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Abstract—The scale of modern Artificial Intelligence systems has 
been growing and entering more research territories by 
incorporating Deep Learning (DL) and Deep Reinforcement 
Learning (DRL) methods.  More specifically, multi-agent DRL 
methods have been widely applied to address the problems of high-
dimensional computation, which interpret the conditions that real-
world systems mainly encounter and the issues that require 
resolving. However, the current approaches of DL and DRL are 
often challenged for their untransparent and time-consuming 
modeling processes in their attempt to achieve a practical and 
applicable inference based on human-level perspective and 
acceptance. This paper presents an explainable and adaptable 
augmented knowledge attention network for multi-agent DRL 
systems, which uses game theory simulation to tackle the problem 
of non-stationarity at the beginning while improving the learning 
exploration built upon the strategic ontology to achieve the 
learning convergence more efficiently for autonomous agents. We 
anticipate that our approach will facilitate future research studies 
and potential research inspections of emerging multi-agent DRL 
systems for increasingly complex and autonomous environments. 
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I. INTRODUCTION 
The method of Reinforcement learning (RL), a branch of 

Machine Learning (ML), was proposed last century and was 
inspired by the behavioral sciences and psychology. RL is the 
closest form of human and pet learning path because it can learn 
from its own experience by exploring the unknown environment 
with or without prior knowledge. RL trains the agent to learn 
how to react in the environment via a trial and error method, 
while offering rewards according to the agent’s taken action, 
given and future state, and the feedback from the environment. 
The RL methods are essentially applied to many contemporary 
user-interactive applications specified by Markov Decision 
Process (MDP) for decision-making problems optimally 
specified, such as robot learning and controlling systems, 
human-computer interaction, and intelligent assistant systems, 
which cannot be handled well by notably supervised and 
unsupervised learning mechanisms.  

In the proposed experiments, we focus on Q-learning, which 
is a popular RL method, with its goal to maximize the discounted 
reward. Moreover, we use deep Q-learning (DQL) which adopts 
the RL method and Deep Neural Network (DNN) architecture 
for the prospective Deep Q-network (DQN). With the statistical 
estimation of DQN, deep Q-learning can learn a relatively 
covenanted and low-dimensional representation from originally 
high-dimensional raw data in a functional approximation, to 
adequately deal with the optimal convergence. Also, the 
proposed multi-agent DRL (MADRL) aims at game theory 
simulations for the corporative agents in the experiments, where 
transfer learning and prior knowledge sharing methods are 
applied to investigate the learning efficiency through ontology 
mappings for multiple agents’ communication in the dynamic 
environment.  

In this paper, we present an explainable and augmented 
knowledge attention network, according to Prioritized 
Experience Replay [13] for random batch sampling, which helps 
to identify the error samples and update weighted samples in the 
learning process. Our approach learns to achieve the 
improvements of its learning process and memory explorations 
through ontological hierarchy mappings, which builds up the 
inquiry interfaces and makes the learning more eligible and 
adaptable during the RL modeling process given valuable and 
effective opinions. Also, by applying the prior and sharing 
knowledge transferred among agents, the explainable and 
advanced knowledge bases are induced in the MADRL 
simulations, while the autonomous agents are capable of 
adapting their corporative behaviors and cope with the 
corporative or competing agents for a new environment and/or a 
possible target task. 

The remainder of this paper is organized as follows: Section 
II reviews the basics and related literature about MADRL. 
Section III and IV present the system architecture and design 
with Knowledge Engineering (KE) concepts and ontological 
mapping interfaces, considered methodologies in the system 
design; Section V respectively report the experimental results 
and discussion of the experiments. Section VI concludes our 
work and discusses its use, method, contribution, and the related 
future work. 



II. LITERATURE REVIEW 

A. RL and MADRL 
RL methods based on multi-agent (MA) simulations have 

become applied to solve challenging MDP problems in recent 
years, but some works were applied to Policy Architecture 
Network [1] and Curriculum Learning [19] last century. 
However, RL may require higher quality environments with 
well-described observations, explicit action spaces, rewards and 
states to manipulate the engineering process. MADRL usually 
requires more customized observations among agents that 
interact with each other in a mixed cooperative-competitive 
condition [6]. This is often regarded as more realistic and closer 
to real-world problems [2]; here the number of agents is also 
estimated to be between only a single agent and an effective 
number of average agents for optimization purposes [3]. More 
recent work [5] involves human feedback [16] in the human-in-
the-loop RL method to augment binary responses with state 
salient information to boost performance.  

