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Abstract

Curvature constraint is an essential constraint for smooth turning because of the physical limi-
tation of vehicles on lateral acceleration during turning. In this research, we present three practical
curvature-constrained smooth turning scenarios for autonomous vehicle maneuvering scenarios: ordi-
nary turn, lane change on straight road, and lane change in roundabout. For each scenario, instead
of using concatenated path segments of lower-order curves, like cubic Bézier curves, we use the equiv-
alent 7th-degree Bézier curves of simplified η3-splines to design smooth uni-directional turning paths.
The scenarios serve well to illustrate that various curvature-constrained turning paths of 7th-degree
Bézier form can be generated successfully through flexible selections of suitable parameter values by
the user or an iterative-search-and-verify process to explore the feasible parameter set in a more intu-
itive and computationally simpler manner. Mathematical inductions and examples are given in each
scenario, and the plots of the relationship between maximum curvature and the assigned parameter
show how our methods work.
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1 Introduction

Safety benefits expected by the automated driving systems are supported by fast and efficient online trajectory
planning. A simple smooth trajectory generation method is therefore a desirable feature. To attain efficiency and
flexibility of path planning, the a priori chosen path primitives that meet boundary conditions and smoothness
requirements can be employed to allow easy adaptation to complex environments and unexpected events.

These requirements therefore constitute certain type of path planning problem where curvature constraint is
more important to be taken into account. Though, there are various algorithms and types of path primitives that
take curvature profile into consideration, however, some of them are not kinematically feasible like visibility graphs.
For problems with tougher requirements such as lane change between two parallel lanes or within roundabout,
curvature affects directly the shape of the path, allowable velocity and normal acceleration, and lets the velocity
should be slower on path segments with larger curvature than with small curvature. Therefore, an appropriate
path for tracking and control should be considered with smaller variation of curvature. For generating smooth,
kinematically feasible and safe trajectory which is taken by the vehicle on the road with as low computation (fast)
as possible, we demand it by real-time safe operation of practical scenarios such as autonomous vehicles, and
urban driving in complex section of the route. With these conditions, spline interpolation is often a preferred
option of parametrized polynomial trajectory primitives since the boundary conditions and smoothness that are
consistent with the vehicle dynamics are encoded in the splines. Since G2 continuous paths can result in jerky
vehicle motion, to ensure driving comfort, G3 continuity of the path to be followed by the vehicle is required.
With all these conditions met above, curves, with curve parametrization ranging from splines, to cubic or quintic
polynomials, to cubic spirals, and clothoids are popular to applications to perform the trajectory generation.

Trajectories based on parametrized polynomials with the closed-form path representation can shorten the
planning time and need very little memory to meet real-time requirements. The reason is that the derivatives of
parametric polynomials are also polynomials whose coefficients depend linearly on the coefficients of the trajec-
tory so that the trajectory generation based on parametric polynomials can be reduced to the determination or
optimization of finite parameters to enhance the performance.

Among the parametric polynomial curves used in practical scenarios such as urban driving, Bézier curves
are one of the most well-known, popular, and extensively used parametric curves which have pleasant properties
such as smoothness and convex hull. Since in complex section of the route, the trajectory is required to be light
and fast computing, the Bézier curve which is based on polynomials and interpolated by its control points thus
requires low computation time and very little memory for real-time trajectory generation and is the best choice.
By enforcing the convex hull of the chosen control points not intersect obstacles, the Bézier path constructed from



the control points will be inside the convex hull and therefore collision-free. The smoothness of Bézier curves
guarantees that the path equation is continuous, including its first and second-order derivatives. Therefore, we
can just easily assign the control points to generate a smooth curve. In trajectory planning, some papers use
Bézier curves to design the path in the scenario of lane change [1][2][3] and in roundabout path planning [4][5].
Path planning algorithms, like RRT, use Bézier curves to smooth the jagged path [6][7][8]. However, the curvature
and curvature derivative of Bézier curves are nonlinear functions of control points and their derivatives. It is hard
to design high-order Bézier curves complying with curvature and curvature derivative constraints.

Note, depending on the smoothness requirement, trajectory generation with curve parametrization (path prim-
itives ) using different types of curves, ranging from splines, to cubic, quartic, quintic polynomials, to curvature-
defining curves such as clothoids and cubic spirals. are proposed. To attain efficiency and flexibility of path or
trajectory planning, the a priori chosen path primitives that meet boundary conditions and smoothness require-
ments are particularly useful. For further path computational efficiency, it is desirable to reduce the DoFs of a
path primitive whenever possible. A common approach to trajectory planning is polynomial due to its design
simplicity. Trajectory based on polynomials needs low computation time and very little memory , thus suited
well for real-time applications. However, high order (more than 5) polynomial also has more coefficients to be
determined, and complicated curvature expression , thus more computationally expensive . It has not yet been
extensively studied in trajectory planning with some exceptions [16][8].

For smoothing sharp corner, curvature–continuous and bounded curvature path is generated based on concate-
nation of two cubic degree Bézier curves [22]. Quartic Bézier curve was proposed to generate a G2 (continuous-
curvature) trajectory with curvature and velocity constraints [17]. Only 3 free parameters are required to deter-
mine the 5 control points defining the quartic Bézier curve.

A continuous-curvature curvature-constrained path computed by CC-steer is composed by tangential line
segments, circular arcs and clothoid arcs with closed -form curvature expression [18]. However, lack of closed-
form path expression of cc-steer makes the path computation and following can be achieved only approximately.
A single interpolating polynomial path, called η3-spline, was proposed for a path with continuous-curvature
derivative [18].

A flexible approach was the concatenation of multiple path segments, which may be different, connected
with smoothness requirement. Bi-elementary path based on clothoid in combination with arc was proposed for
lane change on curved road with small curvature [19]. This leads to additional computational effort for joining
the different segments. This work [20] proposed a cubic B-spline based continuous curvature (G2) curvature-
constrained forward-backward path generation method, with small curvature derivative discontinuity.

