
TR-IIS-05-023

Real-Time Scheduling by Cascading

Ray-I Chang, Ruei-Chuan Chang, Jan-Ming Ho

December 2005 || Technical Report No. TR-IIS-05-023
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2005/tr05.html

Real-Time Scheduling by Cascading

Ray-I Chang

Department of Engineering Science

National Taiwan University

Taipei, Taiwan, ROC

Ruei-Chuan Chang1

Institute of Inform Science

Academia Sinica

Taipei, Taiwan, ROC

Jan-Ming Ho

Institute of Inform Science

Academia Sinica

Taipei, Taiwan, ROC

Abstract*

Real-time scheduling is important for modern computer systems to support increasingly popular

multimedia applications. In this paper, we consider a simple video server that receives the commands

from clients and sends the video data without error occurred. In the video server, there is one parent

thread for dealing with the arrival video tasks. After receiving a new video task from a client, a new

child thread is created to determinate the real-time requirements for disk access. Based on the results

of traffic smoothing and the sizes of disk blocks, the child thread sends real-time disk requests to the

system. Then, a multi-segment cascade scheme is applied to implement the real-time disk scheduling

routine on UnixWare operating systems. Both the simulation results and the implementation results

are presented for comparisons. The same idea may be extended to handle the real-time scheduling

problem with both video server and video proxy [30].

1 He is also with Dept of Computer Science, National Chiao Tung University, HsinChu, Taiwan, ROC.

1. Introduction

In this paper, we consider a simple video server that receives the commands from clients and sends

the video data without error occurred. As shown in Fig. 1, given a media stream, a suitable network

transmission schedule [5] can be determined to minimize the required buffer and bandwidth.

Buffer
Management

Viewer
Scheduling

Traffic
Shaping

Data
Replica

Disk Scheduling

Network
Scheduling

Disk Layout

Data Analyzing

Fig. 1. The workflow of multimedia system design.

In the video server, there is one parent thread for dealing with the arrival video tasks. After receiving

a new video task from a client, a new child thread is created to determinate the real-time requirements

for disk access. A real-time disk task Ti can be denoted as (ri, di, ai, bi) where ri is the release time, di

is the deadline, ai is the track location and bi is the data capacity [28]. The release time and deadline

are decided from the network transmission schedule to prevent buffer overflow and underflow [5]. In

this paper, based on the results of traffic smoothing [5] and the sizes of disk blocks [8], a sequence of

real-time disk tasks is generated as follows.

video frame

disk block x

release time
for accessing
disk block x

deadline for
accessing
disk block x

(a)

New
release time

Server buffer constraint

New
deadline

Server buffer size

(b)

Fig. 2. A sequence of real-time disk tasks is generated.

(a) Without server buffer constraint. (b) With server buffer constraint.

In real-time disk scheduling (RTDS), we consider a set of real-time disk tasks T = {T0, T1,..., Tn}

where n is the number of tasks. A RTDS algorithm is defined as a process Z to construct a schedule

TZ(0)TZ(1)...TZ(n) to maximize disk throughput under real- time constraints [15]. Notably, in RTDS,

tasks need to be served not only with high throughput but also with guaranteed timing requirements

[2]. To satisfy real-time constraints, the task's start-time should not be earlier than its release time and

the task's fulfill- time should not be later than its deadline.

Although SCAN [7] is used in many operating systems for disk scheduling [1], it does not consider

timing constraints [9] and is not suitable for serving real-time disk tasks [6]. The EDF

(earliest-deadline- first) method is good for scheduling real-time tasks under the assumption of i.i.d.

and exponential service times [10-11]. However, the service time for each task in RTDS depends on

the initial read/write head position as well as the scheduling results. When Ti is just served after task

Tj, the disk-head should move from the track location aj to track location ai to retrieve the data block

with size bi. The start-time is ei = max{ ri, fj } and the fulfill- time is fi = ei + cj,i. Note that the

execution time cj,i of task Ti depends not only on the disk parameters [26-27] but also on the schedule

result -- the pre-specified sequence TjTi. Since the independent assumption no longer holds, the

employment of EDF results in poor data throughput.

