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Abstract. Behaviors of Internet services are changing from computation sharing to content sharing.  Due to 

these changes, the weakness of conventional network architecture and its inadequate in service support are 

apparent.  To resolve these problems, content networks are introduced.  A content network tries to reorganize 

the Internet by a content-centric way to improve the system's scalability and to protect the system from distributed 

denial-of-service attacks.  It was taken into one of the most important platform of network applications (such as 

e-commerce) in the future.  In this paper, we investigate some key technology issues of content delivery of 

streaming multimedia, which has both the biggest challenge and opportunity.  Different from small-sized 

hypertext and image, the growing-popular multimedia content has huge size.  It is impractical to be cached 

entirely and requires to be partitioned into small portions for delivery from multi-servers.  As a multimedia 

content is VBR (variable-bit-rate) and requires guaranteed QoS (quality-of-service), each serving-peer needs a 

good delivery schedule for real-time streaming.  In this paper, we focus only on the multi-servers 

caching/streaming problem of multimedia delivery.  Without addressing content indexing and routing, the 

proposed method can be applied for different content networks.   
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1 Introduction 

1.1 Content Provider and Content Network Provider 

Nowadays, the behaviors of Internet services are changing from computation sharing to content 

sharing.  The weakness of conventional network architecture and its inadequate in service support are 

apparent.  To improve the content provider's scalability and to protect it from DDoS (distributed 

denial-of-service) attacks, content network architecture is introduced to re-organize the Internet by a 

content-centric way.  Traditional content providers have hosted their own content and managed their 

own Internet connections.  To guarantee QoS (Quality-of-Service), content providers need fixed 

connections and usually pay based on their peak bandwidth.  However, users usually request content 

at peak hours while the network remains unused during other parts of the day.  To efficiently serve 

local content around the world, content providers need to run multiple data centers as shown in Fig. 

1(a).  This burst bandwidth utilization pattern wastes network capacity and increases service costs.  It 

makes the build-it-yourself alternative less cost-effective.   

As the demands of content distribution increase, content providers turn to content network providers

(see Fig. 1(b)) to increase the performance and reliability of services and lower their total cost of 

ownership.  Content network providers host replicas of content in cache servers located within 

network edge that is just one hop away from the user.  A user request to a content provider is 

redirected to a cache server of the content network provider that is close (geographically or shortest 

travel time) to the user and is the least busy.  To determine the cache server that is most available to a 

user, content network providers make use of load-balancing technology to direct traffic to the 

least-loaded server.  By leveraging strategies of distributed caching, load balancing and request 

redirection systems, content is ensured to be served up in the most efficient manner based on user 

proximity and server load.  The end users (and by association, the content providers), as well as the 

ISP (Internet Service Provider), are benefited.   

Internet

CP: content provider, DC: data center

CP2 CP1 

DC of CP2 DC of CP1 

DC of CP2 DC of CP1

user user 

Internet

CP:content provider, CNP:content network provider

CP2 CP1 

CNP CNP 
user user

    (a)         (b) 

Fig. 1. (a) Traditional content providers have hosted their own content and managed their own Internet 

connections to run multiple data centers.  (b) As the demands of content distribution increase, content providers 

turn to content network providers to increase the performance and reliability of services and lower their total cost 

of ownership. 

1.2 Architecture of Content Networks 

Content providers are looking to the content network as a high-performance and reliable vehicle for 

delivering bandwidth and delay intensive content.  A content network (also called content distribution 

network or content delivery network) is a system, often an overlay network to the Internet, built for the 

high-performance and mission-critical service of contents.  It requires high service availability, fast 

response time, and cost-effective scalability to reach the broadest possible set of intolerant users.  At a 

minimum, it requires the following functional components that work together to accomplish these goals 

(see Fig. 2):  
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Internet

CP2 CP1 

CNP CNP 
user user 

distribution 

Internet

CP2 CP1 

CNP CNP 
user user

routing 

    (a)         (b) 

Internet

CP2 CP1 

CNP CNP 
user user 

delivery Internet

CP2 CP1 

CNP CNP 
user user

management 

    (c)         (d) 

Fig. 2.  (a) Content distribution service.  (b) Content routing service.  (c) Content delivery service.  (d) 

Content management service.  (CP = content provider, CNP = content network provider) 

Content distribution service to comprise a set of cache servers that cache content and work on behalf 

of a content provider's origin server  

Content routing service to bypass congested areas of the Internet by directing a user's request to the 

closest and most available cache server  

Content delivery service to deliver the best possible experience to users who are notoriously 

intolerant of response-time delays  

Content management service to refresh content and track user activity 

Finally, the accounting service is provided to measure, log and bill the content provider based on the 

amount of bandwidth consumed (also, to cross-bill one another for internetworking services).   

