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Abstract* 

Real-time scheduling is important for modern computer systems to support increasingly popular 

multimedia applications. In this paper, we consider a simple video server that receives the commands 

from clients and sends the video data without error occurred. In the video server, there is one parent 

thread for dealing with the arrival video tasks. After receiving a new video task from a client, a new 

child thread is created to determinate the real-time requirements for disk access. Based on the results 

of traffic smoothing and the sizes of disk blocks, the child thread sends real-time disk requests to the 

system. Then, a multi-segment cascade scheme is applied to implement the real-time disk scheduling 

routine on UnixWare operating systems. Both the simulation results and the implementation results 

are presented for comparisons. The same idea may be extended to handle the real-time scheduling 

problem with both video server and video proxy [30]. 

                                                                 
1 He is also with Dept of Computer Science, National Chiao Tung University, HsinChu, Taiwan, ROC.   
 



 

1. Introduction 

In this paper, we consider a simple video server that receives the commands from clients and sends 

the video data without error occurred. As shown in Fig. 1,  given a media stream, a suitable network 

transmission schedule [5] can be determined to minimize the required buffer and bandwidth.  
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Fig. 1. The workflow of multimedia system design. 

 

In the video server, there is one parent thread for dealing with the arrival video tasks. After receiving 

a new video task from a client, a new child thread is created to determinate the real-time requirements 

for disk access. A real-time disk task Ti can be denoted as (ri, di, ai, bi) where ri is the release time, di 

is the deadline, ai is the track location and bi is the data capacity [28]. The release time and deadline 

are decided from the network transmission schedule to prevent buffer overflow and underflow [5]. In 

this paper, based on the results of traffic smoothing [5] and the sizes of disk blocks [8], a sequence of 

real-time disk tasks is generated as follows.  
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Fig. 2. A sequence of real-time disk tasks is generated.  

(a) Without server buffer constraint. (b) With server buffer constraint. 

 

In real-time disk scheduling (RTDS), we consider a set of real-time disk tasks T = {T0, T1,..., Tn} 

where n is the number of tasks. A RTDS algorithm is defined as a process Z to construct a schedule 

TZ(0)TZ(1)...TZ(n) to maximize disk throughput under real- time constraints [15]. Notably, in RTDS, 

tasks need to be served not only with high throughput but also with guaranteed timing requirements 

[2]. To satisfy real-time constraints, the task's start-time should not be earlier than its release time and 

the task's fulfill- time should not be later than its deadline.   



 

Although SCAN [7] is used in many operating systems for disk scheduling [1], it does not consider 

timing constraints [9] and is not suitable for serving real-time disk tasks [6]. The EDF 

(earliest-deadline- first) method is good for scheduling real-time tasks under the assumption of i.i.d. 

and exponential service times [10-11]. However, the service time for each task in RTDS depends on 

the initial read/write head position as well as the scheduling results. When Ti is just served after task 

Tj, the disk-head should move from the track location aj to track location ai to retrieve the data block 

with size bi. The start-time is ei = max{ ri, fj } and the fulfill- time is fi = ei + cj,i. Note that the 

execution time cj,i of task Ti depends not only on the disk parameters [26-27] but also on the schedule 

result -- the pre-specified sequence TjTi. Since the independent assumption no longer holds, the 

employment of EDF results in poor data throughput.  

In these years, different RTDS methods are proposed to combine the seek-optimizing scheme and 

the real- time scheduling scheme [18-23]. In this paper, we focus on the implementation of RTDS 

functions on a UnixWare 2.01 operating system by a multi-segment cascade scheme. The RTDS 

algorithm considered for implementation is based on BFI (best- fit- insertion) with some modifications.  
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Fig. 3. The basic architecture of the portable device interface. 

 



 

2. Disk Service Routines on UnixWare  

In this paper, our implementations are worked on portable device interface (PDI) [25] of a SCSI 

hard disk driver. It takes the advantage that our implementation can be easily ported to other systems. 