B. Deep Q-Learning 
Learning an RL model with high-dimensional sensory inputs 

is often a challenging and time-consuming process. By applying 
DNN to overcome the control of policy and shorten the delay 
between action and resulting rewards,  the network of deep Q-
learning [20] based on the design with a single agent is trained 
as an off-policy DRL method according to the Bellman equation 
(1), where the discount factor g, manages the future rewards 
during its learning to reach the convergence. The discounted 
value is mathematically necessary because the environment can 
be fully observable, partially observable or completely uncertain. 

		"($!	, &!) = )[+! + g	+!"# + g	$+!"$ +⋯|$!	, &!],                    (1) 

Since real-world problems consist of large, complex and 
continuous state and action spaces, ordinary Q-learning is 
unable to efficiently resolve these problems due to the large 
memory required to store rewards (Q-values) in its Q-table; this 
leads  researchers to consider taking advantage of popular Deep 
Neural Networks for simplifying parametric estimations and the 
reduction of Q-values in the Q-table to accelerate the learning 
with experience replay [21]; at the same time, Q-learning 
directly optimizes the action-value function with the updating 
rule (2): 

"!(	$!, &!)¬	(1 − a)"!(	$!, &!) + a 2	+! + g	max
		&
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where $! is the current state, &! is the action taken at the current 
instant, +!	is the reward which is received after executing &!, and 
"!(	$!, &!)	is the evaluation of the action &! in the state $!. The 
parameters of the learning rate a	 and discount factor g		 are 
required to be adjusted in the system. 

C. Prior Knowledge Sharing and Transfer Learning 
In the earlier works of the 1980s, Knowledge Engineering 

(KE) was designed to transfer human knowledge into an 
implemented Knowledge Base System (KBS). The goal is to 
model a KBS to form an expert-system, which is usually based 
on knowledge from interviewed experts in order to model how 
humans solve specific tasks within disciplines and according to 
rules. The heuristic of problem-solving methods and 
representations of modeling an expert-system became the 

foundation of KBSs, which address KE as a modeling process 
achieving formalizations and implementations [12]. A well-
known KE framework, Protégé [22], was designed to perform 
knowledge acquisitions as a durable and extensible platform for 
KBS research and development. Protégé aims to transform 
instances of domain concepts into a reusable knowledge-
acquisition framework through ontology mappings. In this 
framework, background knowledge is absorbed and practiced in 
the application of RL for specifying agent behaviors within a 
language, in order to speed up the training process and increase 
the asymptotic performance [11]. In another study, similar tasks 
were executed by a physical robot agent to navigate in a maze-
like environment [10]: the proposed DRL algorithm reused 
transferred knowledge and solved the problems more quickly. 

D. Game Theory Simulation 
Knowledge transfer has become one of the core concepts in 

modern game theory simulations of RL. A General Game 
Playing system implements techniques of feature transfer with a 
value-function to extract general game features among vastly 
disparate state spaces, thus expediting the agent’s learning in 
many games [14]. Recent game theory experiments demonstrate 
not only cooperative-competitive simulations, but also multi-
agent strategical learning to solve a hierarchical learning scheme 
and sequential social dilemmas [24] by using DRL on DQL. The 
game of hide-and-seek has been addressed by [4] recently in an 
emergent tool for MA interactions, which shows that agents 
learn to develop explicit strategies, counterstrategies as well as 
more ‘exceeding expectation’ complex strategies. Recent work 
has focused on games like predator-prey in [24], which shows 
that policies of other agents and Policy Ensembles can be 
inferred through observations. The method of Q-learning and 
the Actor-Critic [23] policy gradient approach explicitly requires 
the modeling procedure by the decision-making process of 
coordinate agents, although the performance of the proposed 
algorithms may need further improvement for a MADRL 
environment. 