In past years, different content networks were introduced.  They were usually classified on the 

basis of their attributes in content aggregation and placement.  Content aggregation is a process of 

mapping contents to values in some value space and grouping them on the basis of their mapped 

values.  It can be "semantic" or "syntactic."  (Content networks that use semantic to distribute/route 

individual contents to content groups are called semantic content networks.)  After content 

aggregation, a piece of content or a content group is placed at the network node that is either a function 

of the content (called "content-sensitive") or independent of it (called "content-oblivious").  The 

placement strategy affects optimization of content routing and the size of routing tables.   

1.3 Peer-to-Peer Content Networks 

In conventional content networks, content is served from a special cache server at the network edge.  

This architecture is poor in system scalability.  Recently, the popularity of Napster and Gnutella (the 

preliminary of Peer-to-Peer file sharing programs) has made it clear that peer-to-peer (P2P) architecture 

will be one of the most important platforms of network applications in the future.  In a peer-to-peer 

content network as shown in Fig. 3, every user that receives a file would be available to serve it on to 

another user when new requests are received at the next time.  Demands on central servers can be 

further reduced if users can receive a particular file efficiently from other users who have the same file 

(or parts of the same file).  Such a serving-peer can be the central server of content provider, a cache 

server at ISPs, a caching proxy on near campus or the neighbor's computer in the next office.  The 

more computers that request the content, the more computers that are available to serve the content.  

This means smooth downloads for end users are less hampered by traffic congestion on the core 

Internet.  Additionally, since not every copy of a file is downloaded from central servers, content 

providers can reduce demands for bandwidth with lowered costs.  In ISPs, performing file distribution 

internally across their network boundaries can further enhance efficiency.  Peer-to-peer networks can 
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be "centralized" or "decentralized" in content routing.  A decentralized system (e.g., FreeNet and 

eDonkey) would have better scalability, however, it needs a good design of routing table.   

Internet

CP:content provider, CNP:content network provider

CP2 CP1 

CNPs
user user 

Fig. 3. In a peer-to-peer content network, a serving-peer can be the central server of content provider, a 

hardware-based server at ISP, a proxy server on near campus or the neighbor's computer in the next office.   

In this paper, we focus only on the multi-servers caching/streaming problem of multimedia delivery 

over P2P content networks.  This problem has both the biggest challenge and opportunity.  

Traditional Internet proxies consider only hypertext and image.  They have small size and can be 

entirely cached in the proxy.  However, the growing-popular multimedia contents have huge size and 

the serving-peers may provide only a limited storage space for caching.  It is impractical to cache 

them entirely and requires partitioning each of them into small portions.  As a multimedia content is 

VBR and requires guaranteed QoS, each serving-peer also needs a good delivery schedule for real-time 

streaming.  In this paper, some new technologies to enable cost-effective content delivery of 

streaming media are introduced.  Without addressing content indexing and routing, the proposed 

method can be applied on the multi-servers caching/streaming problem for different content networks.   

2 Problem Definition 

Notably, based on a list of predicted or reserved requests, we can automatically deliver contents at 

off-peak hours to fill in the troughs of bandwidth consumption.  Therefore, bandwidth usage over the 

day is smoothed out and peak bandwidth usage is thus reduced.  It lowers the cost content providers 

pay for every megabyte they distribute.  As deliveries happen automatically in the background when 

users are not using their machines, users do not have to tie up their computers during regular working 

hours with content downloads.  Actually, we can push a content through the relay cache form an 

on-demand cache that can deliver the content thereafter to whomever requests it, whenever they request 

it.  If there are many users requested the same content, the best delivery paths (or trees) can be 

identified to deliver digital media to end users with the minimum cost.  It is cost effective for content 

providers to deliver larger, higher-quality multimedia contents to broad audiences.  In this paper, we 

base on this service model to consider the multi-servers caching/streaming problem.   

2.1 Content Partitioning and Placement 

Multimedia delivery has the most challenge due to its large size and critical real-time requirement.   