In this section, we provide a high- level description of PDI. As shown in Fig. 3, the PDI architecture 

consists of three logical layers (from kernel to hardware units): the target drivers, the SCSI device 

interface (SDI), and the host bus adapter (HBA) drivers. Generally, a hardware unit contains a 

physical device and a controller card. PDI bases on this architecture to break a device driver into a 

device-specific portion (said the target driver) and a controller-specific portion (said the HBA driver). 

Connections between these two portions are formed by SDI to provide a consistent and complete 

interface.  

Target Drivers: The major functions of target drivers are to accept I/O tasks from kernel, and 

construct jobs to be sent to the HBA controllers. It is the interface between kernel and PDI. Fig. 3 

shows four types of target drivers: sd01, st01, sc01, and sw01. They are related to hard disks, tapes, 

CD-ROM devices, and WORM (write-once-read-many) devices, respectively. Note that target drivers 

deal with only the device-specific aspects of the related hardware. They tackle the details of operating 

the physical device, and control the device behavior to decide what actions are needed for passed 

tasks. For example, the hard disk sd01 driver does not only understand how to perform operations 

onto a hard disk. Besides, it also imposes the data layout standard of hard disk used for various 

operating systems. On UnixWare, the main dominant data structure of the sd01 target driver is the 

"disk" structure. It contains information pertaining to a specific hard disk drive, such as the job queue, 

the state information, the VTOC (volume-table-of-content), the partition data, and the bad block 

information. For each physical disk configured in the system, there should be one disk structure.  



 

SCSI Device Interface (SDI): SDI can be viewed as a pipeline to connect the target driver and the 

related HBA driver as shown in Fig. 3. (SDI is originated from an interface for supporting a variety of 

SCSI devices. However, the current SDI can support both SCSI and non-SCSI devices.) The major 

controlling data structures of SDI are the table of HBA entries (HBA_tbl) and the table of target 

driver entries (equipped device table, EDT). These two tables provide a set of interfaces that enable 

target drivers to issue commands to related HBA drivers. On the other hand, HBA drivers are allowed 

to respond to target drivers by SDI.  

Host Bus Adapter (HBA): The HBA drivers handle the controller specific aspects of the device 

operations. Through the HBA_tbl table with well-defined interfaces, entry points into the related 

HBA driver can be easily accessed from SDI. Fig. 3 presents four different types of controllers, adsa, 

dcd, mcis, and dpt. They are corresponding to Adaptec SCSI-2742AT, directly-coupled device, IBM 

SCSI, and distributed processing technology, respectively. The basic functions of HBA are to send a 

set of commands to the controllers to monitor the processing flow of job. For example, considering 

the reading of a data block from a hard disk, the target driver will determine which actual physical 

sector on the hard disk will be read. When the actual physical sector provided by the target driver is 

applied, the HBA driver can program the disk controller registers and issues the read operation to 

generate the I/O interrupt. Whenever the completion of the operation is signaled, the operation result 

(whether successful or not) is passed back. Note that, in HBA, each task job is addressed to one of the 

connected hardware devices. The addressing scheme is different for different types of controllers 

specified. For example, in a SCSI controller, a single adapter can control up to 7 SCSI targets. Each 

of the SCSI targets may consist of up to 8 logical unit devices. Thus, a complete SCSI address would 

consist of the controller, the target and the logical unit number (LUN). This three-dimensional address 

(controller, target, LUN) is applied for determining the correct logic unit of a SCSI controller.  



 

As our algorithms are designed for real-time scheduling of hard disks, our descriptions focus on 

the target driver sd01. Through sd01, the most common path is the sd01strategy() routine as shown 

in Fig. 3. Based on the related disk structure of the input task, the size and position of the input task is 

validated by the sd01strat0() routine. At first, the bad blocks are re-mapped by the 

sd01ck_badsec() routine. Then, by calling the sd01gen_sjq() routine, a data structure "job" for this 

input task job is allocated. For the creation of bus task, the sd01strat1() routine is called to take the 

buffer header to this job structure. At last, the job structure is linked onto the job queue of the disk 

structure and sent to the SDI driver by the sd01send() routine.  