In these years, different RTDS methods are proposed to combine the seek-optimizing scheme and

the real- time scheduling scheme [18-23]. In this paper, we focus on the implementation of RTDS

functions on a UnixWare 2.01 operating system by a multi-segment cascade scheme. The RTDS

algorithm considered for implementation is based on BFI (best- fit- insertion) with some modifications.

Disk::sd01 Tape::st01 CD-ROM::sc01 WORM::sw01

KKKeeerrrnnneeelll

TTaarrggeett DDrriivveerr

SSCCSSII DDeevv iiccee IInntt eerr ffaaccee ((SSDDII))

HHoosstt BBuuss AAddaappttoorr ((HHBBAA))

SDI

adsa dtp dcd mcis

HHHaaarrrdddwwwaaarrreee (((DDDeee vvviiiccceee +++ CCCooonnntttrrrooolllllleee rrr)))

...

...

Fig. 3. The basic architecture of the portable device interface.

2. Disk Service Routines on UnixWare

In this paper, our implementations are worked on portable device interface (PDI) [25] of a SCSI

hard disk driver. It takes the advantage that our implementation can be easily ported to other systems.

In this section, we provide a high- level description of PDI. As shown in Fig. 3, the PDI architecture

consists of three logical layers (from kernel to hardware units): the target drivers, the SCSI device

interface (SDI), and the host bus adapter (HBA) drivers. Generally, a hardware unit contains a

physical device and a controller card. PDI bases on this architecture to break a device driver into a

device-specific portion (said the target driver) and a controller-specific portion (said the HBA driver).

Connections between these two portions are formed by SDI to provide a consistent and complete

interface.

Target Drivers: The major functions of target drivers are to accept I/O tasks from kernel, and

construct jobs to be sent to the HBA controllers. It is the interface between kernel and PDI. Fig. 3

shows four types of target drivers: sd01, st01, sc01, and sw01. They are related to hard disks, tapes,

CD-ROM devices, and WORM (write-once-read-many) devices, respectively. Note that target drivers

deal with only the device-specific aspects of the related hardware. They tackle the details of operating

the physical device, and control the device behavior to decide what actions are needed for passed

tasks. For example, the hard disk sd01 driver does not only understand how to perform operations

onto a hard disk. Besides, it also imposes the data layout standard of hard disk used for various

operating systems. On UnixWare, the main dominant data structure of the sd01 target driver is the

"disk" structure. It contains information pertaining to a specific hard disk drive, such as the job queue,

the state information, the VTOC (volume-table-of-content), the partition data, and the bad block

information. For each physical disk configured in the system, there should be one disk structure.

SCSI Device Interface (SDI): SDI can be viewed as a pipeline to connect the target driver and the

related HBA driver as shown in Fig. 3. (SDI is originated from an interface for supporting a variety of

SCSI devices. However, the current SDI can support both SCSI and non-SCSI devices.) The major

controlling data structures of SDI are the table of HBA entries (HBA_tbl) and the table of target

driver entries (equipped device table, EDT). These two tables provide a set of interfaces that enable

target drivers to issue commands to related HBA drivers. On the other hand, HBA drivers are allowed

to respond to target drivers by SDI.