Usually, a multimedia content f(.) can be defined as a sequence of data frames  

f(.) = { f(t) | t = 0, 1, …, n-1 }         (1) 

where f(t) is the data frame played at time t.  Its size is |f(.)| = t{ |f(t)| }.  Assume that there are m+1

peers suggested for caching (by the applied content indexing and routing scheme) as shown in Fig. 4.  

For each video f(.), we place a portion  

fk(.) = { fk(t) | t = 0, 1, …, n-1 } (for k = 0, 1, …, m)    (2) 

of video f(.) in peer k.  Its size is |fk(.)| = t{ |fk(t)| }.  Notably, fk(t) is just a portion of f(t) for any time 

t.  (The value fk(t) is the same as f(t) in conventional proxy caches where the entire content is stored.)  

In this paper, we define f(t) = { fk(t) | for k = 0, 1, …, m } and fp(t) fq(t)=  for p  q (there is no 

overlap between any two partitioning).   
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… f(t) 

f1(t)

f2(t) 

fm(t) 

f0(t) 
…

f*1(t)

f*2(t)

f*m*(t)

f*0(t)

Cluster 1 

Cluster 2 

Fig. 4.  In a system with lots of peers, we can place multiple copies of the multimedia content to different 

network clusters.  For each network cluster, a video f(.) is partitioned for placing into selected peers.   

The problem to decide fk(.) for the given constraints and cost functions (usually, the cache size 

and/or the network bandwidth) on each peer is called content partitioning and placement.  As the 

placed content may be migrated or replicated due to its usage after this step, it is also called initial

partitioning and placement.  While considering a system with lots of peers, we can try to place 

multiple copies of multimedia content to different network clusters.  It can improve performance and 

scalability of the system.  In this paper, we focus only on the initial partitioning and placement 

problem with one copy of multimedia content.  Partitioning models with vertical-cut and 

horizontal-cut are shown in Fig. 5.  The same idea can be extended to place multiple copies of 

multimedia content and to handle their migration/replication for load balance and fault tolerance.   

Vertical-Cut Model Peer 1

Peer 2

Peer 3

Horizontal-Cut Model

Fig. 5.  Partitioning models with vertical-cut and horizontal-cut are shown.   

2.2 Adaptive Smoothing with Rate-Availability 

Slight network delays may go almost unnoticed for static text-based Web page download.  

However, for a delay-sensitive multimedia application (such as entertainment services, gaming, live 

videoconferences and streaming broadcasts) extra steps must be taken to ensure QoS delivery.  In this 

paper, by monitoring the available bandwidth of each connection, an ASRA (Adaptive Smoothing with 

Rate-Availability) scheme is proposed.  Notably, the network bandwidth is shared by different 

traffics.  Therefore, the available rate of network is time-varying.  It can be represented by a rate 
availability function (RAF)  

zk(.) = { zk(t) | for all t }          (3) 

where zk(t) is the available rate of network between time t-1 and time t.  For supporting QoS delivery, 

the delivery schedule must guarantee that its allocated rate rk(.) satisfies 

zk(t) rk(t) at any time t.           (4) 

If the available rate of peer k is not enough to delivery content in real-time, the system can 

automatically re-select servers to request more data from the peer with the best throughput.  

Comparing to conventional schemes that didn't consider RAF in traffic smoothing (as shown in Fig. 

6(a)), our approach can support more requests with less re-selection of servers.  A simple example is 

shown in Fig. 6(b).   
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rk(t)

zk(t)

rk(t)

zk(t)

    (a)       (b) 

Fig. 6.  (a) Conventional schemes didn't consider RAF in traffic smoothing.   

(b) Traffic smoothing with RAF can support more requests with less re-selection of servers.    

The proposed scheme can aggregate underutilized network capacity through time shifting to 

streamlined bandwidth consumption.  As servers' requested data are adaptive smoothing by their 

available rates in real time, we can avoid points of congestion on the Internet.  Furthermore, if one of 

the servers shuts down or stops responding, we can automatically requests the rest of the data from 

other servers.  It can provide end users with fault tolerance.  By adapting client behavior to the 

demand pattern of servers, the proposed system can scale limitlessly with the growth of the Internet.  

It is a scalable solution for network applications with high performance benefit.   