Piazzi et al.[9] invented a kind of 7th-order curve called η3-splines. η3-splines help us design paths easily as we
only need to assign the boundary conditions, i.e. the position, direction, curvature, and derivative of curvature of
endpoints and a vector called η vector which contains 6 path-defining parameters to adjust the path. Since the
configurability of the curve is very flexible but results in a huge search space and causes unacceptable executing
time, we can reduce the DOFs to 2 to save the computation time. η3-splines of that kind are called simplified
η3-splines. In our previous research[10], we found the relation between simplified η3-splines and 7th-order Bézier
curves. With this relation, simplified η3-splines can be transformed into Bézier curves. As a result, a simplified
η3-spline can be seen as a curve that combines both the benefits of η3-splines and Bézier curves, i.e. the simplicity
of design from η3-splines and the collision-free detection method by finding convex hull from Bézier curves. We
also presented some applications for the conversion method in our previous works[10][11].

In the practical aspect, curves need to fulfill the physical limits of vehicles, such as velocity, acceleration, and
curvature limit. Many authors discuss how to constraint curvature with all kinds of curves. Choi et al. [12] gave
the explicit solution for maximum curvature of a 3rd-order Bézier curve. Cimurs et al. [13] assigned a circle with
the minimum radius and made the curve fit the circle by adjusting control points of a 3rd-order Bézier curve. Li
et al.[14] set up a multi-objective function to consider the boundary conditions including maximum curvature for
a 5th-order Bézier curve.

The higher the order is, the more we can control the curve by adding more boundary constraints, such as
curvature and derivative of curvature of endpoints. For example, the derivative of curvature at the endpoints in a
5th-order Bézier curve cannot be 0, but a 7th-order Bézier curve can. However, high-order polynomial functions
have more coefficients to be determined and thus cause complicated curvature expression. Most papers focus on
implementing 7th-order Bézier curves instead of discussing how to constraint maximum curvature. For example,
Neto et al.[8] used 7th-order Bézier curves to let the endpoints curvature be 0 so that it is simpler to implement
RRT algorithm.

To account for arbitrary nonzero curvature and arbitrary curvature derivative at either one or both ends of
the curve such as entering the roundabout or curved road, our previous work [10] proposed a transformation
that brings a family of 2-parameter η3-splines into equivalent 7th-degree Bézier curves as the simplest single
directional smooth maneuver from the start to the goal. In this paper, focusing specifically on turning on
the road in a wide range of driving scenarios, lane change in particular, a forward uni-directional trajectory
based on simplified η3-splines, which have flexibility to take safety and comfort(limited lateral acceleration or
curvature) into account, is generated. A feasible trajectory can be found by iteratively searching the trajectory
parameters η1 and η2 of simplified η3-splines for determining the control points of its natural equivalent 7th-
degree Bézier curve and trajectory duration T until all obstacles are avoided in the environment, while curvature



constraints are not violated and other kinodynamic requirements are met. These results can be applied in many
applications and autonomous driving for example as a G3 conitnuity solution to specific curvature constrained
turning maneuver problems is required. The convenience of this computationally simpler approach can be extended
to multiple maneuvers, for example to steer the tractor-trailer [10]. The determination of the number and location
of waypoints for multiple maneuvers based on simplified η3 splines, is proposed a variable length genetic algorithm
in combination with bidirectional RRT ∗ in our early work [15].

The main contributions in this research are listed as the followings.

1. We discuss how to constrain curvature on 7th-order Bézier curves instead of lower-order curves. The
restriction of zero curvature at both ends of the path such as required in driving on straight roads is
alleviated by the use of 7th degree Bézier curve for driving on curved roads.

2. We solve the curvature constraint problem case by case since it is hard to get the general form of curvature
equation for 7th-order Bézier curves.

3. we discover the simplicity and flexibility of path design which relies on only two parameters at most for
planning the control points intuitively and iteratively.

4. We provide other numerical simulation data for designed paths of 7th-order Bézier curves by considering
maximum curvature.

And the benefits of our path design can be organized as below.

1. A dynamically feasible trajectory is a trajectory complying with the constraints (boundary conditions,
kinodynamic constraints etc.). The feasibility set is representative of the dynamic as well as operational
constraints for checking the validity of kinematic geometric path. The feasible space of the path-defining
parameters of a simplified η3-spline is reduced to a box (a parametric interval for each parameter), allowing
path optimization treated as easier parameter optimization with computational efficiency for online path
generation.

2. Since G3 continuity (third-order geometric continuity) ensures continuous jerk, while G2 doesn’t. It allows
path optimization of the paths with respect to a cost function such as jerk or consumed energy to minimize
the curvature derivative.

3. An advantage of using the 7th degree Bézier form is we can generate various paths through selection
of suitable parameter values in a more intuitive manner. Specifying nonzero boundary curvature and
incorporating collision avoidance at the same time can be achieved more easily and intuitively to some extent
via the Bézier form, and its closed-form provides a low complexity of trajectory computation. Therefore, we
will use the Bézier form of simplified η3 spline to simplify the manipulation of the curve by manipulating the
convex hull confining the spatial extent of the curve: If the convex hull for the chosen control points doesn’t
intersect the obstacles, then the Bézier path constructed from the control points will be collision-free.

The rest of this paper is organized as the following. Section 2 gives a brief introduction of Bézier curve,
η3-spline, and the relation between Bézier curve and η3-spline. Section 3 illustrates the design method in three
road scenarios with examples. Section 4 gives the conclusion and future work.

2 Bézier curve and η3-spline

2.1 Bézier Curve

Bézier Curves are curves using control points to shape outlines as shown in FIGURE 1. To implement, we have
to assign n+ 1 control points P0, P1,. . . ,Pn to interpolate curves with Bernstein polynomial functions. The curve
function is shown in (1).

C(t) =

n∑
i=0

Bi,n(t)Pi (1)

Bi,n(t) in (1) is Bernstein polynomials. The definition is defined as (2) and (3),

Bi,n =

(
n
i

)
ti(1− t)n−i, i = 0, 1, ..., n, (2)

(
n
i

)
=

n!

i!(n− i)! . (3)

The term n in (1), (2), and (3) is the order of Bézier curve. For an nth order Bézier curve, n+1 control points
are needed. The parameter t, ranging from 0 to 1, is the input domain of Bernstein polynomial functions.

A pleasant property of Bézier curve is that the curve lies inside the convex hull, which means curves would
never stretch over the edges of the smallest convex polygon formed by control points. When t = 0 or t = 1,
the result of (1) is P0 or Pn respectively. Therefore, the first and the last control points of a Bézier curve are
coincident with end points respectively. FIGURE 1 shows an example of Bézier curve and its convex hull.