Host Bus Adapter (HBA): The HBA drivers handle the controller specific aspects of the device

operations. Through the HBA_tbl table with well-defined interfaces, entry points into the related

HBA driver can be easily accessed from SDI. Fig. 3 presents four different types of controllers, adsa,

dcd, mcis, and dpt. They are corresponding to Adaptec SCSI-2742AT, directly-coupled device, IBM

SCSI, and distributed processing technology, respectively. The basic functions of HBA are to send a

set of commands to the controllers to monitor the processing flow of job. For example, considering

the reading of a data block from a hard disk, the target driver will determine which actual physical

sector on the hard disk will be read. When the actual physical sector provided by the target driver is

applied, the HBA driver can program the disk controller registers and issues the read operation to

generate the I/O interrupt. Whenever the completion of the operation is signaled, the operation result

(whether successful or not) is passed back. Note that, in HBA, each task job is addressed to one of the

connected hardware devices. The addressing scheme is different for different types of controllers

specified. For example, in a SCSI controller, a single adapter can control up to 7 SCSI targets. Each

of the SCSI targets may consist of up to 8 logical unit devices. Thus, a complete SCSI address would

consist of the controller, the target and the logical unit number (LUN). This three-dimensional address

(controller, target, LUN) is applied for determining the correct logic unit of a SCSI controller.

As our algorithms are designed for real-time scheduling of hard disks, our descriptions focus on

the target driver sd01. Through sd01, the most common path is the sd01strategy() routine as shown

in Fig. 3. Based on the related disk structure of the input task, the size and position of the input task is

validated by the sd01strat0() routine. At first, the bad blocks are re-mapped by the

sd01ck_badsec() routine. Then, by calling the sd01gen_sjq() routine, a data structure "job" for this

input task job is allocated. For the creation of bus task, the sd01strat1() routine is called to take the

buffer header to this job structure. At last, the job structure is linked onto the job queue of the disk

structure and sent to the SDI driver by the sd01send() routine.

By the sdi_send() routine, the target drivers pass the tasks linked onto the job queue to SDI. Note

that, although the target drivers need only the type of operation to be performed (for example, read a

block from a hard disk), the HBA drivers will need to know the specific details of how a command is

issued to the related controller (for example, the format of SCSI commands). SDI serves PDI in one

critical role to act as a "router" to ensure that each disk task from the target driver is passed to the

correct HBA driver. Furthermore, responses of the HBA drivers are also ensured to return to the

correct target drivers. While a task is sent to SDI, the controller specific data structure is created. In

this paper, the applied HBA driver is a representative controller adsa for the Adaptec SCSI-2742AT

driver. In the case of the adsa HBA driver, the adsagetblk() routine is called to allocate a SCSI task

block (srb). This routine is necessary for passing the controller dependent arguments to the related

controller. With this srb structure, SDI initializes a pointer to link back to the job structure and passes

the task to the related HBA driver.

The most common path through the adsa HBA driver is the adsasend() routine. In adsasend(),

the HBA driver first queues the received srb's on the logical unit queue scsi_lu by adsa_putq().

Then, the adsa_next() routine is called to operate the disk scheduling algorithm on scsi_lu and get

the first task in queue. On UnixWare, there are three types of srb's: SCB (the SCSI command block,

such as the read/write commands), ISCB (the immediate SCB, such as the resuming and the

suspending of the hard disks), and SFB (the SCSI function block, such as the block reassigning of the

hard disks). They have the priorities: SFB > ISCB > SCB. As shown in Fig. 4, different type of srb is

put to different section of the scsi_lu queue. With the highest priority, SFB's are immediately

executed in the order they are received. If there is no SFB, the earliest ISCB is selected for executing.

They are presented with the FIFO order.

srb scsi_lu
queue

... srb srb
(SCSI Request

Block)

scsi_lu

SSSFFFBBB IIISSSCCCBBB SSSCCCBBB
(SCSI Function Block) (Immediate SCB) (SCSI Control Block)

Fig. 4. Different types of SCSI task blocks are put into different sections.

3. Multi-Segment Cascading

In this paper, a multi-segment cascade scheme is proposed to support RTDS on UnixWare. Our

implementation is worked on the PDI architecture. It is portable for different operating systems. In

our implementation, only the adsa_putq(), adsa_schedule() and adsa_getq() routines are

modified to consider two additional srb types: time-constrained SCB (TSCB) and rejected SCB

(RSCB). Excepting the extension of the job data structure with additional real-time parameters

(release time and deadline), no data structure is changed. Descriptions about our adsa_putq(),

adsa_schedule() and adsa_getq() routines shown as follows.