2.4 Other Issues 

In this paper, to assure high reliability, high performance and efficient bandwidth usage, we let each 

computer connect to many servers simultaneously.  Therefore, a particular file can be obtained by 

requesting its small parts from different servers.  As shown in Fig. 7, when the client peer 0 requests 

video f(.), it can interact with other peers to delivery parts of their cached portions gk(.) directly.  (Our 

system uses relay servers in content distribution but not in content delivery.)   

… f(t) 

f0(t) 

B

f1(t) 

f2(t) 

fm(t) 

r1(t) 

r2(t) 

rm(t) 

… f(t) 

f0(t) 

B

f1(t)

f2(t) 

fm(t) 

relay server 

Fig. 7. When the client peer 0 requests video f(.), it interacts with other peers to receive parts of their cached 

portions directly.  There is no relay server in delivery.    

Notably, if the requested content has no migration or replication after its initial placement, we can 

guarantee f(t) = { fk(t) | for k = 0, 1, …, m } and fp(t) fq(t)=  for p  q.  They imply that gk(.) = fk(.)
for all k.  However, due to the changes of client behavior, the system needs to migrate and replicate 

the cached content to improvement its performance.  There may have some overlaps in cached content 

between two serving-peers.  Without wasting bandwidth in delivery, delivered content gk(t) can be 

just a portion of fk(t) and gp(t) gq(t)=  for p  q.  For supporting jitter-free playback,  

f(t) = { gk(t) | for k = 0, 1, …, m }.        (5) 

Let rk(.) be a feasible transmission schedule of peer k (for k = 0, 1, …, m) and B is the available buffer 

size of the client peer.  To prevent buffer overflow and underflow, we have  

t-1{ gk(t) } + B t{ rk(t) } t{ gk(t) }.        (6) 

Without loss of generality, we can assume that r0(t) = g0(t) = f0(t) where the local cached data f0(t) can 

be served by a very high rate.  Fig. 8 shows a simple example of the server selection problem.  The 

original content can be distributed by either horizontal-cut or vertical-cut partitioning.   
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Peer 1

Peer 2

Peer 3

Peer 4

selected as 
serving-peers 

Server-1

SSeerrvveerr--22

SSeerrvveerr--33

SSeerrvveerr--44

…

selected as
serving-peers

Fig. 8.  A simple example of the server selection problem is shown.  The original content can be distributed 

by either horizontal-cut or vertical-cut partitioning.   

Both end users and content providers want to be certain that the network will be available at all 

times despite congestion or failures that may occur on individual peers.  The system must contain 

fault tolerance and load balance capabilities to guarantee reliable QoS delivery.  To prevent "peer 

spoofing," the system must ensure that only authorized peers are able to issue control commands to 

their contents.  Moreover, only authorized content is delivered and that it cannot be corrupted or 

substituted during delivery.  Peers are allowed to use digital-right management systems to control 

their distribution and playback rights.  It would be better to work with existing browsers and players 

on the desktop without re-encoding.   

3 Proposed Algorithm 

3.1 Content Partitioning and Placement 

 Without loss of generality, we assume that there are two serving-peers said local peer and remote 

peer.  We store a portion of video in local peer and the rest in remote peer.  For potential users, the 

reliability of local peer is higher than that of remote peer with less error rate and high rate availability.  

If more data are cached at the local peer, one could allocate less bandwidth to transport video from 

remote peer.   Therefore, not only playback jitter but also network bandwidth can be reduced.  It 

increases the system scalability to support more users.  

When a request of V is presented, video frames f(.) would be sequentially delivered to the client.  

The time period starts from the transporting to the playing of the video is called the startup latency D

(where the unit of time applied through this paper is called frame-time -- the time period between two 

contiguous frames).  A simple example is given as shown in Fig. 9 where V = { 3, 6, 2, 1, 6 } and D = 

1.  Given the peak rate R, we denote the portion of video frame f(i) cached in the local peer by 

f(i)[c(i)].  The total size of video cached is 1

0
)(

n

i
icC .  Without loss of generality, we assume that 

frame f(i) is just displayed at time i.  At any time i, the client consumes f(i) for playback and receives 

(at most) R (bits) new data from the remote peer.  As shown in Fig. 9, we have R = 3, c(0) = c(2) = 

c(3) = c(4) = 0 and c(1) = 3.   
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f(1)

c(1)

R

f(0)

f(2)

f(3)

D

f(4)

Fig. 9.  The portion of the video frame f(i) cached is denoted as f(i)[c(i)] where c(i) is the cached size.    