Figure 1: A 7th-order Bézier curve with control points P0 to P7. The convex hull of the control points is
shown as the polygon with blue edges. [10]

2.2 η3-spline

An η3-spline is a 7th order curve with given boundary conditions to define it[9]. The boundary conditions are

ΩA = [xA, yA, θA, κA, κ̇A]T , (4)

and
ΩB = [xB , yB , θB , κB , ˙κB ]T , (5)

where x and y are the Cartesian coordinates, and θ, κ and κ̇ respectively denotes the direction that defines the
unit tangent along the curve [cos θ, sin θ], curvature and derivative of curvature of the given point.

The equation of an η3-spline is defined as the following:

C(t) = [α(t)β(t)]T (6)

α(t) = α0 + α1t+ α2t
2 + α3t

3 + α4t
4 + α5t

5 + α6t
6 + α7t

7 (7)

β(t) = β0 + β1t+ β2t
2 + β3t

3 + β4t
4 + β5t

5 + β6t
6 + β7t

7 (8)

where t is the same variable that defines Bézier curve, ranging from 0 to 1. The coefficients αi and βi for
i = 0, 1, ..., 7 in (7) and (8) are defined as

α0 = xA (9)

α1 = η1 cos θA (10)

α2 =
1

2
η3 cos θA −

1

2
η1

2κA sin θA (11)

α3 =
1

6
η5 cos θA −

1

6
(η1

3κ̇A + 3η1η3κA) sin θA (12)

α4 = 35(xB − xA)− (20η1 + 5η3 +
2

3
η5) cos θA + (5η1

2κA +
2

3
η1

3κ̇A + 2η1η3κA) sin θA

− (15η2 −
5

2
η4 +

1

6
η6) cos θB − (

5

2
η2

2κB −
1

6
η2

3 ˙κB −
1

2
η2η4κB) sin θB

(13)

α5 =− 84(xB − xA) + (45η1 + 10η3 + η5) cos θA − (10η1
2κA + η1

3κ̇A + 3η1η3κA) sin θA

+ (39η2 − 7η4 +
1

2
η6) cos θB + (7η2

2κB −
1

2
η2

3 ˙κB −
3

2
η2η4κB) sin θB

(14)

α6 = 70(xB − xA)− (36η1 +
15

2
η3 +

2

3
η5) cos θA + (

15

2
η1

2κA +
2

3
η1

3κ̇A + 2η1η3κA) sin θA

− (34η2 −
13

2
η4 +

1

2
η6) cos θB − (

13

2
η2

2κB −
1

2
η2

3 ˙κB −
3

2
η2η4κB) sin θB

(15)

α7 =− 20(xB − xA) + (10η1 + 2η3 +
1

6
η5) cos θA − (2η1

2κA +
1

6
η1

3κ̇A +
1

2
η1η3κA) sin θA

+ (10η2 − 2η4 +
1

6
η6) cos θB + (2η2

2κB −
1

6
η2

3 ˙κB −
1

2
η2η4κB) sin θB

(16)

β0 = yA (17)

β1 = η1 sin θA (18)

β2 =
1

2
η3 sin θA +

1

2
η1

2κA cos θA (19)

β3 =
1

6
η5 sin θA +

1

6
(η1

3κ̇A + 3η1η3κA) cos θA (20)



β4 = 35(yB − yA)− (20η1 + 5η3 +
2

3
η5) sin θA − (5η1

2κA +
2

3
η1

3κ̇A + 2η1η3κA) cos θA

− (15η2 −
5

2
η4 +

1

6
η6) sin θB + (

5

2
η2

2κB −
1

6
η2

3 ˙κB −
1

2
η2η4κB) cos θB

(21)

β5 =− 84(yB − yA) + (45η1 + 10η3 + η5) sin θA + (10η1
2κA + η1

3κ̇A + 3η1η3κA) cos θA

+ (39η2 − 7η4 +
1

2
η6) sin θB − (7η2

2κB −
1

2
η2

3 ˙κB −
3

2
η2η4κB) cos θB

(22)

β6 = 70(yB − yA)− (36η1 +
15

2
η3 +

2

3
η5) sin θA − (

15

2
η1

2κA +
2

3
η1

3κ̇A + 2η1η3κA) cos θA

− (34η2 −
13

2
η4 +

1

2
η6) sin θB + (

13

2
η2

2κB −
1

2
η2

3 ˙κB −
3

2
η2η4κB) cos θB

(23)

β7 =− 20(yB − yA) + (10η1 + 2η3 +
1

6
η5) sin θA + (2η1

2κA +
1

6
η1

3κ̇A +
1

2
η1η3κA) cos θA

+ (10η2 − 2η4 +
1

6
η6) sin θB − (2η2

2κB −
1

6
η2

3 ˙κB −
1

2
η2η4κB) cos θB

(24)

The coefficients αi in (9)-(16) and βi in (17)-(24) for i = 0, 1, ..., 7 in (7) and (8) depend on the η vector,

η = [η1 η2 η3 η4 η5 η6]T . (25)

The η vector makes η3-spline has 6 degrees of freedom. For further path computational efficiency, it is desirable
to reduce the DoFs of η3-spline by setting η3 = η4 = η5 = η6 = 0. Therefore, the degree of freedom reduces to 2,
and the resulting family of parametrized curves with parameters η1, η2 is called simplified η3-spline.

Note, the lateral acceleration is restricted to account for curvature constraint. And both longitudinal and
lateral accelerations can be adjusted by free parameters (control points) to uniformly accelerate from η1 to η2 so
as to turn gently at a lower speed without a sharp spike to comply with the curvature limit. Increasing the start
speed and end speed over all feasible trajectories can be effective to reduce the maneuver time (duration of the
trajectory).

