [18] standard
language for interchange of process models between tools. XPDL
treats human interactions as an integral part of process definition.
This is of particular important for us. Version 2.0 incorporates
event and message passing mechanisms with graphical elements
and meta-models. Workflows in XPDL can execute directly on
engines offered by some vendors. Most vendors provide tools to
translate XPDL definitions into BPEL (Business Process
Execution Language) for execution on their respective engines.

Workflows are divided into two types: A sequential workflow
uses activities, conditions, rules, etc. provided by its definition
and proceeds without additional intervention. In contrast, a state
machine (or event-driven) workflow relies on external events.
Once started, such a workflow often spends time in some of its
states waiting for external event(s) to proceed. Most workflows in
a typical SISARL device are of this type.

5.2 An Illustrative Example
For sake of concreteness, we now discuss the use of operational
specification with the help of an illustrative example: putting
away and removing supplies in a pantry. The states of
compartments in it are monitored by the binary sensor array (BSA)
in Figure 8, one bit per compartment.

Figures 9 and 10 show two of three state machine workflows.
They specify normal, event-driven operations of a BAC pantry.
Again, we encircle user activities in a dotted rectangle on the right
to separate them from device activities. An activity in both dotted
rectangles, such as the one in Figure 9, is a composite activity. It
is done collaboratively by the user and device. Time flows from
top to bottom. User activities without transition edge(s) between
them occur at separate times; the one on the top occurs earlier. To
save space in these figures, we omit all activities triggered by
timeouts except one in each workflow. The if-else test for that one
is not drawn either. Rather, we label the activity that executes
only when timeout occurs by a pair of timeout and exception
symbols. If executed, the activity thus labeled in each workflow
terminates the workflow.

 After initialization, the pantry (i.e., the pantry controller) waits
for the user to put supplies in it. The user may do this by touching
the Load_Pantry button. This event triggers the workflow in
Figure 9. The pantry responds by turning on the bar code scanner.
The user scans a unit of a supply and then puts the supply in an
empty compartment. This action causes the state of the

compartment to change to non-empty, the BSA to insert a work
item containing the compartment id, and the pantry to store the
bar code obtained from the user’s scan for the compartment. The
user continues to scan and put away supplies until all supplies are
put away. When the pantry timeouts while waiting for more bar
codes, it shuts off the scanner and goes back to wait, and the
workflow terminates. – The collaborative activity in the middle of
the process executes when the pantry sees a bar code it has never
seen before. Making use of the audio interface component
mentioned in Section 3, the pantry asks the user to record a voice
description of the new supply. It uses the recorded voice
description associated with each bar code later on for many
purposes, such as confirming orders and reporting errors.

Touch Load_Pantry Button

Turn on bar-code scanner

Scan supply, get bar code

Turn off bar-code scanner

New
bar-code?Record voice description &

create bar-code and voice
description association

Put away supply

no

Sense compartment state
change, get compartment
id, store compartment-id-

bar-code association

Figure 9. load_pantry workflow

Remove last of supply in
compartment k

Make sure scanner is on,
ask user to scan object

Scan removed object,
get bar-code

Is
bar-code
NULL?

Sense compartment state
change, find comp[k] empty,

get comp[k].barcode

Turn off
scanner &
generate

error
message

Generate &
Send order

with bar-code

no

Figure 10. remove_supply workflow

The user may just put a supply in an empty compartment without
first scanning its bar code. This action also triggers a put-away-
supply workflow similar to the one shown in Figure 9. In that case,
the pantry requests the user in voice to scan the bar code of the
supply. If the user does as requested, the pantry again gets the
desired compartment-id-bar-code association. The user may
ignore the request, however, leaving the bar code associated with
the compartment NULL.

The workflow in Figure 10 starts when the user removes the last
unit of a supply, leaving a compartment empty. The pantry
responds to a state change event and finds that compartment
empty. If the associated bar code is NULL, the pantry requests the

user to scan the supply. If the user responds to the request, all is
well: Armed with a bar code, the pantry can reorder the supply. If
the user ignores the request, the pantry generates an error message
to inform the user of its failure to reorder the just removed supply
when timeout occurs and returns to wait again.

We note that each of the workflows by itself is simple, and
simplicity is more typical than exceptional for most SISARL
devices. It is often possible to manually verify the correctness of
each workflow by itself. Furthermore, there are tools for
transforming the XPDL or BPEL definition of a workflow into a
Petri nets or state diagram so that some rigorous or formal
verification method can be applied.