 Due to the compression technology applied, frames in an MPEG video will not be decoded 

unless their related I-frames are correctly received and decoded.  The playback quality depends on the 

percentage of I-frame data received.  In a video V, the total amount of I-frame data cached in the local 

peer is CI = 
1
0 ))()((n

i iciu  < C.  The function u(i) = 1 if f(i) is an I-frame; otherwise, u(i) = 0.  

We can assume that the loss rate of the local peer ep,c = 0 and the loss rate of the remote peer es,p >> 0.  

Therefore, we can roughly measure the playback quality by the ratio (es,p*(|V|I-CI)+CI):C.  |V|I is the 

total amount of I-frame data.  Increasing the value of CI/C (the percentage of I-frame data cached in 

the local peer) would decrease the probability of video decoding error and thus increase display quality.   

 In this paper, we propose an algorithm to resolve the proposed problem.  Our algorithm starts 

from the traditional traffic smoothing algorithm.  The intermediate result is a transmission schedule 

with a sequence of transmission segments.  Assume that the k-th transmission segment is Sk = (Rk, Lk)

where Rk is the transmission rate and Lk is the time length.  As the example shown in Fig. 9, we have 

two transmission segments S0 = (4.5, 2) and S1 = (3, 3).  Given a bandwidth R, the size of video 

requested for caching in transmission segment Sk = (Rk-R)*Lk if the given bandwidth R < Rk.

Otherwise, Sk = 0.  As the cache size requested in each transmission segment can be computed 

independently, the correction of the above equation can be proved easily.  Notably, the curve shown in 

Fig. 9 is convex.  However, the union of transmission segments may be concave while a small client 

buffer is introduced (see Fig. 10).  It is not difficult to prove that the above equation is also correct for 

that case.  

f(1)

(4.5-2)*2=5R=2

f(0)

f(2)

f(3)

f(4)

(3-2)*3=3

Fig. 10.  A concave case of transmission segments to shown the cache size requested in the local peer.  

Now, we can propose an algorithm to carefully utilize the available cache size in the local peer to 

reduce the network bandwidth required in the remote peer.  Therefore, we can support as many users 

as possible.  A detail description of the proposed algorithm is shown as follows. 

Algorithm: MRP (Minimum-Rate Partitioning) 

Use the traffic smoothing algorithm to decide the transmission segments Sk = (Rk, Lk) for k = 0 to m.  It 

takes O(n) in computation.  

Sort these transmission segments by bandwidth requested Rk. The sequence of segments obtained S'k = 

(R'k, L'k) where  R'k >= R'k+1.   

Let S'm+1 = (0, 0), L = 0, and C' = C

for k = 0 to m do { 

   L=L+L'k
   if  ((R'k - R'k+1)*L > C') then return(R = R'k - C'/L)

   C' = C' - (R'k - R'k+1)*L

}   
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if (C' > 0) then return(R=0) /* download and play */ 

Given the network bandwidth, we can use the OC algorithm to compute the possible value of c(i) for 

all i.  The time complexity is O(n).   

Algorithm: OC (optimal caching) 

1. i = -D;  b(i)=0;  /* startup latency D, buffer occupancy b(i) */ 

2. repeat  

3. i = i + 1; b(i) = min{ B, b(i-1) + R - f(i-1) };  

4. if (f(i) b(i)) then c(i) = 0;  /* QoS constraints */

5. else {  /* buffer is underflow */ 

6.  c(i) = f(i) - b(i);  b(i) = b(i) + c(i) = f(i); 

7. Cache f(i)[c(i)] in the proxy;

8. }

9. until (i > (n-1)); 

We can also apply the OSC algorithm to exchange the original cached data in the local peer f(i)[x]

(where x <= c(i)) with a previous I-frame. Therefore, the I-frame data cached in the local peer is 

maximized. 