2.3 The conversion method between Bézier curve and η3-spline

As shown in [10], since simplified η3-spline is 7th order curve, we consider a 7th order Bézier curve. Assign n as
7, equation (1) will be

C(t) = P0(1− t)7 + 7P1t(1− t)6 + 21P2t
2(1− t)5 + 35P3t

3(1− t)4

+ 35P4t
4(1− t)3 + 21P5t

5(1− t)2 + 7P6t
6(1− t) + P7t

7
(26)

Pi is a vector containing 2 components Pxi and Pyi which indicate the x and y coordinates of Pi.
Expand (26) and match the coefficients of simplified η3-splines in (9)-(24), we find

Px0 = xA (27)

Px1 = xA +
1

7
η1 cos θA (28)

Px2 = xA +
2

7
η1 cos θA −

1

42
η1

2κA sin θA (29)

Px3 = xA +
3

7
η1 cos θA −

1

14
η1

2κA sin θA −
1

210
η1

3κ̇A sin θA (30)

Px4 = xB −
3

7
η2 cos θB −

1

14
η2

2κB sin θB +
1

210
η2

3 ˙κB sin θB (31)

Px5 = xB −
2

7
η2 cos θB −

1

42
η2

2κB sin θB (32)

Px6 = xB −
1

7
η2 cos θB (33)

Px7 = xB (34)

Py0 = yA (35)

Py1 = yA +
1

7
η1 sin θA (36)

Py2 = yA +
2

7
η1 sin θA +

1

42
η1

2κA cos θA (37)

Py3 = yA +
3

7
η1 sin θA +

1

14
η1

2κA cos θA +
1

210
η1

3κ̇A cos θA (38)

Py4 = yB −
3

7
η2 sin θB +

1

14
η2

2κB cos θB −
1

210
η2

3 ˙κB cos θB (39)



Py5 = yB −
2

7
η2 sin θB +

1

42
η2

2κB cos θB (40)

Py6 = yB −
1

7
η2 sin θB (41)

Py7 = yB (42)

Via the transformation, we are able to use the Bézier form to simplify the manipulation of the simplified
η3-spline curve satisfying the boundary conditions by manipulating the control points of the equivalent natural
7th degree Bézier curve, while the convex hull of the control points provides outline of the curve for collision
check. In this path design approach, the starting velocity η1 and the ending velocity η2 of the forward trajectory
(single-directional maneuver) are the two path design parameters.

Our logic of choosing η1, η2 is to propose an appropriate eta value to make the trajectory natural and human-
like, i.e. a suitable maneuver time and the velocity should be slower for path segments with larger curvature than
those with small curvature, verified by a few trial simulations. The initial and final speed needs to be large enough
to account for the time optimality, and small enough to meet the constraints without causing large acceleration
or angular velocity (change).

Note, let r(t) be the path. |r′(0)|, |r′(1)| are directly proportional to η1, η2 parameters. Since the given end

curvature κA is related to r′′(0)
|r′(0)|2 . Therefore, too large η1 will very likely make the path near t = 0 straighter

(closer to P0P1) while too small η1 will introduce excessively large curvature at the beginning of the path. Similar
reasoning holds for the other end t = 1 for the parameter η2.

Since η represents the end speed, its value should obey the speed limits set by the vehicle or traffic rules.
Most work on continuous-curvature lane change curve design assume the curvature at the ends are zero, which
is valid for straight road. From empirical evaluation, symmetric quintic Bézier curve with control points set in a
symmetric way is excellent in minimizing lane change time. The travel time T is estimated as L

η
, where L is the

path length. Thus, an initial guess of eta we may try is the chord length of P0P7.
In the following driving scenarios we discuss, we use η3-spline as single directional maneuver (smooth path

without directional change), instead of bidirectional maneuver with forward and backward motions and a sequence
of small local maneuvers to fulfill the boundary conditions, which require additional computational effort for
joining the different path segments meeting the smoothness constraints.

3 Path Design for curvature-constrained turning

We present three curvature-constrained turning scenarios by using simplified η3-spline. All the paths are non-stop,
smooth, forward, and single maneuver trajectory solutions. Besides, we normalize the solutions so all of them can
be used on every different case. The three scenarios are used to highlight the ease of design of forward curvature-
constrained path continuous in configuration (position,heading/tangent), curvature and curvature derivative to
satisfy the maximum curvature constraint using 7th degree Bezier curves with two design parameters (the starting
velocity and the ending velocity of the forward trajectory).

3.1 Ordinary turn

The first case we want to study is ordinary turn which every vehicle must encounter. For the definition of ordinary
turn, it means that the vehicle goes straight at first, turns counterclockwise toward direction θ, and then backs
to go straight. Turning the definition into boundary conditions configurations (4) and (5), they become

ΩA = [xA, yA, θA, 0, 0]T (43)

and
ΩB = [xB , yB , θB , 0, 0]T (44)

Without loss of generality, we set θA = 0◦ and θB = θ. Therefore, the control points equation (27)-(42) can be
expressed as

Px0 = xA (45)

Px1 = xA +
1

7
η1 (46)

Px2 = xA +
2

7
η1 (47)

Px3 = xA +
3

7
η1 (48)

Px4 = xB −
3

7
η2 cos θB (49)

Px5 = xB −
2

7
η2 cos θB (50)

Px6 = xB −
1

7
η2 cos θB (51)



(a) (b)

Figure 2: two examples of the design of symmetric 7th order curve in ordinary turn. In each subfigure,
the blue curve is the path of Bézier curve and the black points are the control points. (a) is the case with
smaller distance between P3 and P4 while larger in (b).

Px7 = xB (52)

Py0 = yA (53)

Py1 = yA (54)

Py2 = yA (55)

Py3 = yA (56)

Py4 = yB −
3

7
η2 sin θB (57)

Py5 = yB −
2

7
η2 sin θB (58)

Py6 = yB −
1

7
η2 sin θB (59)

Py7 = yB (60)

Observe the results above, we can find that if η1 = η2 = η, except P3 and P4, all distances between Pi and
Pi+1 are the same. Therefore, the curve is symmetric with respect to the line that passes through the midpoint
of Pi and P7−i, for i = 0, 1, 2, 3, like FIGURE 2a and 2b. Moreover, it is reasonable to figure out the vehicle
behaviors, such as velocity, curvature, and derivative of curvature, would be symmetric with respect to half of
the time, that is t = 0.5. With this property, it is ideal for us to constrain the maximum curvature happens at
t = 0.5.

Given η and θ, the only variables are the end points locations which change the distance between P3 and P4.
From FIGURE 2a, we can imagine that the closer P3 and P4 are, the more curved the path is at the midpoint.
On the other hand, the farther P3 and P4 are, the flatter the path is at the midpoint, like FIGURE 2b. That
is, the path has maximum curvature closer to t = 0.5 when P3 and P4 are closer. We find that the maximum
curvature will happen at t = 0.5 if P3 and P4 are the same point. The following is the induction.