III. SYSTEM ARCHITECTURE 
The proposed system aims at providing an explainable and 

adaptable interface to learn a game simulation of MADRL, 
while considering the interactions with not only other agents, but 
with humans [15] for building a feasible KBS to improve the 
poor sample efficiency of DRL. Since DRL has been criticized 
for the limitation of designed algorithms and the slowness of 
convergence in real-world situations, the techniques of sharing 
and transferring knowledge [17] can be applied to achieve an 
increased number of agents to adapt to relevant behaviors [7, 8, 
9]. 

The agents use the knowledge shared among themselves in 
the episodes either with the Prioritized Experience Replay (PER) 
or Uniform Experience Replay (UER) method: the former 
proposes the sample batch priorities according to errors in the 
memory, while the later one formulates the sample batch 
according to randomly appended samples in the memory. In our 
DQL, PER is pursued and prioritizes the weighted sample from 
the memory tree in each update and normalizes the feature 
dataset to train the DRL model gradually. The non-stationary 
sample and the latency between action-rewards in the DRL are 
our major challenges to achieve a more efficient learning 



convergence. The goal of the proposed system, shown in Fig 1, 
is to deal with the sample inefficiency to get close to human-
level compliance, since real-world problems are much more 
complex, crucial and challenging.  

 
Fig 1. The proposed system shows an explainable KBS and an adaptable 

interface for augmentation in MADRL systems. 

 
Fig 2. The prey-predator game sets an arbitrary number of predator (blue) and 

prey (red) agents in a N x N grid experimental world. 

IV. SYSTEM DESIGN 

A. Pursuit Game 
Previous works have adopted multiple agents in various 

simulations such as StarCraft, IC3Net, and hide-and-seek games 
[18]. The pursuit game, prey-predator (Fig 2), sets an arbitrary 
number of predator and prey agents in an N x N grid (i.e. N x N 
cells) as the experimental world. We evaluated the agent 
performance when all prey was captured by the predator agents, 
by measuring the time or step counted toward the capture and 
the success rate within a limited time spent in the episodes. The 
capture is the final stage occurring when the prey has no empty 
neighboring cells that are occupied by predators, or when the 
prey and a predator are located in the same cell and adjacent cells 
are not empty due to predators occupying the neighboring cells. 
We randomly set the initial locations for the agents deployed in 
the grid world to choose an action in the action-space for each 
step; at this point, prey can be optionally configured as either the 
default ‘fixed state’ (F) or the ‘random escape’ (R) targeted prey 
mode. A cell cannot be simultaneously occupied by two or more 
agents, unless a prey and a single predator may be occasionally 
located in the same cell in the episode. The boundaries cannot 
be crossed by agents, and predators can learn to cooperate in the 
capture while prey can only stand still or escape arbitrarily. A 
single episode has a limited number of steps, and when it reaches 
the capture before the limit step (100 steps), the episode will end. 

If no capture occurs, the episode will end and restart a new one 
at the limit step of 100 till the end of the game. 

B. Multi-Agent DRL 
The proposed MADRL consists of a set of cooperative n 

agents denoted by ! = {0, 1,2… . . * − 1}, while at time -, each 
agent . ∈ !  observes the current state 0! ∈ 0  in the 
environment, with the taken action 1!" ∈ 	3  being based on the 
stochastic policy 4′. The resulted reward is received as 6! =
{0! , 1!"} at the same time the environment moves to 0!#$ ← 0!. 
The objective is to search a set of policy 4 for all agents in order 
to maximize the total reward in a Q-learning probability function 
6% = ∑ g&'%(

&)% 6& , where 6&  is the reward received at time 9 
and the discount factor g		is required to describe the observable 
environment.  