SFB ISCB SCB

Rejected tasks

adsa_putq()

srb (SCSI Request Block)

RRRSSSCCCBBB TTTSSSCCCBBB

(Time-constrained SCB) (Rejected SCB)

srb type ?
Signaling the
rejection

Fig. 5. The new adsa_putq() routine.

adsa_putq() -- Our adsa_putq() routine follows the priorities SFB > ISCB > TSCB > SCB to

put srb's into different sections of scsi_lu (see Fig. 5). Note that ISCB and SFB are used only for the

reconfiguration of hard disks (i.e. disk failure, mount or unmount). Whenever ISCB and SFB are

presented, the disk configuration is changed and all the disk requests based on the old disk

configuration are invalid. On UnixWare, an exception handler routine is provided to serve these

special tasks. Since ISCB and SFB will not happen in normal applications, we can focus on the

scheduling of normal disk tasks such as TSCB (real- time) and SCB (non-real-time).

adsa_schedule() -- Based on the multi-segment cascade scheme, we implement the BFI

approach on UnixWare with some modifications to schedule both real-time and non-real-time disk

tasks. As shown in Fig. 6, there are three segments in the TSCB section: the RTDS (real-time disk

scheduling) segment, the EDF segment, and the FIFO segment. Whenever a new real-time disk task is

presented, Our adsa_putq() routine first append it to the end of the FIFO segment. As the original

processing flow of adsa_schedule(), tasks in the FIFO segment are selected for scheduling. In our

adsa_schedule() routine, tasks in the FIFO segment are scheduled into the EDF segment by the

adsa_schedule2e() routine. Then, tasks in the EDF segment are scheduled into the RTDS segment

by the adsa_schedule2r() routine. The processing flow is like a cascade as shown in Fig. 6. Note

that, under a hard real-time constraint, the input task may not be successfully scheduled. If a request is

rejected, we need to send a message to the client. However, this signaling task may take some system

resources that are critical for the task schedule routine and the disk access routine. In this paper, we

mark these rejected real-time tasks as non-real-time and use a low-priority RSCB queue to store them

(see Fig. 5). Note that, although the non-real-time tasks have a lower priority than real-time tasks,

they still need to be served as soon as possible (if the system resources are available). This problem is

considered in our adsa_getq() routine.

adsa_putq()

adsa_schedule2e()

adsa_schedule2r()

adsa_getq()

Schedule FIFO tasks into the EDF segment

Get the first task in the RTDS segment

Put tasks into the FIFO segment

RTDS segment EDF segment FIFO segment

Schedule EDF tasks into the RTDS segment

EDF segment FIFO segment

EDF segment FIFO segment

EDF segment FIFO segment

RTDS segment

RTDS segment

RTDS segment

Concurrent processes

Fig. 6. The processing flow of a multi-segment cascade scheme.

adsa_getq() -- Since the original adsa_getq() routine simp ly gets the first job in the scsi_lu

queue for execution, non-real-time tasks may be starved. This routine cann't fairly support

non-real-time tasks. To avoid the building of a specialist real-time system (that is isolated from the

standard application environment), we need to design a new adsa_getq() routine for fairly

supporting both real-time and non-real-time requests. In our adsa_getq() routine, we make a

competition between the first SCB job and the first RTDS job. The first SCB job is selected for

service if all the real-time requirements of the RTDS jobs are guaranteed after executing this SCB job.

For example, tasks T0T1...Tn are in the RTDS segment and Tx is the first job in the SCB section. We

want to decide if TxT0T1...Tn is a feasible schedule. When the pre-computed maximum tardiness [19]

is applied, the above decision can be easily determined. The same idea can be applied for selecting a

RSCB job to signal its rejection. Since the non-real-time tasks can be served as soon as possible, our

scheme can fairly support real-time and non-real-time applications.