Without loss of generality, we set P3 = P4 = (0, 0). Given η and θ, from the equation of P3 and P4, (48), (49),
(56) and (57) become

Px3 = xA +
3

7
η = 0

Px4 = xB −
3

7
η cos θ = 0

Py3 = yA = 0

Py4 = yB −
3

7
η sin θ = 0,

we can get

xA = −3

7
η = −3A

xB =
3

7
η cos θ = 3A cos θ

yA = 0

yB =
3

7
η sin θ = 3A sin θ,



where A = η
7

for simplification. Consequently, the control points equations (45)-(60) become

Px0 = −3A (61)

Px1 = −2A (62)

Px2 = −A (63)

Px3 = 0 (64)

Px4 = 0 (65)

Px5 = A cos θ (66)

Px6 = 2A cos θ (67)

Px7 = 3A cos θ (68)

Py0 = 0 (69)

Py1 = 0 (70)

Py2 = 0 (71)

Py3 = 0 (72)

Py4 = 0 (73)

Py5 = A sin θ (74)

Py5 = 2A sin θ (75)

Py7 = 3A sin θ (76)

With these defined control points, we can rewrite the path equation (26) into

Bx(t) =− 3A(1− t)7 − 14At(1− t)6 − 21At2(1− t)5

+ 0 + 0 + 21A cos θt5(1− t)2

+ 14A cos θt6(1− t) + 3A cos θt7

(77)

and
By(t) = 0 + 0 + 0 + 0 + 0 + 21A sin θt5(1− t)2

+ 14A sin θt6(1− t) + 3A sin θt7
(78)

which respectively represent the x part and y part of curve. The two parts first order derivative of the curve are

Ḃx(t) = 7A[(1− t)6 + 6t(1− t)5 + 15t2(1− t)4

+ 15 cos θt4(1− t)2 + 6 cos θt5(1− t)

+ cos θt6]

(79)

and
Ḃy(t) = 7A sin θ[15t4(1− t)2 + 6t5(1− t) + t6] (80)

The two parts of the second derivative of the curve are

B̈x(t) = 420A[−t2(1− t)3 + t3(1− t)2 cos θ] (81)

and
B̈y(t) = 420A sin θt3(1− t)2 (82)

Then we can write the curvature equation as

κ =
ḂxB̈y(t)− B̈x(t)Ḃy(t)

(Ḃx(t))2 + (Ḃy(t))2)
3
2

=
num

den
. (83)

It is obvious that the equation of the derivative of curvature is too complex to analyze. Consequently, we will
show that the local maximum of num and local minimum of den both occur at t = 0.5.

The numerator of the curvature equation, num, is

num = 2940A2 sin θ[t3(1− t)8 + 6t4(1− t)7

+ 15t5(1− t)6 + 15t6(1− t)5 + 6t7(1− t)4

+ t8(1− t)3].

(84)

Let N(t) be

N(t) = t3(1− t)8 + 6t4(1− t)7 + 15t5(1− t)6

+ 15t6(1− t)5 + 6t7(1− t)4 + t8(1− t)3.
(85)



The derivative of N(t) is

Ṅ(t) = 3t2(1− t)8 + 16t3(1− t)7 + 33t4(1− t)6

− 33t6(1− t)4 − 16t7(1− t)3 − 3t8(1− t)2.
(86)

From (86), we can find the extreme value of the numerator of curvature by finding the roots of Ṅ(t) which are

t = 0, 0, 0, 1, 1,
1

2
,

1

10
[5±

√
5(9± 2i

√
26)].

Now we know there is a local extreme value at t=0.5. Next, we want to show that the local extreme value is local
maximum. Rewrite (86) as

Ṅ(t) = 3[t2(1− t)8 − t8(1− t)2]

+ 16[t3(1− t)7 − t7(1− t)3]

+ 33[t4(1− t)6 − t6(1− t)4].

(87)

when
0 < t < 0.5,

0.5 < (1− t) < 1.

Thus, for
α < β,

tα(1− t)β > tβ(1− t)α

Since all the tree terms in Ṅ(t) conform the condition α < β, Ṅ(t) > 0 for 0 < t < 0.5. Ṅ(t) < 0 for 0.5 < t < 1,
vice and versa. For the conditions above, N(t) has an extreme value at t = 0.5 and concaves upward. As a result,
N(t) has a local maximum value at t = 0.5.

As for the denominator of curvature equation, den, is

den = (Ḃx(t)2 + Ḃy(t)2)
3
2 . (88)

To find the extreme value of den, It is equal to calculate the derivative of Ḃx(t)2 + Ḃy(t)2. Let us define D(t) as

D(t) = Ḃx(t)2 + Ḃy(t)2. (89)

The derivative of D(t) is

Ḋ(t) = 2Ḃx(t)B̈x(t) + 2Ḃy(t)B̈y(t)

= 5880A2[t2(1− t)9 − 6t3(1− t)8

− 15t4(1− t)7 − 15 cos θt6(1− t)5

− 6 cos θt7(1− t)4 − cos θt8(1− t)3

+ cos θt3(1− t)8 + 6 cos θt4(1− t)7

+ 15 cos θt5(1− t)6 + 15t7(1− t)4

+ 6t8(1− t)3 + t9(1− t)2].

(90)

Rewrite it as the same form in Ṅ(t), it becomes:

Ḋ(t) = 5880A2{[−t2(1− t)9 + t9(1− t)2]

+ 6[−t3(1− t)8 + t8(1− t)3]

+ 15[−t4(1− t)7 + t7(1− t)4]

+ 15 cos θ[−t6(1− t)5 + t5(1− t)6]

+ 6 cos θ[−t7(1− t)4 + t4(1− t)7]

+ cos θ[−t8(1− t)3 + t3(1− t)8]}.

(91)

So, when t = 0.5,
Ḋ(0.5) = 5880A2{[−0.511 + 0.511] + 6[−0.511 + 0.511]

+ 15[−0.511 + 0.511] + 15 cos θ[−0.511 + 0.511]

+ 6 cos θ[−0.511 + 0.511]

+ cos θ[−0.511 + 0.511]} = 0.