The policy set 4 can be classified into two types of method: 
1. the joint policy among all predators at every 4*&, and 2. an 
independent policy 4*+ 	 for each agent. The method of 4*& 
considering the joint actions ∏ 3""∈-  of all agents encounters 
the space complexity that grows exponentially as the number of 
agents increases. The proposed alternative approach, the 
‘independent policy’ 4*+ , is based on each agent that can 
eventually reduce the space complexity. However, the 
‘independent policy’ also suffers from the non-stationarity of the 
RL environment, even though the experience memory replays; 
at the same time, PER is applied for the memory replay and 
DQN in the deep neural network helps to stabilize the sample 
inefficiency. The PER of obsolete memory cannot notably catch 
the dynamics of the environment, which the agents should learn 
in order to take accurate action to achieve rewards and a more 
effective convergence. Thus, the proposed augmented PER 
(aPER) is explored and verified in the MADRL simulations to 
address this issue. 

C. Knowledge Engineering 
To formulate and explain the action-space and state-space in 

our experiments, we designed two ontologies: the action 
ontology in Fig 3 and state ontology in Fig 4. In the latter, the 
predator agent can use the action ontology to choose the next 
action such as either ‘up’, ‘down’, ‘left’, ‘right’ or ‘stay’ in the 
action-space and learn other predators’ action by reusing the 
knowledge of other predator agents. Meanwhile, the predator 
agent can observe its status as well as that of other agents, which 
are referred to as the state ontology to avoid a conflict of interest 
when occupying the same cell as other predators.                                  

 
Fig 3. Action ontology provides agents with directions based on the condition, 

where actions are ‘up’ (U), ‘down’ (D), ‘left’ (L), ‘right (R), and ‘stay’ (S). 



 
Fig 4. State ontology shows the corresponding x-coordinate and y-coordinate 

for self-location, prey location, and other predators’ locations. 

 
Fig 5. Adaptable Interface provides human guidance for training the predator 

agents (blue) to target the salient region and cells of prey (red). 

The prey mode can be set to either F or R as the target, 
whereas a single predator agent can use the state ontology to 
decide whether to occupy the designated cell that the prey is 
simultaneously located in to prevent conflict with other 
predators. Thus, for a feasible KBS, we employed two hierarchy 
mappings over two ontologies that are built upon knowledge 
sharing and knowledge transfer mechanisms, and the necessary 
search function and related inquiring interfaces are estimated 
and preprogrammed for all predators in the RL environment. 

D. Adaptable Interface 
The proposed Adaptable Interface aims at integrating the 

human inputs in the MADRL training process, to improve the 
sample inefficiency at the training stage, which will result in a 
performance boost in the following testing episodes. One of the 
ways to do this may be to offer augmented information to the 
system through natural language, but this presupposes that the 
system is fully built and can promptly on time understand the 
meaning of natural languages in a dynamic environment. In 
another more ideal way would involve conveying the real-time 
and straightforward information to allow humans to point at 
salient regions and cells of the environment state. This 
augmented input referred to as human-in-the-loop attention for 
predator agents, guides predators’ actions based on the salient 
information of the state-space shown as Fig 5, in addition to the 
original action-space. The guiding signal can be offered as 
frequently as in every step to interact with dynamic prey with the 
‘random escape’ mode in particular. The proposed Adaptable 
Interface helps to examine the three metrics of environment 
sample efficiency, human augmented sample efficiency, and 
agent observations for targeting prey. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Settings 
The experiments are based on the MADRL and Adaptable 

MADRL methods shown in Table I, where the Configuration 
settings are arranged in the current deployment. We executed 

10 epochs and each epoch consisted of 50 episodes in the 
evaluation. In each epoch, the proposed system defined the 
Training (1st to 10th episode) and Testing (11th to 50th episode) 
datasets for both methods. A maximum number of steps were 
counted and limited to 100 to restart in each episode if no 
capture occurs; otherwise, the next episode restarts at any time 
of capture within the limit. Here, we adopted aPER to remember 
the sampling batch and weigh the important replay experience, 
which is ranked in the priority list by filtering the error samples. 
Augmentation represents the ‘human-in-the-loop’ training 
courses for each episode in addition to the statistic action-space 
expected by the proposed Adaptable MADRL method. The 
experiments were conducted according to the settings illustrated 
in the list of hyper-parameters and related values (Table II), and 
the number of exploration steps was set to 100 steps. 