By the sdi_send() routine, the target drivers pass the tasks linked onto the job queue to SDI. Note 

that, although the target drivers need only the type of operation to be performed (for example, read a 

block from a hard disk), the HBA drivers will need to know the specific details of how a command is 

issued to the related controller (for example, the format of SCSI commands). SDI serves PDI in one 

critical role to act as a "router" to ensure that each disk task from the target driver is passed to the 

correct HBA driver. Furthermore, responses of the HBA drivers are also ensured to return to the 

correct target drivers. While a task is sent to SDI, the controller specific data structure is created. In 

this paper, the applied HBA driver is a representative controller adsa for the Adaptec SCSI-2742AT 

driver. In the case of the adsa HBA driver, the adsagetblk() routine is called to allocate a SCSI task 

block (srb). This routine is necessary for passing the controller dependent arguments to the related 

controller. With this srb structure, SDI initializes a pointer to link back to the job structure and passes 

the task to the related HBA driver.  

The most common path through the adsa HBA driver is the adsasend() routine. In adsasend(), 

the HBA driver first queues the received srb's on the logical unit queue scsi_lu by adsa_putq(). 

Then, the adsa_next() routine is called to operate the disk scheduling algorithm on scsi_lu and get 



 

the first task in queue. On UnixWare, there are three types of srb's: SCB (the SCSI command block, 

such as the read/write commands), ISCB (the immediate SCB, such as the resuming and the 

suspending of the hard disks), and SFB (the SCSI function block, such as the block reassigning of the 

hard disks). They have the priorities: SFB > ISCB > SCB. As shown in Fig. 4, different type of srb is 

put to different section of the scsi_lu queue. With the highest priority, SFB's are immediately 

executed in the order they are received. If there is no SFB, the earliest ISCB is selected for executing. 

They are presented with the FIFO order.  
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Fig. 4. Different types of SCSI task blocks are put into different sections.  

 

3. Multi-Segment Cascading  

In this paper, a multi-segment cascade scheme is proposed to support RTDS on UnixWare. Our 

implementation is worked on the PDI architecture. It is portable for different operating systems. In 

our implementation, only the adsa_putq(), adsa_schedule() and adsa_getq() routines are 

modified to consider two additional srb  types: time-constrained SCB (TSCB) and rejected SCB 

(RSCB). Excepting the extension of the job data structure with additional real-time parameters 

(release time and deadline), no data structure is changed. Descriptions about our adsa_putq(), 

adsa_schedule() and adsa_getq() routines shown as follows.  
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Fig. 5. The new adsa_putq() routine.  

 

adsa_putq() -- Our adsa_putq() routine follows the priorities SFB > ISCB > TSCB > SCB to 

put srb's into different sections of scsi_lu (see Fig. 5). Note that ISCB and  SFB are used only for the 

reconfiguration of hard disks (i.e. disk failure, mount or unmount). Whenever ISCB and SFB are 

presented, the disk configuration is changed and all the disk requests based on the old disk 

configuration are invalid. On UnixWare, an exception handler routine is provided to serve these 

special tasks. Since ISCB and SFB will not happen in normal applications, we can focus on the 

scheduling of normal disk tasks such as TSCB (real- time) and SCB (non-real-time).  

adsa_schedule() -- Based on the multi-segment cascade scheme, we implement the BFI 

approach on UnixWare with some modifications to schedule both real-time and non-real-time disk 

tasks. As shown in Fig. 6, there are three segments in the TSCB section: the RTDS (real-time disk 

scheduling) segment, the EDF segment, and the FIFO segment. Whenever a new real-time disk task is 

presented, Our adsa_putq() routine first append it to the end of the FIFO segment. As the original 

processing flow of adsa_schedule(), tasks in the FIFO segment are selected for scheduling. In our 

adsa_schedule() routine, tasks in the FIFO segment are scheduled into the EDF segment by the 

adsa_schedule2e() routine. Then, tasks in the EDF segment are scheduled into the RTDS segment 