Therefore, D(t) has an extreme value at t = 0.5. We can find that the first three terms of Ḋ(t) confirm the
condition

α < β.



Figure 3: the relation between κN and θ

Consequently, the first three terms are negative when 0 < t < 0.5. However, the last three terms, which contain
cos θ respectively, don’t follow the form. As a result, we have to find whether the sum of the first three terms and
last three terms is nonnegative. Since cos θ < 1,

Ḋ(0.5) ≤ 5880A2{[−t2(1− t)9 + t9(1− t)2]

+ 6[−t3(1− t)8 + t8(1− t)3]

+ 15[−t4(1− t)7 + t7(1− t)4]

+ 15[−t6(1− t)5 + t5(1− t)6]

+ 6[−t7(1− t)4 + t4(1− t)7]

+ [−t8(1− t)3 + t3(1− t)8]}

= 5880A2{[t2(1− t)2((1− t)6 + t6)(2t− 1)]

+ 6[t3(1− t)3((1− t)4 + t4)(2t− 1)]

+ 15[t4(1− t)4((1− t)2 + t2)(2t− 1)]}.

Only the term (2t− 1) can decide Ḋ(t) is positive or not as the other terms are all positive. The term (2t− 1) is
negative when 0 < t < 0.5, so Ḋ(t) < 0 whatever the value θ is. Similarly, when 0.5 < t < 1, Ḋ(t) > 0. Therefore,
D(t) concaves upward and has a local minimum at t = 0.5. With the above conditions, we can conclude that the
curvature κ has maximum when t = 0.5. However, the explicit equation of curvature is too complex because of
the term sin θ and cos θ in Ḃx(t) and Ḃy(t). Fortunately, we know that the numerator of curvature, num, has
coefficient A2 since it is the product of Ḃx(t)B̈y(t) and B̈x(t)Ḃy(t), and the denominator, num, has coefficient A3

since Ḃx(t)2 + Ḃy(t)2 ∝ A2. Therefore, the curvature can be expressed as

κ =
num

den
∝ A2

A3
=

1

A
.

For designing path, we define normalized curvature κN as

κN = Aκ (92)

We can calculate the relation between κN and θ, and multiply A to get true κ. The result is shown in FIGURE
3.

Now, we give an example of our method by setting A = 10 and θ = 20◦. FIGURE 4 shows the result, including
path outline and curvature profile. We can see that the curvature has its maximum value at t = 0.5. In FIGURE
3, we can know when θ = 20◦, κN = 0.2029. Divide this value by A, and we can get κ = 0.02029 which is the
maximum value of curvature in FIGURE 4.

3.2 Lane change on straight road for 7th order curve

Another case vehicle must encounter is lane change. Lane-change trajectory is a generic turn for vehicle maneuver.
For the definition of lane change on straight road, it means that the vehicle goes straight at first, turns to another
lane, and then goes straight with the original direction. The boundary conditions configurations (4) and (5)
become

ΩA = [xA, yA, θ, 0, 0]T (93)

and
ΩB = [xB , yB , θ, 0, 0]T (94)



Figure 4: an example path of our method applied in the case of ordinary turn with symmetric curvature.
In the left subfigure, the blue curve is the path of Bézier curve and the black points are the control points.

Without loss of generality, we set θ = 0◦. Therefore, the control points equation (27)-(42) can be expressed as

Px0 = xA (95)

Px1 = xA +
1

7
η1 (96)

Px2 = xA +
2

7
η1 (97)

Px3 = xA +
3

7
η1 (98)

Px4 = xB −
3

7
η2 (99)

Px5 = xB −
2

7
η2 (100)

Px6 = xB −
1

7
η2 (101)

Px7 = xB (102)

Py0 = yA (103)

Py1 = yA (104)

Py2 = yA (105)

Py3 = yA (106)

Py4 = yB (107)

Py5 = yB (108)

Py6 = yB (109)

Py7 = yB (110)

FIGURE 5 are examples of this case with control points we show above.
From FIGURE 5a, the vehicle starts from P0, turns left, turns right when it is close to the near lane, and

then goes straight after the direction of its head backs to 0◦. The vehicle behavior is symmetric if η1 = η2 = η
and therefore the inital and final speed will be the same. However, since the direction of vehicle must change 1
time, the maximum of curvature can’t occur at t = 0.5.

Similar to the case of ordinary turn, fixed the offset of y coordinate, yB , the distance between P3 and P4

determines when the maximum curvature occurs. It is thinkable that the time that the maximum curvature
occurs is close to t = 0 if the distance is too far. On the other hand, if the distance is negative, that is, P4 is
at the left-hand side of P3, the maximum curvature will occur closer to t = 0.5, like what shows in FIGURE 5b.
Nonetheless, the path will be too curved as we can see in FIGURE 5b. After some simulations, we decide to let
the x coordinate of P3 and P4 be the same to make the behavior of vehicle more ideal.

Next, what we are interested in is how the value of η affects the path with given y offset. Without loss of
generality, we set yA = 0 and Px3 = Px4 = 0. To reduce the degree of freedom, we set

1

7
η = ryB = rB (111)



(a) (b)

Figure 5: two examples of the design of 7th order curve in lane change on straight road. In each subfigure,
the blue curve is the path of Bézier curve and the black points are the control points. (a) is the case with
non-overlapped segment along the x-axis while overlapped in (b).

where B = yB for simplicity and r is a constant. The equations of control points would become

Px0 = −3rB (112)

Px1 = −2rB (113)

Px2 = −rB (114)

Px3 = 0 (115)

Px4 = 0 (116)

Px5 = rB (117)

Px6 = 2rB (118)

Px7 = 3rB (119)

Py0 = 0 (120)

Py1 = 0 (121)

Py2 = 0 (122)

Py3 = 0 (123)

Py4 = B (124)

Py5 = B (125)

Py6 = B (126)

Py7 = B (127)

The x part and y part of path equation from (26) become

Bx(t) =− 3rB(1− t)7 − 14rBt(1− t)6

− 21rBt2(1− t)5 + 0

+ 0 + 21rBt5(1− t)2

+ 14rBt6(1− t) + 3rBt7

(128)

and
By(t) = 0 + 0 + 0 + 0 + 35Bt4(1− t)3

+ 21Bt5(1− t)2 + 7Bt6(1− t) +Bt7.
(129)