TABLE I.   DATASETS 

     setting              
 
method 

Configuration, Training vs. Testing  

Configuration Training Testing 

MADRL 
(Baseline) 

 
§ Prioritized Experience 

Replay (PER) 
§ Adam optimizer 
§ ReLu softmax function 
§ 3 predator agents 
§ 1 prey agent (F/R) 
§ Initially random state agents  
§ N x N grid 
§ Total 10 epochs 
§ 50 episodes / epoch 
§ 100 steps limited / episode 
§ aPER    (human-in-the-

loop)* 
 

1st ~ 10th 
episode 
/ epoch 

11th ~ 50th 
episode  
/ epoch 

Adaptable 
MADRL  

1st ~ 10th 
episode* 
/ epoch 

11th ~ 50th 
episode  
/ epoch 

TABLE II.  HYPERPARAMETERS AND VALUES 

Parameter Value 
RMSPro learning rate 0.00005 
Adam learning rate 0.0000625 
Initial ! for exploration 1.00 
Final ! for exploration 0.01 
Number of exploration steps 100 
Steps between target network updates 1000 
Replay memory size 1000000 
Minibatch size 64 
Discount factor " 0.95 
Prioritization exponent # 0.5 
Prioritization importance sampling $ 0.4 à1.0 

TABLE III.  EXPERIMENT RESULTS 

 ASR ASST ASE 
MADRL 

(Baseline) 
17.9% -321.77 -1043.84 

Adaptable 
MADRL 

30.35% -353.732 -840.10 
 
B. Experimental Results and Discussions 

Here we report the results (Table III) of the three metrics of 
ASR, ASST, and ASE. The ASR indicates the Average Success 
Rate of our method, Adaptable MADRL, which outperforms the 
baseline to achieve a capture within a total of 400 episodes of 



testing. Though the Average Score for Success Test (ASST) of 
Adaptable MADRL is slightly lower than the baseline’s average 
success score, our method is still competitive in providing 
knowledgeable advice, according to the records of success 
episode due to the greater success observed in aPER, and the 
sample learning deficiency during the initial states. This is 
especially the case in memorable conditions both in training and  
the testing episodes, such as when the salient region is related to 
a corner of cells and boundary cells; here, our method learns 
much more quickly than the arbitrary batch samples in the 
observed test episodes. Since Adaptable MADRL improves the 
success rate within a limited number of steps in each episode, it 
eventually boosts performance for estimating the Average Score 
for Episode (ASE) in our experiments. Moreover, we adopted 
the above Configuration settings for similar training episodes 
with two methods, which both have fixed initial and random 
initial locations for all agents, and only all prey will stay at the 
origin point after their initialization. We evaluated the results of 
the two methods in the testing of the 11th episode with a non- 
limited number of steps to observe the convergent performance. 
The outcomes are shown in Fig 6 (a) and (b), which demonstrate 
our method performs around 8.33 (350/42) times and 4.03 
(887/220) times to explore, which, when compared to the 
baselines in the experiments, are more efficient with the 
solutions being reached more rapidly.    

 
                                (a)                                                          (b) 

Fig 6. In (a), our method (green) shows 8.33 times faster with ‘fixed initial 
location’ for both methods, and in (b), which shows 4.03 times faster with 
‘random initial location’ compared to the baseline (red) for both methods.  

VI. CONCLUSITON AND FUTURE WORK 
In this work, we present a novel method to integrate an 

explainable KE and adaptable human interfaces for the MADRL 
learning environment. The experiments were conducted to 
simulate a game with enhanced inputs in the Human-in-the-
Loop paradigm, to improve the rewards and accuracy. The 
results show that the convergence in MADRL was achieved, and 
feasible non-stationarity was avoided in the episodes for training 
with human guidance. The proposed method outperforms the 
baseline in environment sample efficiency and leverages the 
experience memory replay for the knowledge attention network. 
We also verified that the human input can be important in the 
early sample stabilizing process, especially in some special 
conditions for the agent to learn more efficiently, which can be 
advantageous for the further integration of human-centered 
computing and AI. Our future work will focus on the techniques 
and instructing courses given to DRL by human augmented, 
logically implicated, and incremental learning, to decide 
whether the observation quality, vectors, sequence of state-
action, constraints and budgets are essential for various types of 
learning algorithms. 
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