In modern computer architectures, the disk device (for the data access) and the CPU (for the

schedule process) can be executed concurrently if they do not read/write the same data. The data

throughput can be improved by efficiently concurring the I/O processes and the CPU processes. In

our implementation, a multi-segment cascade scheme is proposed to reduce the wasted time in

exclusive locks. Based on our scheme, we have exclusive locks between each two cascaded routines

(adsa_putq(), adsa_schedule2e(), adsa_schedule2r() and adsa_getq()) that may read/write the

same data (the FIFO, EDF, and RTDS segments, respectively). The exclusive lock for the disk I/O of

adsa_getq() is only on adsa_schedule2r(). It is much smaller than the entire adsa_schedule()

routine. When adsa_putq() and adsa_schedule2e() are executed, disk I/O can be executed without

locks.

Note that the waste time for I/O exclusive lock (called I/O lock time) depends only on the schedule

operations used in adsa_schedule2r(). Since BFI needs to test all rescheduling points in the RTDS

segment, we can replace it by a first- fit- insertion (FFI) policy. These two methods have similar

performances in disk throughput [22]. However, the average I/O lock time for FFI is only half of that

for BFI. Besides, since adsa_putq() gets only the first task in queue for execution, we can further

reduce the I/O lock time by locking only the first task in queue as shown in Fig. 7. The same idea can

be used in other routines. Thus, the exclusive section contains only one comparison operation. The

I/O lock time can be ignored. Based on our processing flow, the I/O process is idled only when the

task queue is empty. There is no waste time for the I/O process.

 adsa_schedule2r()

adsa_getq() & I/O

lock lock

Fig. 7. An example of our exclusive lock scheme.

4. Implementation Results

For handling these real-time disk tasks, we use a multi-segment cascade scheme to implement a

RTDS algorithm. Our implementation runs on a platform with Pentium-75 PCs under UnixWare 2.01.

The applied DASD device is Seagate ST-31200N hard disks [17] with Adaptec SCSI-2742AT control

cards [14]. A disk array system with D identical disk devices is considered. For each disk, a 200/D

Kbytes/s bandwidth is required for supporting one MPEG-I stream. In our experiments, the disk

layout strategy applied is a striping technique. It can also be applied to the round-robin data

placement or other disk layout schemes [12-13] with minor modifications. For fair comparisons, we

assume that the disk tasks are randomly arrived and uniformly distributed over the disk without data

replication and task migration [8]. The same task sets are presented to different solution approaches.

We also test the system with different arrival rates and different block sizes. Both the throughput

improvement and the bandwidth utilization are compared. Our measurements show that our algorithm

takes short disk service time. Furthermore, it also obtains high utilization in the disk bandwidth. Note

that the required service time of a disk task should include not only the data access time but also the

task control time (i.e. the I/O lock time). To guarantee the timing requirements, the approximated

service time may larger than the required service time. We use the worst-case service time as the

service time model.

To evaluate the system performance, we consider different block sizes B (KB, the read data) for

disk access. Each test case is computed by 100 examples, and each example contains 600/B tasks.

Therefore, the total requirements of disk bandwidth are the same 600 KB/s for different test cases. Fig.

8 shows the average throughput improvements with different block sizes B. To simplify the effect of

DMA, the value of block size is at most 60 KB (the maximum DMA size). We measure the

improvement by comparing the obtained disk throughput with the best-known SCAN-EDF method.

Experiments show that we have a high improvement in disk throughput when the number of input

task is large. Although the utilization of disk bandwidth is decreasing as shown in Fig. 9, the

decreasing rate is not large. There is 40% bandwidth utilization when serving 30 disk tasks. Our

approach is more suitable than SCAN-EDF in handling large size RTDS problems.

Num. of Tasks 10 15 30
Block Size (KB) 60 40 20

Improvement (%)

5
10

15

20

25

30

implementation
results

simulation
results

35

Fig. 8. Compare the improvement of disk throughput.