ALGORITHM: OSC (optimal selective caching) 

OSC is constructed by rewriting step 3 and step 7 of OC: 

Rewriting step 3 of OC algorithm as following: 

3.A i = i + 1;  b(i) = min{ B, b(i-1) + R - f(i-1) }; [i] = B-b(i); 

3.B if ( [i] < U) then U= [i]; 

3.C if (f(i) is an I-frame) then { 

3.D  (i) = f(i); Ui = [i]; Ui-(I-distance) = U;

3.E Add the un-cached I-frame f(i) to I-list;
3.F }

Rewriting step 7 of OC algorithm as following: 

7.A repeat /* select the most I-frame */

7.B Get the next un-cached I-frame f(w) from I-list;  

7.C U=min{ U, Uw}; x=min{ (w), U, c(i)};

7.D c(w) =c(w)+ x; (w) = (w) – x;  c(i) = c(i) – x; U = U – x; 

7.E Cache f(w)[x] in the proxy;

7.F until (c(i)=0 or U=0 or I-list = NULL); 

7.G Cache f(i)[c(i)] in the proxy; 

7.H if ( (w) > 0) then { 

7.I Uw = U;  

7.J Add the un-cached I-frame f(w) to I-list;

7.K }

3.2 Adaptive Smoothing with Rate-Availability 

There are multi-servers in delivery.  Without loss of generality, we can select any one of them to show 

our algorithm.  In the selected connection, we define the transmission schedule G(.) as a function that 

cumulates the amount of data received at the client.  As the playback of video is assumed to be started 

at t = 0, d is the playback delay if the start time of the transmission schedule is -d.  Assume that video 

data are transmitted by rate r(t) between time t-1 and time t.  The transmission schedule can be 

represented by a integration function of transmission rate r(.) as follows.  

G(t) = 

i = -d

t
r(i)

The peak bandwidth of the network channel allocated for transmission is r = max{ r(t) | t }.  

According to the above formulation, G(t) represents the amount of data sent by the server up to time t.

Assume that there is no transmission error and the network delay is zero.  G(t) can also represent the 

amount of data received by the client up to time t.  At a client, G(t) and F(t) represent the cumulated 

data received and consumed up to time t respectively.  b(t) = G(t) - F(t), called the buffer occupancy, 

would be the amount of transmitted data temporarily stored in the client buffer at time t.  To avoid 

jitter in playback, a transmission schedule must be ahead of its playback schedule (such that b(t)  |ft|

for any time t and the client buffer would not be underflow for playback).  The minimal client buffer 

size required for supporting QoS delivery and playback is b = max{ b(t) | t }.  Because b(t)  |ft|
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for any time t and b max{ |ft| }, the required buffer size b is no smaller than the maximum frame size, 

and is not necessary to be larger than the size of video |V|.   

Note that, given a limited buffer size, it results in loss of data if the transmission schedule sends too 

many data to the client buffer at the same time.  Such an overflow condition should be avoided also in 

designing a feasible transmission schedule.  In this paper, a transmission schedule is said to be 

feasible if it has no buffer overflow or underflow.  Its upper bound H(.) can be computed by H(t) = 

min{ |V|, F(t-1) + b }.  For any time t, the value of G(t) must be not smaller than its playback 

schedule F(t).  Moreover, G(t) must be not larger than its upper bound H(t).  Given the playback 

schedule F(.) of a stored video V, different approaches were proposed to construct its feasible 

transmission schedule G(.) in past years.  In previous works, the performance of a transmission 

schedule is generally measured by its playback delay time, client buffer size, and bandwidth 

requirement.  However, the bandwidth requirement they measured is the maximum network 

bandwidth required during transmission (called peak rate).  A user request is admitted if its peak rate 

is smaller than the available bandwidth of the current network.  

Notably, the network bandwidth is shared by different traffics.  Therefore, the available rate of 

network is time-varying.  It can be represented by a rate availability function (RAF) z(.) where z(t) is 

the available rate of network between time t-1 and time t.  For supporting QoS delivery, the 

transmission schedule G(.) must guarantee that its allocated rate r(t) is not over the available rate z(t) at 

any time t.  RAF has been applied in admission control while a transmission schedule G(.) with 

allocated rates r(.) was given.  Although the peak rate r = max{ r(t) | t } may have been minimized, 

they did not consider available rates z(t) for all time t in constructing transmission schedules.  

Therefore, the allocated rate r(t) may be larger than its available rate z(t) at time t.  Previous methods 

those base on peak rate, instead of RAF, to construct transmission schedules would waste system 

resources in allocation.  Therefore, the obtained G(t) is not a feasible transmission schedule while 

RAF is considered.  The system may require extending its delay time to provide G(t) a guaranteed 

service.   

In this paper, we consider RAF in constructing transmission schedule directly to for fully 

utilizing available resources to serve as many users as possible.  Given a stored video V = { f0, f1, ..., 

fn-1 } and RAF of network z(.), the amounts of minimal resource required for guaranteeing jitter-free 

playback can be decided by the following algorithm.   