The two parts first order derivative of the curve are

Ḃx(t) = 7rB[(1− t)6 + 6t(1− t)5 + 15t2(1− t)4

+ 15t4(1− t)2 + 6t5(1− t) + t6]
(130)

and
Ḃy(t) = 140Bt3(1− t)3. (131)



Figure 6: the time that the maximum curvature happens with respect to r

The two parts of the second derivative of the curve are

B̈x(t) = 420rB[−t2(1− t)3 + t3(1− t)2] (132)

and
B̈y(t) = −420Bt2(1− t)2(2t− 1). (133)

The third order of derivative of the two parts are

...
Bx(t) = 840rB[−t(1− t)3 + 3t2(1− t)2 − t3(1− t)] (134)

and ...
By(t) = −840Bt(1− t)[−5t2 + 5t− 1]. (135)

The curvature of path can be expressed as the same equation of (83),

κ =
Ḃx(t)B̈y(t)− B̈x(t)Ḃy(t)

(Ḃx(t)2 + Ḃy(t)2)
3
2

=
num

den
.

The numerator is
num = −2940rB2(−1 + t)2t2(−1 + 2t), (136)

which has local extreme values no matter what the value r is. Nevertheless, r is not the common coefficient of
Ḃx(t)2 + Ḃy(t)2 in the denominator. That means r affects the time that the maximum curvature occurs.

To solve the problem, we use numerical software to calculate the time that the maximum curvature occurs by
solving the roots of the derivative of curvature. The derivative of curvature can be expressed as

κ̇ =
˙

(
num

den
) (137)

Where the numerator is
(Ḃx(t)

...
By(t)−

...
Bx(t)Ḃy(t))(Ḃx(t)2 + Ḃy(t)2)

− 3(Ḃx(t)B̈y(t)− B̈x(t)Ḃy(t))(Ḃx(t)B̈x(t)

+ Ḃy(t)B̈y(t)).

(138)

And the denominator is

(Ḃx(t)2 + Ḃy(t)2)
5
2 . (139)

Find the roots of the numerator and we can get the time, tmax , that the maximum curvature happens. It is
noticeable that we only need to find the root that is in [0, 0.5] since the curvature profile is symmetric. The result
is shown in FIGURE 6.

Like the case of ordinary turn, the curvature is also proportional to 1
B

because the numerator, num, which is

calculated in (135) has coefficient B2 and Ḃx(t)2 + Ḃy(t)2 in the denominator has coefficient B3. As a result,

κ =
num

den
∝ B2

B3
=

1

B
,

Therefore, normalized curvature, κN , in (92) can be used in this case. With tmax we calculated in FIGURE 6,
we can find the relation of maximum normalized curvature and r, which is shown in FIGURE 7.

Finally, we give an example of this method. We set B = 5 and r = 2. FIGURE 8 shows the result, including
path outline and curvature profile. From FIGURE 6, when r = 2, the curvature has its maximum value at
t = 0.34, consistent with the result in FIGURE 8. In FIGURE 7, we can know when B = 5, κN,max = 0.07215.
Divide this value by B, and we can get κ = 0.01443 which is the maximum value of curvature in FIGURE 8.



Figure 7: the relation normalized maximum curvature and r

Figure 8: example of our method in the case of lane change on straight road. In the left subfigure, the
blue curve is the path of Bézier curve and the black points are the control points.

3.3 Curvature constraint method of lane change in roundabout for 7th order
curve

In modern city, roundabout is ubiquitous for its ability to reduce traffic jam. What is common for vehicles in
roundabout is lane change when vehicles want to turn into fast speed lane or want to exit roundabout. For the
definition of lane change in roundabout, it means that the vehicle drives along a lane, laneA, at first, turns to a
new lane, laneB , and then goes along the new lane. The boundary conditions configurations (4) and (5) become

ΩA = [xA, yA, θA, κA, 0]T (140)

and

ΩB = [xB , yB , θB , κB , 0]T (141)

The start or terminal state of lane-change in roundabout scenario is located on the lane of roundabout to align
with the start or terminal lane tangent, so that the tangent angle, curvature of the start or terminal state in this
scenario is determined. Without loss of generality, we set θA = 0◦ and θB = φ. Thus, as shown in FIGURE 9,
φ indicates the degree that vehicle passes with respect to the center of roundabout. The positions of end points,
(xA, yA) and (xB , yB), must be located with respect to the center of roundabout. κA and κB is the reciprocal
of rA and rB , the radius of laneA and laneB . That is, heading at the beginning and end should be tangent to
lane in the roundabout. Therefore, we can express (xA, yA) and (xB , yB) with φ, κA and κB . Without loss of
generality, we set (xA, yA) = (0, 0). As a result, the center of roundabout is (0, 1

κA
) and (xB , yB) becomes

(xB , yB) = (
1

κB
sinφ,

1

κA
− 1

κB
cosφ). (142)

And the configurations of (140) and (141) become

ΩA = [0, 0, 0◦, κA, 0]T (143)

and

ΩB = [
1

κB
sinφ,

1

κA
− 1

κB
cosφ, φ, κB , 0]T (144)



Figure 9: example of 7th order path design in roundabout lane change. The blue curve is the path of
Bézier curve and the black points are the control points.

In this case, it is easier to do induction from η3-spline aspect. There are lots of variables in the coefficients
of α(t) and β(t) in (7) and (8) and we mainly focus on how the curvature changes with different end points.
Therefore, we define a parameter r′ as the ratio of rB

rA
., and set η1 = η2 = η = h

κA
to reduce the degrees of

freedom, where h is another constant. The coefficients αi and βi in (7) and (8) become

α0 = xA (145)

α1 =
h

κA
cos 0◦ (146)

α2 =
1

2

h2

κA
sin 0◦ (147)

α3 = 0 (148)

α4 = 35
r′ sinφ

κA
− 20

h

κA
cos 0◦ + 5

h2

κA
sin 0◦

− 15
h

κA
cosφ− 5

2

h2

r′κA
sinφ

(149)

α5 =− 84
r′ sinφ

κA
+ 45

h

κA
cos 0◦ − 10

h2

κA
sin 0◦

+ 39
h

κA
cosφ+ 7

h2

r′κA
sinφ

(150)