 Bandwidth Utilization (%)

20

40

60

80

100

Num. of Tasks 10 15 30
Block Size (KB) 60 40 20

The ideal case [17]:
only when the disk is on-the-fly
reading the contiguous blocks

Fig. 9. Compare the utilization of disk bandwidth.

Note that our implementation result is always better than our simulation result. For example, with

30 input tasks, our approach can obtain 34% improvement in implementation. However, our

simulation result has only a 27% improvement. The capital reason for this difference is the

over-estimation of the approximated service time. Another reason is probably the effect of internal

disk cache. Current disk devices usually have an internal cache (usually, to store the data at the same

track or at the neighboring tracks under the disk head). On UnixWare, whenever an srb is selected to

send to the hardware controller, a new controller command block (the ccb data structure) is allocated

to point to this srb. The scatter/gather capability of controller is considered while allocating the ccb's.

The adsa HBA driver determines whether multiple srb's can be combined to take further advantage.

If multiple srb's can be combined together, the adsa HBA driver would build a scatter/gather list. In

this case, a controller command block (the ccb data structure) is allocated to point to the

scatter/gather list. Otherwise, a single srb is constructed as a ccb structure. Thus, if the data required

for a disk task is just at the internal cache, the required service time can be very short. Note that the

internal cache of hard disk has no effect if the block size is large enough. As shown in Fig. 8, the

simulation result is closing to the implementation result when the block size is increasing.

5. Conclusion

In this paper, we consider only an array of homogeneous disks. However, modern video server is

usually a hierarchy system with disks and tertiary mass storages. It would be interesting to consider a

heterogeneous and hierarchy storage system. This system needs to consider not only real-time

scheduling on different storages but also server scalability and data availability. It also contains the

task sequence problem for read/write data consistence. In the paper, we consider only hard real-time

tasks. However, in a soft real-time application [4], tasks may be batched [3] with deferred deadlines

[29]. Our future work is to extend our system to handle soft real-time requirements. Besides, we also

need more studies on the effect of internal disk cache and DMA to yield a more accurate service time

model. The same idea may be extended to handle the real-time scheduling problem with both video

server and video proxy [30] (as shown in the following figure).

Server

Viewer
Scheduling

Data
Replica

Disk Scheduling

Network
Scheduling

Disk Layout

Data Analyzing

Proxy

Data
Replica

Disk Scheduling

Fig. 10. The workflow of multimedia system design.

References

[1] J.L. Peterson and A. Silberschatz, Operating System Concepts, 2nd Edition, Addison-Wesley,

1985.

[2] D.P. Anderson, Y. Osawa, and R. Govindan, "A file system for continuous media," ACM Trans.

Comp. Systems, vol. 10, no. 4, pp.311-337, 1992.

[3] A. Dan, D. Sitaram and P. Shahabuddin, "Scheduling policies for an on-demand video server

with batching," Proc. ACM Multimedia Conf., pp. 15-22, 1994.

[4] D. B. Terry and D. C. Swinehart, "Managing stored voice in the etherphone system," ACM Trans.

Computer Systems, vol. 6, no. 1, pp. 3-27, 1988.

[5] Ray-I Chang, Meng-Chang Chen, Ming-Tat Ko, Jan-Ming Ho, "Schedulable Region for VBR

Media Transmission with Optimal Resource Allocation and Utilization," Information Sciences,

Vol. 141, Issue 1-2, pp. 61-79, 2002.

[6] D. P. Anderson, "Metascheduling for continuous media," ACM Trans. Computer Systems, vol. 11,

no. 3, pp. 226-252, 1993.

[7] T.S. Chen, W.P. Yang, and R.C.T. Lee, "Amortized analysis of some disk scheduling algorithms:

SSTF, SCAN, and N-StepSCAN," BIT, vol.32, pp.546-558, 1992.

[8] Y. C. Wang, S. L. Tsao, R. I. Chang, M. C. Chen, J. M. Ho and M. T. Ko, "A fast data placement

scheme for video server with zoned-disks," Proc. SPIE Multimedia Storage and Archiving

System , pp. 92-102, 1997.