Verifying multiple concurrent workflows that content for
resources is another matter, however, even for simple workflows.
The problem is further complicated by the fact that the workflows
are triggered by user actions and users are unpredictable. Take our
example for instance. One or more users may remove supplies
and empty some compartments while another user is putting away
supplies. The workflows triggered by them content for BSA.
Because the array is used by each workflow for a negligible
amount of time, we can simply make its event handler non-
preemptable, as shown in Figure 8. If some removed supplies
need to be scanned, then load_pantry and remove_supply
workflows also content for the bar code scanner and the audio
interface. Disallowing preemption of the activities while they use
these resources is not acceptable for both functional and
performance reasons. In our current version, a workflow triggered
by the removal of a supply without bar code has the highest
priority. The pantry interrupts the load_pantry process and asks
the bar code of the removed supply be scanned before the user
taking it walks away, which may take only a second or two. When
there are two users, this prioritization yields correct pantry
operation (i.e., the pantry correctly associate the supplies with the
bar codes acquired by the workflows). The simulation
environment described below is motivated by our need to have
clearer understanding of how the pantry behaves when an
arbitrary number of concurrent workflows contents resources.

6. SIMULATION ENVIRONMENT
We are building incrementally the simulation environment
illustrated by Figure 11. The environment contains a runtime
engine together with a suite of tools for build, simulate, emulate
and evaluate SISARL devices based on their operational
specifications, resource component specifications and
implementation. The current prototype is built on top of Windows
Workflow Foundation (WF) [18] and .NET framework. Resource
components can be implemented in C, C++, and C#. Activities in
operational view can be written in XML and C#. Workflows can
be defined graphically first, with code added as required.

Like similar tools, SISARL environment provides several
extensible libraries: Resource component library is a repository of
specifications, code and executables of building blocks in various
stages of development and quality assurance. Activity and
workflow libraries provide reusable definitions of operational
view components and specifications. The repositories enable us to
put together from design a new device model for experimentation
and evaluation purposes easily. We want to be able to build parts
of the model device from resource components as soon as the
components are implemented and sufficiently tested, while using

activities and workflows to simulate or emulate the parts that
await implementation. Also, a variety of real and simulated
resources and rules and policies governing their usages and
allocations are available to support a wide range of experiments.

Evaluation ReportUser Activities
& models

Rules &
policies

Resources

Resource
Components

Activity
Library

Workflow
Library

Libraries

Load_pantry WF

n
o

Predefined WFs Custom WFs Designer

Operational Specification

Engine Evaluation Tools

Simulator and Emulator

Builder

Evaluator

Figure 11. Libraries and Tools

The user activities and models are of particular importance. A
user activity is used to simulate a work item or action performed
by a human user. Figures 9 and 10 give a few examples.
Examples medication dispensers include “plug a container in a
socket”, “respond to a reminder by pushing the Push-to-Dispense
button”, and “retrieve medication from drawer”.

User activities are parts of state machine workflows. We use a
pre-condition, one or more post-conditions and a set of delay
paths to implement the user activities. The pre-condition of an
activity in a workflow defines an initial state (or a set of states) of
the workflow immediately before the execution of the activity.
Each post-condition defines a final state immediately after the
activity completes. By a delay path, we mean a delayed state
transition from the initial state to a final state. The choice of the
delay path (i.e., the final state) and the length of delay are selected
from a set of probability distributions that models the user. For
example, the activity “Scan supply, get bar code” activity in
Figure 9 is modeled by

 Pre-condition: controller_state == AWAITS_BAR_CODE
 Post-conditions: (bar_code_register != 0 && Timeout == FALSE)
 || (bar_code_register == 0 && Timeout != FALSE)

The time taken by the user to scan the supply is a random variable.
Different users are modeled by different probability density
functions of this random variable. Given a user model, we can
determine the probability of getting a bar code before timer
expiration, and hence which of two final states the workflow
reaches after the activity and how long the activity takes to reach
the final state.

Compared with most existing user models (e.g., models of
autopilot and medical devices users), ours is much simpler. The
simple models suffice for our purposes. The amount of effort
required to validate detailed user models can be enormous. The
simplicity of our user models enables us to validate them
incrementally. As more and more actual data on user behaviors
become available, we will replace the hypothetical probability
density functions used to model users with actual histograms.

7. SUMMARY AND FUTURE WORK
This paper describes a component model for building from
reusable components affordable, configurable and dependable
SISARL devices, i.e., consumer electronics and assistive devices
for the elderly. SISARL component model offers two views: In
resource view, resource components, interfaces and component
connections are specified in a variant of nesC. The underlying
SISARL execution model is traditional, without nesC restrictions
on memory allocation and concurrency. In operational view, a
device and its user(s) are defined by executable activities and
workflows that specify their operations and interactions. By
defining a device in terms of what it does, the operational
specification of a device complements its resource view
specification, which defines how it is made.