 

by the adsa_schedule2r() routine. The processing flow is like a cascade as shown in Fig. 6. Note 

that, under a hard real-time constraint, the input task may not be successfully scheduled. If a request is 

rejected, we need to send a message to the client. However, this signaling task may take some system 

resources that are critical for the task schedule routine and the disk access routine. In this paper, we 

mark these rejected real-time tasks as non-real-time and use a low-priority RSCB queue to store them 

(see Fig. 5). Note that, although the non-real-time tasks have a lower priority than real-time tasks, 

they still need to be served as soon as possible (if the system resources are available). This problem is 

considered in our adsa_getq() routine.  
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Fig. 6. The processing flow of a multi-segment cascade scheme.  

 

adsa_getq() -- Since the original adsa_getq() routine simp ly gets the first job in the scsi_lu 

queue for execution, non-real-time tasks may be starved. This routine cann't fairly support 

non-real-time tasks. To avoid the building of a specialist real-time system (that is isolated from the 



 

standard application environment), we need to design a new adsa_getq() routine for fairly 

supporting both real-time and non-real-time requests. In our adsa_getq() routine, we make a 

competition between the first SCB job and the first RTDS job. The first SCB job is selected for 

service if all the real-time requirements of the RTDS jobs are guaranteed after executing this SCB job. 

For example, tasks T0T1...Tn are in the RTDS segment and Tx is the first job in the SCB section. We 

want to decide if TxT0T1...Tn is a feasible schedule. When the pre-computed maximum tardiness [19] 

is applied, the above decision can be easily determined. The same idea can be applied for selecting a 

RSCB job to signal its rejection. Since the non-real-time tasks can be served as soon as possible, our 

scheme can fairly support real-time and non-real-time applications.  

In modern computer architectures, the disk device (for the data access) and the CPU (for the 

schedule process) can be executed concurrently if they do not read/write the same data. The data 

throughput can be improved by efficiently concurring the I/O processes and the CPU processes. In 

our implementation, a multi-segment cascade scheme is proposed to reduce the wasted time in 

exclusive locks. Based on our scheme, we have exclusive locks between each two cascaded routines 

(adsa_putq(), adsa_schedule2e(), adsa_schedule2r() and adsa_getq()) that may read/write the 

same data (the FIFO, EDF, and RTDS segments, respectively). The exclusive lock for the disk I/O of 

adsa_getq() is only on adsa_schedule2r(). It is much smaller than the entire adsa_schedule() 

routine. When adsa_putq() and adsa_schedule2e() are executed, disk I/O can be executed without 

locks.  

Note that the waste time for I/O exclusive lock (called I/O lock time) depends only on the schedule 

operations used in adsa_schedule2r(). Since BFI needs to test all rescheduling points in the RTDS 

segment, we can replace it by a first- fit- insertion (FFI) policy. These two methods have similar 

performances in disk throughput [22]. However, the average I/O lock time for FFI is only half of that 



 

for BFI. Besides, since adsa_putq() gets only the first task in queue for execution, we can further 

reduce the I/O lock time by locking only the first task in queue as shown in Fig. 7. The same idea can 

be used in other routines. Thus, the exclusive section contains only one comparison operation. The 

I/O lock time can be ignored. Based on our processing flow, the I/O process is idled only when the 

task queue is empty. There is no waste time for the I/O process.  

 

  adsa_schedule2r() 

adsa_getq() & I/O 

lock lock 

 

Fig. 7. An example of our exclusive lock scheme.  

 

4. Implementation Results 

For handling these real-time disk tasks, we use a multi-segment cascade scheme to implement a 

RTDS algorithm. Our implementation runs on a platform with Pentium-75 PCs under UnixWare 2.01. 