[9] D.J. Gemmell, H.M. Vin, D.D. Kandlur, P.V. Rangan, L.A. Rowe, "Multimedia storage servers:

a tutorial," IEEE Computers, pp. 40-49, 1995.

[10] T. H. Lin and W. Tarng, "Scheduling periodic and aperiodic tasks in hard real-time computing

systems," Proc. SIMMetrics Conf., pp. 31-38, 1991.

[11] J. P. Lehoczky, "Fixed priority scheduling of periodic task sets with arbitrary deadlines," Proc.

Real-Time Systems Symp., pp. 201-212, 1990.

[12] S. Chen and M. Thapar, "I/O channel and real-time disk scheduling for video servers,"

NOSSDAV, pp.113-122, 1996.

[13] J. Yee and P. Varaiya, "Modeling and performance of real-time disk access policies", Computer

Communications, vol. 18, no. 10, November 1995.

[14] AHA-2740a Series Technical Specifications, Adaptec, Inc.

[15] P. V. Rangan and H. M. Vin, "Efficient storage techniques for digital continuous multimedia,"

IEEE Trans. Knowledge and Data Engineering, vol. 5, no. 4, pp. 564-573, 1993.

[16] M. Chen, D. D. Kandlur, and P. S. Yu, "Optimization of the grouped sliding scheduling (GSS)

with heterogeneous multimedia streams," Proc. ACM Multimedia Conf., pp. 235-242, 1993.

[17] Specifications for ST-32100N, Seagate Technology, Inc.

[18] R. Steinmetz, "Multimedia file systems survey: approaches for continuous media disk

scheduling," Computer Communication, vol.18, no.3, pp.133-144, 1995.

[19] R. I. Chang, W. K. Shih and R. C. Chang, "A new real- time disk scheduling algorithm and its

application to multimedia systems," IEEE IDMS, 1998.

[20] A.L.N. Reddy and J. Wyllie, "Disk scheduling in a multimedia I/O system," Proc. ACM

Multimedia Conf., pp. 225-233, 1993.

[21] A.L.N. Reddy and J. Wyllie, "I/O issues in a multimedia system," IEEE Computers, pp. 69-74,

March 1994.

[22] C.L. Chen, "A Design and Implementation of Continuous Media Storage Server," Mater Thesis,

CIS, NCTU, Taiwan, ROC.

[23] C.L. Liu and J.W. Layland, "Scheduling algorithms for multiprogramming in a hard real-time

environment," Journal of ACM, pp. 46-61, 1973.

[24] R.I. Chang, W.K. Shih and R.C. Chang, "Real-time disk scheduling for multimedia applications

with a deadline- modification-scan scheme," Real-Time Systems, 1999.

[25] The Design of the PDI Subsystem for SVR4ES/MP, UNIX System Lab., Inc.

[26] C. Ruemmler and J. Wilkes, "An introduction to disk drive modeling," IEEE Computers, pp.

16-28, March 1994.

[27] R. P. King, "Disk arm movement in anticipation of future requests," ACM Trans. Computer

Systems, vol. 8, no. 3, pp. 214-229, 1990.

[28] A. Mok, "Fundamental design problems for the hard real-time environment," MIT Ph.D.

Dissertation, Cambridge, MA, 1983.

[29] W. K. Shih, J. W. S. Liu, and C. L. Liu, "Modified rate monotone algorithm for scheduling

periodic jobs with deferred deadlines," Tech. Report, Univ. of Illinois, Urbana-Champaign, CS,

Sept. 1992.

[30] Shin-Hung Chang, Ray-I Chang, Jan-Ming Ho, and Yen-Jen Oyang, "An Optimal Cache

Algorithm for Streaming VBR Video over a Heterogeneous Network," Computer

Communications, Vol.28, Issue 16, Pages 1852-1861, 2005.