The simulation environment and integration framework we are
building will enable us to experiment with and evaluate new
device designs and prototypes as soon as they are specified and
during their development. In particular, by executing the
operational specification of a new device with user activities
based on validated user models, the environment can help us to
better assess the usability of the device.

We chose to build the current version of the environment on
Windows Workflow Foundation because we want a prototype
environment for experimentation in minimal time. In the
meantime, we are building a lightweight WFMC workflow
management system in C. Being lightweight and small, it will fit
on many embedded devices. We want to use it for integration of
activities and workflows in devices base on the architecture
illustrated by Figure 4(c). We will migrate the simulation
environment to this workflow management system so that we can
release the environment under a open source software license.

8. ACKNOWLEDGMENTS
This work is supported by Taiwan Academia Sinica Thematic
Project SISARL, Sensor Information Systems for Active Retirees
and Assisted Living.

9. REFERENCES
[1] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E.,

and Culler, D., “The nesC language: a holistic approach to
networked embedded systems,” Proceedings of PLDI, June
2003.

[2] Levis, P., TinyOS Programming,
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-
programming.pdf

[3] Zha, X. F. and Sriram, R. D., “Feature-based component
model for design of embedded systems,” Proceedings of
SPIE, Volume 5605, 2004.

[4] Crnkovic, I., “Component-based approach to embedded
systems,” 9th International Workshop on Component-
Oriented Programming, June 2004.

[5] Crnkovic, I., Axelsson, J., et al,. “COTS component-based
embedded systems - A Dream or Reality?,” 4th International
Conference, ICCBSS 2005, February 2005.

[6] Oreback, A., “A component framework for autonomous
mobile robots,” Doctoral thesis, KTH, Numerical Analysis
and Computer Science, Sweden, 2004.

[7] Wisspeintner, T., Nowak, W. and Bredenfeld, A.,
“VolksBot – A flexible component-based mobile robot
system,” RoboCup 2005.

[8] Makarenko, A., Brooks, A. and Kaupp, T., “Orca:
components for robots,” IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’06), 2006.

[9] DSPGuru, http://www.dspguru.com/sw/opendsp/index.htm ,
OpenDSP.

[10] Muskens, J., Chaudron,M. R. V. and Lukkien, J. J., “A
component framework for consumer electronics
middleware,” in Component-Based Software Development
for Embedded Systems, C. Arkinson, et al. ed, Springer, 2005.

[11] Liu, J. W. S., Wang, B. Y. et al., “Reference Architecture of
Intelligent Appliances for the Elderly,” Proceedings of the
18th International Conference on System Engineering, Las
Vegas, August 2005.

[12] Hsu, C. F., Liao,Y. H., Hsiu, P. C., Lin,Y. S., Shih, C. S.,
Kuo, T. W. and Liu, J. W. S., “Smart pantries for homes,”
Proceedings of IEEE International Conference on Systems,
Man, and Cybernetics, October 2006.

[13] Hsu,Y., Chiang,C. E., Chien, Y. H., Tseng, H. W., Pang, A.
C., Kuo T. W. and Chiang, K. H., “Walker’s buddy: an
ultrasonic dangerous terrain detection system,” Proceedings
of IEEE International Conference on Systems, Man, and
Cybernetics, October 2006.

[14] Tsai, P. H., Yeh, H. C., Yu, C. Y., Hsiu, P. C., Shih, C. S.
and Liu, J. W. S., “Compliance enforcement of temporal and
dosage constraints,” The 27th IEEE Real-Time Systems
Symposium, December 2006.

[15] Liu, J. W. S., Shih, C. S., et al, “Point-of-care support for
error-free medication process,” to appear in Proceedings of
High-Confidence Medical Device Software and Systems,
June 2007.

[16] Chou, T. S. and Liu, J. W. S., “Design and implementation
of RFID-based object locators,” Proceedings of IEEE
International Conference on RFID Technology, March 2007.

[17] Musuvathi, M., Park, D. Y. W., Chou, A., Engler, D. R., and
Dill, D. L. “CMC: a pragmatic approach to model checking
real code,” ACM SIGOPS Operating Systems Review, 2002.

[18] WfMC: Workflow Management Coalition,
http://www.wfmc.org/, and Windows Workflow
Foundation.http://msdn2.microsoft.com/en-
us/netframework/aa663328.aspx.

[19] Shih, C. S., et al. “A workflow-based integration framework
for medication use,” submitted to IEEE SMC, October 2007.

[20] Liberty, J., Programming in C#, Chapter 18, O’Reilly, 2001.

.