ALGORITHM: Lazy-RAF   

 // INPUT:  the playback schedule F(.) and  RAF of network z(.)

 // OUTPUT: the transmission schedule L(.) with transmission rates r(.),  

 // the minimal client buffer size b and the minimum playback delay d

L(n-1) = |V| = F(n-1); t = n-1;

while ( L(t) > 0) do { 

  t = t –1;  L(t) = max{ F(t), L(t+1) – z(t+1) }; 

}

Initialize d = -t, b = 0 and r(i) = 0 for all i;

for t = -d+1 to n-1 do { 

r(t) = L(t)-L(t-1); b = max{ b, L(t)-F(t-1) };

 } 

As the maximal available rate z(t) is applied in each time t, the video data are transmitted and stored 

into the client buffer as late as possible.  Therefore, the minimal buffer occupancy L(t)-F(t-1) can be 

determined at any time t under guaranteed QoS.  It is not difficult to prove that the minimal client 

buffer size b and the minimum playback delay d can be achieved.  Besides, given any transmission 

schedule P(.) with RAF z(.), we have L(t) P(t) for any time t. L(.) is called the minimal 

z(.)-bounded transmission schedule.  
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Lemma-1: L(.) is the minimal z(.)-bounded transmission schedule.  It has the minimal buffer 

size and initial delay for all z(.)-bounded transmission schedules. 

Proof:   

(1) Suppose the contrary and let P(.) be a z(.)-bounded transmission schedule, for which, there 

exists a time index x such that L(x) > P(x).  Let y be the smallest time index that satisfies x < 

y and L(y) = F(y) = L(x) + { z(i) ; for i = x+1 to y }.  (The value y is existed.  At least, we 

have the initial value L(n-1) = F(n-1).)  Follow the procedure steps of algorithm, L(y) = F(y)

implies L(y+1) - z(y+1) F(y).  As P(.) is z(.)-bounded, the relation P(y) P(x) + { z(i) ; 

for i = x+1 to y } is true.  We have P(x) + { z(i) ; for i = x+1 to y } < L(x) + { z(i) ; for i = 

x+1 to y }.  That implies P(y) < F(y).  The underflow condition of the client buffer is 

occurred and P(.) is not a feasible transmission schedule.  It is a contradiction and L(.) is the 

minimal z(.)-bounded transmission schedule.   

(2) Since L(.) is the minimal z(.)-bounded transmission schedule, it sends the minimal amount of 

data to the client buffer for guaranteeing jitter-free playback.  At any time t, we have L(t)

Q(t) where Q(.) is any other z(.)-bounded transmission schedule.  As buffer occupancies 

have the relation L(t)-F(t-1) Q(t)-F(t-1).  It implies that L(.) has the minimal buffer size 

(the required buffer size max{ L(t)-F(t-1) | t } max{ Q(t)-F(t-1) | t }).   

(3) At time 0, we have L(0) Q(0).  Given the available rate z(0), we have L(-1) = max{ 0, 

L(0) - z(0) } max{ 0, Q(0) - z(0) } Q(-1).  Repeat the above step, 0 < L(-d+1)

Q(-d+1) and 0 = L(-d) Q(-d).  As any other z(.)-bounded transmission schedule Q(.) has 0 

< Q(-d+1) and 0 Q(-d), the transmission schedule L(.) has the minimal initial delay for all 

z(.)-bounded transmission schedules.   

The lemma is proved.            Q.E.D.

In Lazy-RAF, the minimum requirements in buffer size and playback delay are decided for the given 

video V = { f0, f1, ..., fn-1 } and RAF z(.).  While a user request is presented, we can compare the 

available buffer size B (the available playback delay D) and the minimum buffer size b (the minimum 

playback delay d) to make the admission.   If the client buffer size B  b and the playback delay D d

are given, we can construct a simple transmission schedule by the following algorithm.   

ALGORITHM: Traffic-smoothing with RAF [stored video] 

// F(.) is the cumulative playback function.  

// H(t) = F(t) + b where b is the available buffer.  

// Ls(.) in L(.) is the minimal RAF-bounded transmission schedule started from s.

// As(.) is the maximal RAF-bounded transmission schedule started from s.

// G(.) is the cumulative transmission function.  

Initial the start point (s, G(s)) = (-d, 0).  