The applied DASD device is Seagate ST-31200N hard disks [17] with Adaptec SCSI-2742AT control 

cards [14]. A disk array system with D identical disk devices is considered. For each disk, a 200/D 

Kbytes/s bandwidth is required for supporting one MPEG-I stream. In our experiments, the disk 

layout strategy applied is a striping technique. It can also be applied to the round-robin data 

placement or other disk layout schemes [12-13] with minor modifications. For fair comparisons, we 

assume that the disk tasks are randomly arrived and uniformly distributed over the disk without data 

replication and task migration [8]. The same task sets are presented to different solution approaches. 

We also test the system with different arrival rates and different block sizes. Both the throughput 

improvement and the bandwidth utilization are compared. Our measurements show that our algorithm 

takes short disk service time. Furthermore, it also obtains high utilization in the disk bandwidth. Note 



 

that the required service time of a disk task should include not only the data access time but also the 

task control time (i.e. the I/O lock time). To guarantee the timing requirements, the approximated 

service time may larger than the required service time. We use the worst-case service time as the 

service time model.  

To evaluate the system performance, we consider different block sizes B (KB, the read data) for 

disk access. Each test case is computed by 100 examples, and each example contains 600/B tasks. 

Therefore, the total requirements of disk bandwidth are the same 600 KB/s for different test cases. Fig. 

8 shows the average throughput improvements with different block sizes B. To simplify the effect of 

DMA, the value of block size is at most 60 KB (the maximum DMA size). We measure the 

improvement by comparing the obtained disk throughput with the best-known SCAN-EDF method. 

Experiments show that we have a high improvement in disk throughput when the number of input 

task is large. Although the utilization of disk bandwidth is decreasing as shown in Fig. 9, the 

decreasing rate is not large. There is 40% bandwidth utilization when serving 30 disk tasks. Our 

approach is more suitable than SCAN-EDF in handling large size RTDS problems.  
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Fig. 8. Compare the improvement of disk throughput.  
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Fig. 9. Compare the utilization of disk bandwidth.  

 

Note that our implementation result is always better than our simulation result. For example, with 

30 input tasks, our approach can obtain 34% improvement in implementation. However, our 

simulation result has only a 27% improvement. The capital reason for this difference is the 

over-estimation of the approximated service time. Another reason is probably the effect of internal 

disk cache. Current disk devices usually have an internal cache (usually, to store the data at the same 

track or at the neighboring tracks under the disk head). On UnixWare, whenever an srb is selected to 

send to the hardware controller, a new controller command block (the ccb data structure) is allocated 

to point to this srb. The scatter/gather capability of controller is considered while allocating the ccb's. 

The adsa HBA driver determines whether multiple srb's can be combined to take further advantage. 

If multiple srb's can be combined together, the adsa HBA driver would build a scatter/gather list. In 

this case, a controller command block (the ccb data structure) is allocated to point to the 

scatter/gather list. Otherwise, a single srb is constructed as a ccb structure. Thus, if the data required 

for a disk task is just at the internal cache, the required service time can be very short. Note that the 

internal cache of hard disk has no effect if the block size is large enough. As shown in Fig. 8, the 

simulation result is closing to the implementation result when the block size is increasing.  

 



 

5. Conclusion 

In this paper, we consider only an array of homogeneous disks. However, modern video server is 

usually a hierarchy system with disks and tertiary mass storages. It would be interesting to consider a 

heterogeneous and hierarchy storage system. This system needs to consider not only real-time 

scheduling on different storages but also server scalability and data availability. It also contains the 

task sequence problem for read/write data consistence. In the paper, we consider only hard real-time 

tasks. However, in a soft real-time application [4], tasks may be batched [3] with deferred deadlines 

[29]. Our future work is to extend our system to handle soft real-time requirements. Besides, we also 

need more studies on the effect of internal disk cache and DMA to yield  a more accurate service time 

model. The same idea may be extended to handle the real-time scheduling problem with both video 

server and video proxy [30] (as shown in the following figure).  
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Fig. 10. The workflow of multimedia system design. 
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