α6 = 70
r′ sinφ

κA
− 36

h

κA
cos 0◦ +

15

2

h2

κA
sin 0◦

− 34
h

κA
cosφ− 13

2

h2

r′κA
sinφ

(151)

α7 =− 20
r′ sinφ

κA
+ 10

h

κA
cos 0◦ − 2

h2

κA
sin 0◦

+ 10
h

κA
cosφ+ 2

h2

r′κA
sinφ

(152)

β0 = yA (153)

β1 =
h

κA
sin 0◦ (154)

β2 =
1

2

h2

κA
cos 0◦ (155)

β3 = 0 (156)



β4 = 35
1− r′ cosφ

κA
− 20

h

κA
sin 0◦ − 5

h2

κA
cos 0◦

− 15
h

κA
sinφ+

5

2

h2

r′κA
cosφ

(157)

β5 =− 84
1− r′ cosφ

κA
+ 45

h

κA
sin 0◦ + 10

h2

κA
cos 0◦

+ 39
h

κA
sinφ− 7

h2

r′κA
cosφ

(158)

β6 = 70
1− r′ cosφ

κA
− 36

h

κA
sin 0◦ − 15

2

h2

κA
cos 0◦

− 34
h

κA
sinφ+

13

2

h2

r′κA
cosφ

(159)

β7 =− 20
1− r′ cosφ

κA
+ 10

h

κA
sin 0◦ + 2

h2

κA
cos 0◦

+ 10
h

κA
sinφ− 2

h2

r′κA
cosφ

(160)

We can see that except for α0 and β0, the other coefficients have the common coefficient 1
κA

, and the curvature
equation is

κ =
α̇β̈ − α̈β̇

(α̇2 + β̇2)
3
2

, (161)

where
α̇(t) = α1 + 2α2t+ 3α3t

2 + 4α4t
3

+ 5α5t
4 + 6α6t

5 + 7α7t
6,

(162)

α̈(t) = 2α2 + 6α3t+ 12α4t
2

+ 20α5t
3 + 30α6t

4 + 42α7t
5,

(163)

β̇(t) = β1 + 2β2t+ 3β3t
2 + 4β4t

3

+ 5β5t
4 + 6β6t

5 + 7β7t
6,

(164)

and
β̈(t) = 2β2 + 6β3t+ 12β4t

2

+ 20β5t
3 + 30β6t

4 + 42β7t
5

(165)

Consequently, the curvature equation is

α̇β̈ − α̈β̇
(α̇2 + β̇2)

3
2

=

1
κ2
A
× num

1
κ3
A
× den

= κA
num

den
, (166)

where num and den are polynomials without κA. That is, the value of κA is not important since it is just a
scaling coefficient. What important is the value of r′ which can directly change the profile of curvature.

The derivative of num
den

determines the local extreme points of curvature. By finding the roots of (num
den

)′, we
can get the time, tmax, that the maximum curvature, κmax, happens and get the ratio between κmax and κA.
However, the curve equation is too complex to calculate. Therefore, we turn into numerical simulation based on
the change of r′.

By experimental simulation, we choose η = 1
2
( 1
κA

+ 1
κB

)φ = 1
2
( r

′+1
κA

)φ which is close to the total length the
path moves. That is,

h =
1

2
(r′ + 1)φ. (167)

There are two kinds of curve in the case of roundabout lane change which are shown in the FIGURE 10. The
main difference between these two curves is that the direction changes in the left figure, however it doesn’t in the
right figure. We think the path in the right figure is more ideal in roundabout lane change. The main variable
that controls this scenario is φ. Therefore, we find the minimum degree, φmin, that lets the direction of path
doesn’t change and the result is shown in FIGURE 11.

The derivative of curvature in this case can be expressed as

(α̇
...
β − ...

αβ̇)(α̇2 + β̇2)− 3(α̇β̈ − α̈β̇)(α̇α̈+ β̇β̈)

(α̇2 + β̇2)
5
2

(168)

With φmin, we can calculate the relation between tmax and k numerically by solving the roots of the numerator
in (168), and the outcome is shown as FIGURE 12. For φ > φmin the maximum curvature would be smaller.
Consequently, the largest curvature of the path without changing direction is at φ = φmin. It is reasonable since
with larger φ, the vehicle would go through longer path, and the path is of course smoother.



Figure 10: two kinds of 7th curve design for roundabout lane change. In each subfigure, the blue curve is
the path of Bézier curve and the black points are the control points. The left one with smaller deflection
angle (20◦) has more curved path while the right one with the larger deflection angle (130◦) does not.

Figure 11: the relation between φmin and r′

Figure 12: the relation between the ratio of κmax and κA and k

The following is the example. In this example, we choose r′ = 0.8. According to FIGURE 11, we get
φmin,r′=0.8 = 69 and based on FIGURE 12, we have κmax

κA
= 2.4190. In FIGURE 13, κA = 1

50
. The maximum

curvature is 2.4190κA = 2.4190 · 1
50

= 0.484 which is marked in FIGURE 13.

4 Conclusion

Since simplified η3-spline is a complex curve with high degree of freedom, the curvature equation is hard to
analyze. In this paper, we seek a forward(uni-directional) trajectory based on simplified η3-spline, which has G3

smoothness and flexibility to take the comfort (small curvature derivative) into account and reduce the degree of
freedom via the transformation to Bézier form with two free parameters restricted in a box constraint. We also
illustrate the simplicity and flexibility of the efficient convex path parameters computation procedure by leveraging



Figure 13: example of our method in the case of roundabout lane change. In the left subfigure, the blue
curve is the path of Bézier curve and the black points are the control points.

the nice geometric properties of Bézier curves via three practical curvature-constrained turning maneuver cases
that admits simplified η3-spline trajectory solutions. In the simplest case, ordinary turn, it has explicit solution.
However, the other two cases, lane change on straight road and roundabout lane change may have to turn into
numerical calculation instead of explicit solution. With our method, flexibility for design of turning maneuvers
with physical constraints such as the maximum curvature and steering angle constraint is considered in this paper.
Nonetheless, there are still many cases we have not discussed yet, like entering roundabout and U turn. Therefore,
our future work is to keep finding the method to design path with more different cases. Another work in our to-do
list is to implement our method on path searching algorithms to compare the searching time with and without
our method.
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