Initialize the test end-point at time t = -d and tA = tL = -d+1.  

Initialize the peak bandwidth r_max = rs = 0.  

ss = s; // the start point of the current window 

As(s) = G(s); 

Repeat { 

t = t + 1; 

RL(t) = (Ls(t) - G(s)) / (t - s); // the lowest test rate at the time t.

   As(t) = min{ H(t)-, As(t-1) + z(t) };  

RA(t) = (As(t) - G(s)) / (t - s); // the highest test rate at the time t.   
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if (RA(tA) < RL(t)) { // => The segment is up-bounded by As(tA)

    rs = RA(tA); G(tA) = As(tA);

    output the transmission segment: < G(s), G(tA), rs >; // r[s:tA] = rs

    s = t = tA ; tA = tL = s + 1; r_max = max{ r_max, rs }; 

As(t) = G(t);  // -- this line can be deleted 

} else if (RL(tL) > RA(t)) { // => The segment is low-bounded by Ls(tL)

    rs = RL(tL); G(tL) = Ls(tL);

    output segment: < G(s), G(tL), rs >;   // r[s:tL] = rs

    s = t = tL ; tA = tL = s + 1; r_max = max{ r_max, rs };  

As(t) = G(t);

} else { // -- can try the next frame directly.

if (RA(tA) >= RA(t)) { tA = t; }

if (RL(tL) <= RL(t)) { tL = t; }

  } 

} until (t is n-1);  // the last frame 

rs = max{ min{ r_max, RA(tA) }, RL(tL) } // keep min peak rate & max utilization 

e = s + (|V|-G(s)) / rs  ; G(e) = |V|;  

output segment: < G(s), G(e), rs > // ==> the end of this schedule

4 Experiments 

In this section, we test the proposed algorithm by different video streams: "Star War" and "Jurassic 

Park".  Experiment results are evaluated based on the following performance indices.   

Bandwidth (the peak transmission required) = R

Bandwidth utilization = ( 1

0
)(

n

i
if - 1

0 )(n
i ic ) / (R * (n+D-1))  

Percentage of data cached in the local peer = 1
0 )(n

i ic  / 1
0 )(n

i if

Table 1 summaries the values of parameters applied in our experiments.  Results show that our 

algorithm is effective in not only the network bandwidth required but also the utilization of network 

bandwidth.  

Table. 1.  Values of parameters used in our experiments. 

Parameters Values 

Startup Latency 1 frame-time 

Buffer Size (Client) 200KB 

To reduce the cost and improve the system scalability, the network bandwidth allocated for serving 

each video request must be precisely controlled. Under the same startup latency and client buffer, a 

good caching algorithm should carefully utilize the available cache size to reduce as many network 

bandwidth required as possible.  In Fig. 11, the network bandwidth required for different percentages 

of data cached in the local peer is presented. Experiments show that the network bandwidth required is 

increasing when the percentage of data cached in the local peer is decreasing.   
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Fig. 10.  The network bandwidth required for different percentages of data cached. (a) Star Wars. (b) Jurassic 

Park. 

 As the available network bandwidth is limited, we must utilize it sufficiently and avoid wasting it 

at any time. In a distributed multimedia system, high bandwidth utilization implies that lots of video 

requests can be served at the same time. In Fig. 11, we show the utilization of network bandwidth 

achieved. As our proposed algorithms utilize the network bandwidth allocated by an aggressive 

pre-fetching algorithm, the bandwidth utilization obtained is efficient. Given the same cache size in the 

local peer, the percentage of I-frames cached in the local peer can be applied to measure the 

smoothness of video playback.  
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Fig. 11.  Utilization of allocated bandwidth. (a)Star War. (b) Jurassic Park.  

5 Conclusion 

In this paper, we investigate some key technology issues of content delivery of streaming 

multimedia, which has both the biggest challenge and opportunity.  Different from small-sized 

hypertext and image, the growing-popular multimedia content has huge size.  It is impractical to be 

cached entirely and requires to be partitioned into small portions for delivery from multi-servers.  As a 

multimedia content is VBR (variable-bit-rate) and requires guaranteed QoS (quality-of-service), each 

serving-peer needs a good delivery schedule for real-time streaming.  We focus only on the 

multi-servers caching/streaming problem of multimedia delivery.  Without addressing content 

indexing and routing, the proposed method can be applied for different content networks.   
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